Based on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.
The difficulties of death figures
This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.
Where are these numbers coming from?
The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.
COVID-19 rate of death, or the known deaths divided by confirmed cases, was over ten percent in Yemen, the only country that has 1,000 or more cases. This according to a calculation that combines coronavirus stats on both deaths and registered cases for 221 different countries. Note that death rates are not the same as the chance of dying from an infection or the number of deaths based on an at-risk population. By April 26, 2022, the virus had infected over 510.2 million people worldwide, and led to a loss of 6.2 million. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.
Where are these numbers coming from?
The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. Note that Statista aims to also provide domestic source material for a more complete picture, and not to just look at one particular source. Examples are these statistics on the confirmed coronavirus cases in Russia or the COVID-19 cases in Italy, both of which are from domestic sources. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.
A word on the flaws of numbers like this
People are right to ask whether these numbers are at all representative or not for several reasons. First, countries worldwide decide differently on who gets tested for the virus, meaning that comparing case numbers or death rates could to some extent be misleading. Germany, for example, started testing relatively early once the country’s first case was confirmed in Bavaria in January 2020, whereas Italy tests for the coronavirus postmortem. Second, not all people go to see (or can see, due to testing capacity) a doctor when they have mild symptoms. Countries like Norway and the Netherlands, for example, recommend people with non-severe symptoms to just stay at home. This means not all cases are known all the time, which could significantly alter the death rate as it is presented here. Third and finally, numbers like this change very frequently depending on how the pandemic spreads or the national healthcare capacity. It is therefore recommended to look at other (freely accessible) content that dives more into specifics, such as the coronavirus testing capacity in India or the number of hospital beds in the UK. Only with additional pieces of information can you get the full picture, something that this statistic in its current state simply cannot provide.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
IntroductionThe coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has posed extraordinary challenges to global health systems and economies. The virus’s rapid evolution has resulted in several variants of concern (VOCs), including the highly transmissible Omicron variant, characterized by extensive mutations. In this study, we investigated the genetic diversity, population differentiation, and evolutionary dynamics of the Omicron VOC during the fifth wave of COVID-19 in Pakistan.MethodsA total of 954 Omicron genomes sequenced during the fifth wave of COVID-19 in Pakistan were analyzed. A Bayesian framework was employed for phylogenetic reconstructions, molecular dating, and population dynamics analysis.ResultsUsing a population genomics approach, we analyzed Pakistani Omicron samples, revealing low within-population genetic diversity and significant structural variation in the spike (S) protein. Phylogenetic analysis showed that the Omicron variant in Pakistan originated from two distinct lineages, BA.1 and BA.2, which were introduced from South Africa, Thailand, Spain, and Belgium. Omicron-specific mutations, including those in the receptor-binding domain, were identified. The estimated molecular evolutionary rate was 2.562E-3 mutations per site per year (95% HPD interval: 8.8067E-4 to 4.1462E-3). Bayesian skyline plot analysis indicated a significant population expansion at the end of 2021, coinciding with the global Omicron outbreak. Comparative analysis with other VOCs showed Omicron as a highly divergent, monophyletic group, suggesting a unique evolutionary pathway.ConclusionsThis study provides a comprehensive overview of Omicron’s genetic diversity, genomic epidemiology, and evolutionary dynamics in Pakistan, emphasizing the need for global collaboration in monitoring variants and enhancing pandemic preparedness.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data and code for the manuscript titled “Persistence of SARS-CoV-2 immunity, Omicron’s footprints, and projections of epidemic resurgences in South African population cohorts”
IntroductionThe coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has posed extraordinary challenges to global health systems and economies. The virus’s rapid evolution has resulted in several variants of concern (VOCs), including the highly transmissible Omicron variant, characterized by extensive mutations. In this study, we investigated the genetic diversity, population differentiation, and evolutionary dynamics of the Omicron VOC during the fifth wave of COVID-19 in Pakistan.MethodsA total of 954 Omicron genomes sequenced during the fifth wave of COVID-19 in Pakistan were analyzed. A Bayesian framework was employed for phylogenetic reconstructions, molecular dating, and population dynamics analysis.ResultsUsing a population genomics approach, we analyzed Pakistani Omicron samples, revealing low within-population genetic diversity and significant structural variation in the spike (S) protein. Phylogenetic analysis showed that the Omicron variant in Pakistan originated from two distinct lineages, BA.1 and BA.2, which were introduced from South Africa, Thailand, Spain, and Belgium. Omicron-specific mutations, including those in the receptor-binding domain, were identified. The estimated molecular evolutionary rate was 2.562E-3 mutations per site per year (95% HPD interval: 8.8067E-4 to 4.1462E-3). Bayesian skyline plot analysis indicated a significant population expansion at the end of 2021, coinciding with the global Omicron outbreak. Comparative analysis with other VOCs showed Omicron as a highly divergent, monophyletic group, suggesting a unique evolutionary pathway.ConclusionsThis study provides a comprehensive overview of Omicron’s genetic diversity, genomic epidemiology, and evolutionary dynamics in Pakistan, emphasizing the need for global collaboration in monitoring variants and enhancing pandemic preparedness.
IntroductionThe coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has posed extraordinary challenges to global health systems and economies. The virus’s rapid evolution has resulted in several variants of concern (VOCs), including the highly transmissible Omicron variant, characterized by extensive mutations. In this study, we investigated the genetic diversity, population differentiation, and evolutionary dynamics of the Omicron VOC during the fifth wave of COVID-19 in Pakistan.MethodsA total of 954 Omicron genomes sequenced during the fifth wave of COVID-19 in Pakistan were analyzed. A Bayesian framework was employed for phylogenetic reconstructions, molecular dating, and population dynamics analysis.ResultsUsing a population genomics approach, we analyzed Pakistani Omicron samples, revealing low within-population genetic diversity and significant structural variation in the spike (S) protein. Phylogenetic analysis showed that the Omicron variant in Pakistan originated from two distinct lineages, BA.1 and BA.2, which were introduced from South Africa, Thailand, Spain, and Belgium. Omicron-specific mutations, including those in the receptor-binding domain, were identified. The estimated molecular evolutionary rate was 2.562E-3 mutations per site per year (95% HPD interval: 8.8067E-4 to 4.1462E-3). Bayesian skyline plot analysis indicated a significant population expansion at the end of 2021, coinciding with the global Omicron outbreak. Comparative analysis with other VOCs showed Omicron as a highly divergent, monophyletic group, suggesting a unique evolutionary pathway.ConclusionsThis study provides a comprehensive overview of Omicron’s genetic diversity, genomic epidemiology, and evolutionary dynamics in Pakistan, emphasizing the need for global collaboration in monitoring variants and enhancing pandemic preparedness.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundThe South African COVID-19 Modelling Consortium (SACMC) was established in late March 2020 to support planning and budgeting for COVID-19 related healthcare in South Africa. We developed several tools in response to the needs of decision makers in the different stages of the epidemic, allowing the South African government to plan several months ahead.MethodsOur tools included epidemic projection models, several cost and budget impact models, and online dashboards to help government and the public visualise our projections, track case development and forecast hospital admissions. Information on new variants, including Delta and Omicron, were incorporated in real time to allow the shifting of scarce resources when necessary.ResultsGiven the rapidly changing nature of the outbreak globally and in South Africa, the model projections were updated regularly. The updates reflected 1) the changing policy priorities over the course of the epidemic; 2) the availability of new data from South African data systems; and 3) the evolving response to COVID-19 in South Africa, such as changes in lockdown levels and ensuing mobility and contact rates, testing and contact tracing strategies and hospitalisation criteria. Insights into population behaviour required updates by incorporating notions of behavioural heterogeneity and behavioural responses to observed changes in mortality. We incorporated these aspects into developing scenarios for the third wave and developed additional methodology that allowed us to forecast required inpatient capacity. Finally, real-time analyses of the most important characteristics of the Omicron variant first identified in South Africa in November 2021 allowed us to advise policymakers early in the fourth wave that a relatively lower admission rate was likely.ConclusionThe SACMC’s models, developed rapidly in an emergency setting and regularly updated with local data, supported national and provincial government to plan several months ahead, expand hospital capacity when needed, allocate budgets and procure additional resources where possible. Across four waves of COVID-19 cases, the SACMC continued to serve the planning needs of the government, tracking waves and supporting the national vaccine rollout.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This analysis was adjusted for age category, sex, known comorbidities and subdistrict of residence.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Case ascertainment rate for each round of serology testing, as well by subdistrict of residence, determined by calculating the proportion of positive anti-N antibody results, that had a laboratory confirmed SARS-CoV-2 diagnosis at any time prior to their serology result.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Logistic regression for the outcome of having anti-N positive serology.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Based on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.
The difficulties of death figures
This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.
Where are these numbers coming from?
The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.