https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset is a compilation of data from various sources detailing data breaches. These sources include press reports, government news releases, and mainstream news articles. The list includes those involving the theft or compromise of 30,000 or more records, although many smaller breaches occur continually. In addition, the various methods used in the breaches are listed, with hacking being the most common.
Organizations of all types and sizes are susceptible to data breaches, which can have devastating consequences. This dataset can help shed light on which organizations are most at risk and how these breaches occur so that steps can be taken to prevent them in the future
There are many ways to use this dataset. Here are a few ideas:
- Use the data to understand which types of organizations are most commonly breached, and what methods are used most often.
- Analyze the data to see if there are any trends or patterns in when or how breaches occur.
- Use the data to create a visualizations or infographic showing the prevalence of data breaches
This dataset can be used to identify trends in data breaches in terms of methods used, types of organizations breached, and geographical distribution.
This dataset can be used to study the effect of data breaches on organizational reputation and customer trust.
This dataset can be used by organizations to benchmark their own security measures against those of similar organizations that have experienced data breaches
License
License: CC0 1.0 Universal (CC0 1.0) - Public Domain Dedication No Copyright - You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission. See Other Information.
File: df_1.csv | Column name | Description | |:----------------------|:---------------------------------------------------------------------| | Entity | The name of the organization that was breached. (String) | | Year | The year when the breach occurred. (Integer) | | Records | The number of records that were compromised in the breach. (Integer) | | Organization type | The type of organization that was breached. (String) | | Method | The method that was used to breach the organization. (String) | | Sources | The sources from which the data was collected. (String) |
The largest reported data leakage as of January 2025 was the Cam4 data breach in March 2020, which exposed more than 10 billion data records. The second-largest data breach in history so far, the Yahoo data breach, occurred in 2013. The company initially reported about one billion exposed data records, but after an investigation, the company updated the number, revealing that three billion accounts were affected. The National Public Data Breach was announced in August 2024. The incident became public when personally identifiable information of individuals became available for sale on the dark web. Overall, the security professionals estimate the leakage of nearly three billion personal records. The next significant data leakage was the March 2018 security breach of India's national ID database, Aadhaar, with over 1.1 billion records exposed. This included biometric information such as identification numbers and fingerprint scans, which could be used to open bank accounts and receive financial aid, among other government services.
Cybercrime - the dark side of digitalization As the world continues its journey into the digital age, corporations and governments across the globe have been increasing their reliance on technology to collect, analyze and store personal data. This, in turn, has led to a rise in the number of cyber crimes, ranging from minor breaches to global-scale attacks impacting billions of users – such as in the case of Yahoo. Within the U.S. alone, 1802 cases of data compromise were reported in 2022. This was a marked increase from the 447 cases reported a decade prior. The high price of data protection As of 2022, the average cost of a single data breach across all industries worldwide stood at around 4.35 million U.S. dollars. This was found to be most costly in the healthcare sector, with each leak reported to have cost the affected party a hefty 10.1 million U.S. dollars. The financial segment followed closely behind. Here, each breach resulted in a loss of approximately 6 million U.S. dollars - 1.5 million more than the global average.
In 2024, the number of data compromises in the United States stood at 3,158 cases. Meanwhile, over 1.35 billion individuals were affected in the same year by data compromises, including data breaches, leakage, and exposure. While these are three different events, they have one thing in common. As a result of all three incidents, the sensitive data is accessed by an unauthorized threat actor. Industries most vulnerable to data breaches Some industry sectors usually see more significant cases of private data violations than others. This is determined by the type and volume of the personal information organizations of these sectors store. In 2024 the financial services, healthcare, and professional services were the three industry sectors that recorded most data breaches. Overall, the number of healthcare data breaches in some industry sectors in the United States has gradually increased within the past few years. However, some sectors saw decrease. Largest data exposures worldwide In 2020, an adult streaming website, CAM4, experienced a leakage of nearly 11 billion records. This, by far, is the most extensive reported data leakage. This case, though, is unique because cyber security researchers found the vulnerability before the cyber criminals. The second-largest data breach is the Yahoo data breach, dating back to 2013. The company first reported about one billion exposed records, then later, in 2017, came up with an updated number of leaked records, which was three billion. In March 2018, the third biggest data breach happened, involving India’s national identification database Aadhaar. As a result of this incident, over 1.1 billion records were exposed.
During the third quarter of 2024, data breaches exposed more than *** million records worldwide. Since the first quarter of 2020, the highest number of data records were exposed in the first quarter of ***, more than *** million data sets. Data breaches remain among the biggest concerns of company leaders worldwide. The most common causes of sensitive information loss were operating system vulnerabilities on endpoint devices. Which industries see the most data breaches? Meanwhile, certain conditions make some industry sectors more prone to data breaches than others. According to the latest observations, the public administration experienced the highest number of data breaches between 2021 and 2022. The industry saw *** reported data breach incidents with confirmed data loss. The second were financial institutions, with *** data breach cases, followed by healthcare providers. Data breach cost Data breach incidents have various consequences, the most common impact being financial losses and business disruptions. As of 2023, the average data breach cost across businesses worldwide was **** million U.S. dollars. Meanwhile, a leaked data record cost about *** U.S. dollars. The United States saw the highest average breach cost globally, at **** million U.S. dollars.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Article Information
The work involved in developing the dataset and benchmarking its use of machine learning is set out in the article ‘IoMT-TrafficData: Dataset and Tools for Benchmarking Intrusion Detection in Internet of Medical Things’. DOI: 10.1109/ACCESS.2024.3437214.
Please do cite the aforementioned article when using this dataset.
Abstract
The increasing importance of securing the Internet of Medical Things (IoMT) due to its vulnerabilities to cyber-attacks highlights the need for an effective intrusion detection system (IDS). In this study, our main objective was to develop a Machine Learning Model for the IoMT to enhance the security of medical devices and protect patients’ private data. To address this issue, we built a scenario that utilised the Internet of Things (IoT) and IoMT devices to simulate real-world attacks. We collected and cleaned data, pre-processed it, and provided it into our machine-learning model to detect intrusions in the network. Our results revealed significant improvements in all performance metrics, indicating robustness and reproducibility in real-world scenarios. This research has implications in the context of IoMT and cybersecurity, as it helps mitigate vulnerabilities and lowers the number of breaches occurring with the rapid growth of IoMT devices. The use of machine learning algorithms for intrusion detection systems is essential, and our study provides valuable insights and a road map for future research and the deployment of such systems in live environments. By implementing our findings, we can contribute to a safer and more secure IoMT ecosystem, safeguarding patient privacy and ensuring the integrity of medical data.
ZIP Folder Content
The ZIP folder comprises two main components: Captures and Datasets. Within the captures folder, we have included all the captures used in this project. These captures are organized into separate folders corresponding to the type of network analysis: BLE or IP-Based. Similarly, the datasets folder follows a similar organizational approach. It contains datasets categorized by type: BLE, IP-Based Packet, and IP-Based Flows.
To cater to diverse analytical needs, the datasets are provided in two formats: CSV (Comma-Separated Values) and pickle. The CSV format facilitates seamless integration with various data analysis tools, while the pickle format preserves the intricate structures and relationships within the dataset.
This organization enables researchers to easily locate and utilize the specific captures and datasets they require, based on their preferred network analysis type or dataset type. The availability of different formats further enhances the flexibility and usability of the provided data.
Datasets' Content
Within this dataset, three sub-datasets are available, namely BLE, IP-Based Packet, and IP-Based Flows. Below is a table of the features selected for each dataset and consequently used in the evaluation model within the provided work.
Identified Key Features Within Bluetooth Dataset
Feature Meaning
btle.advertising_header BLE Advertising Packet Header
btle.advertising_header.ch_sel BLE Advertising Channel Selection Algorithm
btle.advertising_header.length BLE Advertising Length
btle.advertising_header.pdu_type BLE Advertising PDU Type
btle.advertising_header.randomized_rx BLE Advertising Rx Address
btle.advertising_header.randomized_tx BLE Advertising Tx Address
btle.advertising_header.rfu.1 Reserved For Future 1
btle.advertising_header.rfu.2 Reserved For Future 2
btle.advertising_header.rfu.3 Reserved For Future 3
btle.advertising_header.rfu.4 Reserved For Future 4
btle.control.instant Instant Value Within a BLE Control Packet
btle.crc.incorrect Incorrect CRC
btle.extended_advertising Advertiser Data Information
btle.extended_advertising.did Advertiser Data Identifier
btle.extended_advertising.sid Advertiser Set Identifier
btle.length BLE Length
frame.cap_len Frame Length Stored Into the Capture File
frame.interface_id Interface ID
frame.len Frame Length Wire
nordic_ble.board_id Board ID
nordic_ble.channel Channel Index
nordic_ble.crcok Indicates if CRC is Correct
nordic_ble.flags Flags
nordic_ble.packet_counter Packet Counter
nordic_ble.packet_time Packet time (start to end)
nordic_ble.phy PHY
nordic_ble.protover Protocol Version
Identified Key Features Within IP-Based Packets Dataset
Feature Meaning
http.content_length Length of content in an HTTP response
http.request HTTP request being made
http.response.code Sequential number of an HTTP response
http.response_number Sequential number of an HTTP response
http.time Time taken for an HTTP transaction
tcp.analysis.initial_rtt Initial round-trip time for TCP connection
tcp.connection.fin TCP connection termination with a FIN flag
tcp.connection.syn TCP connection initiation with SYN flag
tcp.connection.synack TCP connection establishment with SYN-ACK flags
tcp.flags.cwr Congestion Window Reduced flag in TCP
tcp.flags.ecn Explicit Congestion Notification flag in TCP
tcp.flags.fin FIN flag in TCP
tcp.flags.ns Nonce Sum flag in TCP
tcp.flags.res Reserved flags in TCP
tcp.flags.syn SYN flag in TCP
tcp.flags.urg Urgent flag in TCP
tcp.urgent_pointer Pointer to urgent data in TCP
ip.frag_offset Fragment offset in IP packets
eth.dst.ig Ethernet destination is in the internal network group
eth.src.ig Ethernet source is in the internal network group
eth.src.lg Ethernet source is in the local network group
eth.src_not_group Ethernet source is not in any network group
arp.isannouncement Indicates if an ARP message is an announcement
Identified Key Features Within IP-Based Flows Dataset
Feature Meaning
proto Transport layer protocol of the connection
service Identification of an application protocol
orig_bytes Originator payload bytes
resp_bytes Responder payload bytes
history Connection state history
orig_pkts Originator sent packets
resp_pkts Responder sent packets
flow_duration Length of the flow in seconds
fwd_pkts_tot Forward packets total
bwd_pkts_tot Backward packets total
fwd_data_pkts_tot Forward data packets total
bwd_data_pkts_tot Backward data packets total
fwd_pkts_per_sec Forward packets per second
bwd_pkts_per_sec Backward packets per second
flow_pkts_per_sec Flow packets per second
fwd_header_size Forward header bytes
bwd_header_size Backward header bytes
fwd_pkts_payload Forward payload bytes
bwd_pkts_payload Backward payload bytes
flow_pkts_payload Flow payload bytes
fwd_iat Forward inter-arrival time
bwd_iat Backward inter-arrival time
flow_iat Flow inter-arrival time
active Flow active duration
As of 2024, the average cost of a data breach in the United States amounted to **** million U.S. dollars, down from **** million U.S. dollars in the previous year. The global average cost per data breach was **** million U.S. dollars in 2024. Cost of a data breach in different countries worldwide Data breaches impose a big threat for organizations globally. The monetary damage caused by data breaches has increased in many markets in the past decade. In 2023, Canada followed the U.S. by data breach costs, with an average of **** million U.S. dollars. Since 2019, the average monetary damage caused by loss of sensitive information in Canada has increased notably. In the United Kingdom, the average cost of a data breach in 2024 amounted to around **** million U.S. dollars, while in Germany it stood at **** million U.S. dollars. The cost of data breach by industry and segment Data breach costs vary depending on the industry and segment. For the fourth consecutive year, the global healthcare sector registered the highest costs of data breach, which in 2024 amounted to about **** million U.S. dollars. Financial institutions ranked second, with an average cost of *** million U.S. dollars for a data breach. Detection and escalation was the costliest segment in data breaches worldwide, with **** U.S. dollars on average. The cost for lost business ranked second, while response following a breach came across as the third-costliest segment.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset is a compilation of data from various sources detailing data breaches. These sources include press reports, government news releases, and mainstream news articles. The list includes those involving the theft or compromise of 30,000 or more records, although many smaller breaches occur continually. In addition, the various methods used in the breaches are listed, with hacking being the most common.
Organizations of all types and sizes are susceptible to data breaches, which can have devastating consequences. This dataset can help shed light on which organizations are most at risk and how these breaches occur so that steps can be taken to prevent them in the future
There are many ways to use this dataset. Here are a few ideas:
- Use the data to understand which types of organizations are most commonly breached, and what methods are used most often.
- Analyze the data to see if there are any trends or patterns in when or how breaches occur.
- Use the data to create a visualizations or infographic showing the prevalence of data breaches
This dataset can be used to identify trends in data breaches in terms of methods used, types of organizations breached, and geographical distribution.
This dataset can be used to study the effect of data breaches on organizational reputation and customer trust.
This dataset can be used by organizations to benchmark their own security measures against those of similar organizations that have experienced data breaches
License
License: CC0 1.0 Universal (CC0 1.0) - Public Domain Dedication No Copyright - You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission. See Other Information.
File: df_1.csv | Column name | Description | |:----------------------|:---------------------------------------------------------------------| | Entity | The name of the organization that was breached. (String) | | Year | The year when the breach occurred. (Integer) | | Records | The number of records that were compromised in the breach. (Integer) | | Organization type | The type of organization that was breached. (String) | | Method | The method that was used to breach the organization. (String) | | Sources | The sources from which the data was collected. (String) |