6 datasets found
  1. Z

    Supporting datasets PubFig05 for: "Heterogeneous Ensemble Combination Search...

    • data-staging.niaid.nih.gov
    • data.niaid.nih.gov
    Updated Jan 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Haque, Mohammad Nazmul; Noman, Nasimul; Berratta, Regina; Moscato, Pablo (2020). Supporting datasets PubFig05 for: "Heterogeneous Ensemble Combination Search using Genetic Algorithm for Class Imbalanced Data Classification" [Dataset]. https://data-staging.niaid.nih.gov/resources?id=zenodo_33539
    Explore at:
    Dataset updated
    Jan 24, 2020
    Dataset provided by
    The Priority Research Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
    Authors
    Haque, Mohammad Nazmul; Noman, Nasimul; Berratta, Regina; Moscato, Pablo
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    Faces Dataset: PubFig05

    This is a subset of the ''PubFig83'' dataset [1] which provides 100 images each of 5 most difficult celebrities to recognise (referred as class in the classification problem). For each celebrity persons, we took 100 images and separated them into training and testing sets of 90 and 10 images, respectively:

    Person: Jenifer Lopez; Katherine Heigl; Scarlett Johansson; Mariah Carey; Jessica Alba

    Feature Extraction

    To extract features from images, we have applied the HT-L3-model as described in [2] and obtained 25600 features.

    Feature Selection

    Details about feature selection followed in brief as follows:

    Entropy Filtering: First we apply an implementation of Fayyad and Irani's [3] entropy base heuristic to discretise the dataset and discarded features using the minimum description length (MDL) principle and only 4878 passed this entropy based filtering method.

    Class-Distribution Balancing: Next, we have converted the dataset to binary-class problem by separating into 5 binary-class datasets using one-vs-all setup. Hence, these datasets became imbalanced at a ratio of 1:4. Then we converted them into balanced binary-class datasets using random sub-sampled method. Further processing of the dataset has been described in the paper.

    (alpha,beta)-k Feature selection: To get a good feature set for training the classifier, we select the features using the approach based on the (alpha,beta)-k feature selection [4] problem. It selects a minimum subset of features that maximise both within class similarity and dissimilarity in different classes. We applied the entropy filtering and (alpha,beta)-k feature subset selection methods in three ways and obtained different numbers of features (in the Table below) after consolidating them into binary class dataset.

    UAB: We applied (alpha,beta)-k feature set method on each of the balanced binary-class datasets and we took the union of selected features for each binary-class datasets. Finally, we applied the (alpha,beta)-k feature set selection method on each of the binary-class datasets and get a set of features.

    IAB: We applied (alpha,beta)-k feature set method on each of the balanced binary-class datasets and we took the intersection of selected features for each binary-class datasets. Finally, we applied the (alpha,beta)-k feature set selection method on each of the binary-class datasets and get a set of features.

    UEAB: We applied (alpha,beta)-k feature set method on each of the balanced binary-class datasets. Then, we applied the entropy filtering and (alpha,beta)-k feature set selection method on each of the balanced binary-class datasets. Finally, we took the union of selected features for each balanced binary-class datasets and get a set of features.

    All of these datasets are inside the compressed folder. It also contains the document describing the process detail.

    References

    [1] Pinto, N., Stone, Z., Zickler, T., & Cox, D. (2011). Scaling up biologically-inspired computer vision: A case study in unconstrained face recognition on facebook. In Computer Vision and Pattern Recognition Workshops (CVPRW), 2011 IEEE Computer Society Conference on (pp. 35–42).

    [2] Cox, D., & Pinto, N. (2011). Beyond simple features: A large-scale feature search approach to unconstrained face recognition. In Automatic Face Gesture Recognition and Workshops (FG 2011), 2011 IEEE International Conference on (pp. 8–15).

    [3] Fayyad, U. M., & Irani, K. B. (1993). Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning. In International Joint Conference on Artificial Intelligence (pp. 1022–1029).

    [4] Berretta, R., Mendes, A., & Moscato, P. (2005). Integer programming models and algorithms for molecular classification of cancer from microarray data. In Proceedings of the Twenty-eighth Australasian conference on Computer Science - Volume 38 (pp. 361–370). 1082201: Australian Computer Society, Inc.

  2. Market Basket Analysis

    • kaggle.com
    zip
    Updated Dec 9, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aslan Ahmedov (2021). Market Basket Analysis [Dataset]. https://www.kaggle.com/datasets/aslanahmedov/market-basket-analysis
    Explore at:
    zip(23875170 bytes)Available download formats
    Dataset updated
    Dec 9, 2021
    Authors
    Aslan Ahmedov
    Description

    Market Basket Analysis

    Market basket analysis with Apriori algorithm

    The retailer wants to target customers with suggestions on itemset that a customer is most likely to purchase .I was given dataset contains data of a retailer; the transaction data provides data around all the transactions that have happened over a period of time. Retailer will use result to grove in his industry and provide for customer suggestions on itemset, we be able increase customer engagement and improve customer experience and identify customer behavior. I will solve this problem with use Association Rules type of unsupervised learning technique that checks for the dependency of one data item on another data item.

    Introduction

    Association Rule is most used when you are planning to build association in different objects in a set. It works when you are planning to find frequent patterns in a transaction database. It can tell you what items do customers frequently buy together and it allows retailer to identify relationships between the items.

    An Example of Association Rules

    Assume there are 100 customers, 10 of them bought Computer Mouth, 9 bought Mat for Mouse and 8 bought both of them. - bought Computer Mouth => bought Mat for Mouse - support = P(Mouth & Mat) = 8/100 = 0.08 - confidence = support/P(Mat for Mouse) = 0.08/0.09 = 0.89 - lift = confidence/P(Computer Mouth) = 0.89/0.10 = 8.9 This just simple example. In practice, a rule needs the support of several hundred transactions, before it can be considered statistically significant, and datasets often contain thousands or millions of transactions.

    Strategy

    • Data Import
    • Data Understanding and Exploration
    • Transformation of the data – so that is ready to be consumed by the association rules algorithm
    • Running association rules
    • Exploring the rules generated
    • Filtering the generated rules
    • Visualization of Rule

    Dataset Description

    • File name: Assignment-1_Data
    • List name: retaildata
    • File format: . xlsx
    • Number of Row: 522065
    • Number of Attributes: 7

      • BillNo: 6-digit number assigned to each transaction. Nominal.
      • Itemname: Product name. Nominal.
      • Quantity: The quantities of each product per transaction. Numeric.
      • Date: The day and time when each transaction was generated. Numeric.
      • Price: Product price. Numeric.
      • CustomerID: 5-digit number assigned to each customer. Nominal.
      • Country: Name of the country where each customer resides. Nominal.

    imagehttps://user-images.githubusercontent.com/91852182/145270162-fc53e5a3-4ad1-4d06-b0e0-228aabcf6b70.png">

    Libraries in R

    First, we need to load required libraries. Shortly I describe all libraries.

    • arules - Provides the infrastructure for representing, manipulating and analyzing transaction data and patterns (frequent itemsets and association rules).
    • arulesViz - Extends package 'arules' with various visualization. techniques for association rules and item-sets. The package also includes several interactive visualizations for rule exploration.
    • tidyverse - The tidyverse is an opinionated collection of R packages designed for data science.
    • readxl - Read Excel Files in R.
    • plyr - Tools for Splitting, Applying and Combining Data.
    • ggplot2 - A system for 'declaratively' creating graphics, based on "The Grammar of Graphics". You provide the data, tell 'ggplot2' how to map variables to aesthetics, what graphical primitives to use, and it takes care of the details.
    • knitr - Dynamic Report generation in R.
    • magrittr- Provides a mechanism for chaining commands with a new forward-pipe operator, %>%. This operator will forward a value, or the result of an expression, into the next function call/expression. There is flexible support for the type of right-hand side expressions.
    • dplyr - A fast, consistent tool for working with data frame like objects, both in memory and out of memory.
    • tidyverse - This package is designed to make it easy to install and load multiple 'tidyverse' packages in a single step.

    imagehttps://user-images.githubusercontent.com/91852182/145270210-49c8e1aa-9753-431b-a8d5-99601bc76cb5.png">

    Data Pre-processing

    Next, we need to upload Assignment-1_Data. xlsx to R to read the dataset.Now we can see our data in R.

    imagehttps://user-images.githubusercontent.com/91852182/145270229-514f0983-3bbb-4cd3-be64-980e92656a02.png"> imagehttps://user-images.githubusercontent.com/91852182/145270251-6f6f6472-8817-435c-a995-9bc4bfef10d1.png">

    After we will clear our data frame, will remove missing values.

    imagehttps://user-images.githubusercontent.com/91852182/145270286-05854e1a-2b6c-490e-ab30-9e99e731eacb.png">

    To apply Association Rule mining, we need to convert dataframe into transaction data to make all items that are bought together in one invoice will be in ...

  3. Data from: Summary of feature-selection algorithms.

    • figshare.com
    xls
    Updated Jun 16, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stephen R. Piccolo; Avery Mecham; Nathan P. Golightly; Jérémie L. Johnson; Dustin B. Miller (2023). Summary of feature-selection algorithms. [Dataset]. http://doi.org/10.1371/journal.pcbi.1009926.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 16, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Stephen R. Piccolo; Avery Mecham; Nathan P. Golightly; Jérémie L. Johnson; Dustin B. Miller
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    We evaluated 14 feature-selection algorithms. The abbreviation for each algorithm contains a prefix that indicates which machine-learning library implemented the algorithm (mlr = Machine learning in R, sklearn = scikit-learn, weka = WEKA: The workbench for machine learning). For each algorithm, we provide a brief description of the algorithmic approach; we extracted these descriptions from the libraries that implemented the algorithms. In addition, we assigned high-level categories that indicate whether the algorithms evaluate a single feature (univariate) or multiple features (multivariate) at a time. In some cases, the individual machine-learning libraries aggregated algorithm implementations from third-party packages. In these cases, we cite the machine-learning library and the third-party package. When available, we also cite papers that describe the algorithmic methodologies used.

  4. m

    Data for: Clustering Based Drug-Drug Interaction Networks for Possible...

    • data.mendeley.com
    Updated May 4, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anum Munir (2018). Data for: Clustering Based Drug-Drug Interaction Networks for Possible Repositioning of Drugs against EGFR Mutations [Dataset]. http://doi.org/10.17632/ht3n5tyzcy.1
    Explore at:
    Dataset updated
    May 4, 2018
    Authors
    Anum Munir
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    all the clusters sets generated by K means clustering algorithm in weka tools, and the drug-drug interaction networks generation data and results of networks are provided along with the code, which was used to identify the number of clusters

  5. f

    Implemented Signal Processing Operators.

    • figshare.com
    • plos.figshare.com
    xls
    Updated Jun 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Philipp Kainz; Michael Mayrhofer-Reinhartshuber; Helmut Ahammer (2023). Implemented Signal Processing Operators. [Dataset]. http://doi.org/10.1371/journal.pone.0116329.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 3, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Philipp Kainz; Michael Mayrhofer-Reinhartshuber; Helmut Ahammer
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This table shows all implemented signal operators grouped by their main category. An operator can also contain subroutines which are triggered and parameterized via the graphical user interface. Operators denoted by (*) are fractal operators.Implemented Signal Processing Operators.

  6. Implemented Image Processing Operators.

    • plos.figshare.com
    xls
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Philipp Kainz; Michael Mayrhofer-Reinhartshuber; Helmut Ahammer (2023). Implemented Image Processing Operators. [Dataset]. http://doi.org/10.1371/journal.pone.0116329.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Philipp Kainz; Michael Mayrhofer-Reinhartshuber; Helmut Ahammer
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This table shows all implemented image operators grouped by their main category. An operator can also contain subroutines which are triggered and parameterized via the graphical user interface. Operators denoted by (*) are fractal operators.Implemented Image Processing Operators.

  7. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Haque, Mohammad Nazmul; Noman, Nasimul; Berratta, Regina; Moscato, Pablo (2020). Supporting datasets PubFig05 for: "Heterogeneous Ensemble Combination Search using Genetic Algorithm for Class Imbalanced Data Classification" [Dataset]. https://data-staging.niaid.nih.gov/resources?id=zenodo_33539

Supporting datasets PubFig05 for: "Heterogeneous Ensemble Combination Search using Genetic Algorithm for Class Imbalanced Data Classification"

Explore at:
Dataset updated
Jan 24, 2020
Dataset provided by
The Priority Research Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
Authors
Haque, Mohammad Nazmul; Noman, Nasimul; Berratta, Regina; Moscato, Pablo
License

Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically

Description

Faces Dataset: PubFig05

This is a subset of the ''PubFig83'' dataset [1] which provides 100 images each of 5 most difficult celebrities to recognise (referred as class in the classification problem). For each celebrity persons, we took 100 images and separated them into training and testing sets of 90 and 10 images, respectively:

Person: Jenifer Lopez; Katherine Heigl; Scarlett Johansson; Mariah Carey; Jessica Alba

Feature Extraction

To extract features from images, we have applied the HT-L3-model as described in [2] and obtained 25600 features.

Feature Selection

Details about feature selection followed in brief as follows:

Entropy Filtering: First we apply an implementation of Fayyad and Irani's [3] entropy base heuristic to discretise the dataset and discarded features using the minimum description length (MDL) principle and only 4878 passed this entropy based filtering method.

Class-Distribution Balancing: Next, we have converted the dataset to binary-class problem by separating into 5 binary-class datasets using one-vs-all setup. Hence, these datasets became imbalanced at a ratio of 1:4. Then we converted them into balanced binary-class datasets using random sub-sampled method. Further processing of the dataset has been described in the paper.

(alpha,beta)-k Feature selection: To get a good feature set for training the classifier, we select the features using the approach based on the (alpha,beta)-k feature selection [4] problem. It selects a minimum subset of features that maximise both within class similarity and dissimilarity in different classes. We applied the entropy filtering and (alpha,beta)-k feature subset selection methods in three ways and obtained different numbers of features (in the Table below) after consolidating them into binary class dataset.

UAB: We applied (alpha,beta)-k feature set method on each of the balanced binary-class datasets and we took the union of selected features for each binary-class datasets. Finally, we applied the (alpha,beta)-k feature set selection method on each of the binary-class datasets and get a set of features.

IAB: We applied (alpha,beta)-k feature set method on each of the balanced binary-class datasets and we took the intersection of selected features for each binary-class datasets. Finally, we applied the (alpha,beta)-k feature set selection method on each of the binary-class datasets and get a set of features.

UEAB: We applied (alpha,beta)-k feature set method on each of the balanced binary-class datasets. Then, we applied the entropy filtering and (alpha,beta)-k feature set selection method on each of the balanced binary-class datasets. Finally, we took the union of selected features for each balanced binary-class datasets and get a set of features.

All of these datasets are inside the compressed folder. It also contains the document describing the process detail.

References

[1] Pinto, N., Stone, Z., Zickler, T., & Cox, D. (2011). Scaling up biologically-inspired computer vision: A case study in unconstrained face recognition on facebook. In Computer Vision and Pattern Recognition Workshops (CVPRW), 2011 IEEE Computer Society Conference on (pp. 35–42).

[2] Cox, D., & Pinto, N. (2011). Beyond simple features: A large-scale feature search approach to unconstrained face recognition. In Automatic Face Gesture Recognition and Workshops (FG 2011), 2011 IEEE International Conference on (pp. 8–15).

[3] Fayyad, U. M., & Irani, K. B. (1993). Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning. In International Joint Conference on Artificial Intelligence (pp. 1022–1029).

[4] Berretta, R., Mendes, A., & Moscato, P. (2005). Integer programming models and algorithms for molecular classification of cancer from microarray data. In Proceedings of the Twenty-eighth Australasian conference on Computer Science - Volume 38 (pp. 361–370). 1082201: Australian Computer Society, Inc.

Search
Clear search
Close search
Google apps
Main menu