Based on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.
The difficulties of death figures
This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.
Where are these numbers coming from?
The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundMandatory COVID-19 certification, showing proof of vaccination, negative test, or recent infection to access to public venues, was introduced at different times in the four countries of the UK. We aim to study its effects on the incidence of cases and hospital admissions.MethodsWe performed Negative binomial segmented regression and ARIMA analyses for four countries (England, Northern Ireland, Scotland and Wales), and fitted Difference-in-Differences models to compare the latter three to England, as a negative control group, since it was the last country where COVID-19 certification was introduced. The main outcome was the weekly averaged incidence of COVID-19 cases and hospital admissions.ResultsCOVID-19 certification led to a decrease in the incidence of cases and hospital admissions in Northern Ireland, as well as in Wales during the second half of November. The same was seen for hospital admissions in Wales and Scotland during October. In Wales the incidence rate of cases in October already had a decreasing tendency, as well as in England, hence a particular impact of COVID-19 certification was less obvious. Method assumptions for the Difference-in-Differences analysis did not hold for Scotland. Additional NBSR and ARIMA models suggest similar results, while also accounting for correlation in the latter. The assessment of the effect in England itself leads one to believe that this intervention might not be strong enough for the Omicron variant, which was prevalent at the time of introduction of COVID-19 certification in the country.ConclusionsMandatory COVID-19 certification reduced COVID-19 transmission and hospitalizations when Delta predominated in the UK, but lost efficacy when Omicron became the most common variant.
COVID-19 rate of death, or the known deaths divided by confirmed cases, was over ten percent in Yemen, the only country that has 1,000 or more cases. This according to a calculation that combines coronavirus stats on both deaths and registered cases for 221 different countries. Note that death rates are not the same as the chance of dying from an infection or the number of deaths based on an at-risk population. By April 26, 2022, the virus had infected over 510.2 million people worldwide, and led to a loss of 6.2 million. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.
Where are these numbers coming from?
The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. Note that Statista aims to also provide domestic source material for a more complete picture, and not to just look at one particular source. Examples are these statistics on the confirmed coronavirus cases in Russia or the COVID-19 cases in Italy, both of which are from domestic sources. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.
A word on the flaws of numbers like this
People are right to ask whether these numbers are at all representative or not for several reasons. First, countries worldwide decide differently on who gets tested for the virus, meaning that comparing case numbers or death rates could to some extent be misleading. Germany, for example, started testing relatively early once the country’s first case was confirmed in Bavaria in January 2020, whereas Italy tests for the coronavirus postmortem. Second, not all people go to see (or can see, due to testing capacity) a doctor when they have mild symptoms. Countries like Norway and the Netherlands, for example, recommend people with non-severe symptoms to just stay at home. This means not all cases are known all the time, which could significantly alter the death rate as it is presented here. Third and finally, numbers like this change very frequently depending on how the pandemic spreads or the national healthcare capacity. It is therefore recommended to look at other (freely accessible) content that dives more into specifics, such as the coronavirus testing capacity in India or the number of hospital beds in the UK. Only with additional pieces of information can you get the full picture, something that this statistic in its current state simply cannot provide.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The relationship between prevalence of infection and severe outcomes such as hospitalisation and death changed over the course of the COVID-19 pandemic. Reliable estimates of the infection fatality ratio (IFR) and infection hospitalisation ratio (IHR) along with the time-delay between infection and hospitalisation/death can inform forecasts of the numbers/timing of severe outcomes and allow healthcare services to better prepare for periods of increased demand. The REal-time Assessment of Community Transmission-1 (REACT-1) study estimated swab positivity for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection in England approximately monthly from May 2020 to March 2022. Here, we analyse the changing relationship between prevalence of swab positivity and the IFR and IHR over this period in England, using publicly available data for the daily number of deaths and hospitalisations, REACT-1 swab positivity data, time-delay models, and Bayesian P-spline models. We analyse data for all age groups together, as well as in 2 subgroups: those aged 65 and over and those aged 64 and under. Additionally, we analysed the relationship between swab positivity and daily case numbers to estimate the case ascertainment rate of England’s mass testing programme. During 2020, we estimated the IFR to be 0.67% and the IHR to be 2.6%. By late 2021/early 2022, the IFR and IHR had both decreased to 0.097% and 0.76%, respectively. The average case ascertainment rate over the entire duration of the study was estimated to be 36.1%, but there was some significant variation in continuous estimates of the case ascertainment rate. Continuous estimates of the IFR and IHR of the virus were observed to increase during the periods of Alpha and Delta’s emergence. During periods of vaccination rollout, and the emergence of the Omicron variant, the IFR and IHR decreased. During 2020, we estimated a time-lag of 19 days between hospitalisation and swab positivity, and 26 days between deaths and swab positivity. By late 2021/early 2022, these time-lags had decreased to 7 days for hospitalisations and 18 days for deaths. Even though many populations have high levels of immunity to SARS-CoV-2 from vaccination and natural infection, waning of immunity and variant emergence will continue to be an upwards pressure on the IHR and IFR. As investments in community surveillance of SARS-CoV-2 infection are scaled back, alternative methods are required to accurately track the ever-changing relationship between infection, hospitalisation, and death and hence provide vital information for healthcare provision and utilisation.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Higher Education Graduate Outcomes Statistics: UK, 2020/21 This Statistical Bulletin is the annual first release of Graduate Outcomes survey data. These experimental statistics cover UK higher education providers (HEPs) including alternative providers (APs) and further education colleges (FECs) in England, Wales and Northern Ireland. Data is collected approximately 15 months after HE course completion. The 2020/21 Graduate Outcomes cohort finished their qualifications in the second academic year affected by COVID-19. While Cohort A finished their qualifications during late summer and early autumn 2020, in a period of relatively loose restrictions, restrictions began to increase over the course of the academic year. Cohort B graduated into a period of short national lockdowns, followed by the start of the second national lockdown in January 2021. Cohort C likewise graduated in lockdown, but the progress of the vaccination programme led to a gradual easing of restrictions as spring progressed; by the time Cohort D, the largest Graduate Outcomes cohort, began to finish their qualifications in May 2021, most adults had been offered a first vaccine dose, and restrictions were gradually being phased out across the UK. The circumstances under which 2020/21 graduates were surveyed were quite different. As surveying for Cohort A opened in December 2021, Omicron variant cases were rising and new guidance was being issued requiring masks in indoor spaces and encouraging people to work from home where possible, the new restrictions were considerably more lenient than those which were introduced a year previously. By the time the Cohort B survey period opened in March 2022, all legal restrictions had been lifted in England, and remaining restrictions were phased out in other nations over the next few months. Although COVID cases rose from the start of June to a summer peak in early July, no legal restrictions were in place during the survey periods for Cohorts C and D. An insight briefing provides further detail on analysis undertaken to explore the impact of the pandemic, and the conclusions identified. This statistical bulletin has been produced by HESA in collaboration with statisticians from the Office for Students, the Department for Education, the Welsh Government, the Scottish Government and the Department for the Economy Northern Ireland. It has been released according to the arrangements approved by the UK Statistics Authority.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Characteristics and exposures of Omicron versus Delta reinfection cases—Odds ratios.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Estimated time-lags and case ascertainment for time-delay models fit to REACT-1 using the time series of daily cases.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Mean IFR and IHR for each period are compared to a baseline period running from 4 September 2021–16 October 2021. The time-lags between positivity and deaths and hospitalisations used in calculating mean IFR and IHR are the best-fit time-lags from the time-delay models fit to rounds 14–19 of REACT-1. (XLSX)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Estimated time-lags and IFR and IHR for all time-delay models fit to REACT-1.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundUneven vaccination and less resilient health care systems mean hospitals in LMICs are at risk of being overwhelmed during periods of increased COVID-19 infection. Risk-scores proposed for rapid triage of need for admission from the emergency department (ED) have been developed in higher-income settings during initial waves of the pandemic.MethodsRoutinely collected data for public hospitals in the Western Cape, South Africa from the 27th August 2020 to 11th March 2022 were used to derive a cohort of 446,084 ED patients with suspected COVID-19. The primary outcome was death or ICU admission at 30 days. The cohort was divided into derivation and Omicron variant validation sets. We developed the LMIC-PRIEST score based on the coefficients from multivariable analysis in the derivation cohort and existing triage practices. We externally validated accuracy in the Omicron period and a UK cohort.ResultsWe analysed 305,564 derivation, 140,520 Omicron and 12,610 UK validation cases. Over 100 events per predictor parameter were modelled. Multivariable analyses identified eight predictor variables retained across models. We used these findings and clinical judgement to develop a score based on South African Triage Early Warning Scores and also included age, sex, oxygen saturation, inspired oxygen, diabetes and heart disease. The LMIC-PRIEST score achieved C-statistics: 0.82 (95% CI: 0.82 to 0.83) development cohort; 0.79 (95% CI: 0.78 to 0.80) Omicron cohort; and 0.79 (95% CI: 0.79 to 0.80) UK cohort. Differences in prevalence of outcomes led to imperfect calibration in external validation. However, use of the score at thresholds of three or less would allow identification of very low-risk patients (NPV ≥0.99) who could be rapidly discharged using information collected at initial assessment.ConclusionThe LMIC-PRIEST score shows good discrimination and high sensitivity at lower thresholds and can be used to rapidly identify low-risk patients in LMIC ED settings.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
COVID-19 infection rates remain high in South Africa. Clinical prediction models may be helpful for rapid triage, and supporting clinical decision making, for patients with suspected COVID-19 infection. The Western Cape, South Africa, has integrated electronic health care data facilitating large-scale linked routine datasets. The aim of this study was to develop a machine learning model to predict adverse outcome in patients presenting with suspected COVID-19 suitable for use in a middle-income setting. A retrospective cohort study was conducted using linked, routine data, from patients presenting with suspected COVID-19 infection to public-sector emergency departments (EDs) in the Western Cape, South Africa between 27th August 2020 and 31st October 2021. The primary outcome was death or critical care admission at 30 days. An XGBoost machine learning model was trained and internally tested using split-sample validation. External validation was performed in 3 test cohorts: Western Cape patients presenting during the Omicron COVID-19 wave, a UK cohort during the ancestral COVID-19 wave, and a Sudanese cohort during ancestral and Eta waves. A total of 282,051 cases were included in a complete case training dataset. The prevalence of 30-day adverse outcome was 4.0%. The most important features for predicting adverse outcome were the requirement for supplemental oxygen, peripheral oxygen saturations, level of consciousness and age. Internal validation using split-sample test data revealed excellent discrimination (C-statistic 0.91, 95% CI 0.90 to 0.91) and calibration (CITL of 1.05). The model achieved C-statistics of 0.84 (95% CI 0.84 to 0.85), 0.72 (95% CI 0.71 to 0.73), and 0.62, (95% CI 0.59 to 0.65) in the Omicron, UK, and Sudanese test cohorts. Results were materially unchanged in sensitivity analyses examining missing data. An XGBoost machine learning model achieved good discrimination and calibration in prediction of adverse outcome in patients presenting with suspected COVID19 to Western Cape EDs. Performance was reduced in temporal and geographical external validation.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Based on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.
The difficulties of death figures
This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.
Where are these numbers coming from?
The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.