100+ datasets found
  1. Open-Source GIScience Online Course

    • ckan.americaview.org
    Updated Nov 2, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.americaview.org (2021). Open-Source GIScience Online Course [Dataset]. https://ckan.americaview.org/dataset/open-source-giscience-online-course
    Explore at:
    Dataset updated
    Nov 2, 2021
    Dataset provided by
    CKANhttps://ckan.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    In this course, you will explore a variety of open-source technologies for working with geosptial data, performing spatial analysis, and undertaking general data science. The first component of the class focuses on the use of QGIS and associated technologies (GDAL, PROJ, GRASS, SAGA, and Orfeo Toolbox). The second component of the class introduces Python and associated open-source libraries and modules (NumPy, Pandas, Matplotlib, Seaborn, GeoPandas, Rasterio, WhiteboxTools, and Scikit-Learn) used by geospatial scientists and data scientists. We also provide an introduction to Structured Query Language (SQL) for performing table and spatial queries. This course is designed for individuals that have a background in GIS, such as working in the ArcGIS environment, but no prior experience using open-source software and/or coding. You will be asked to work through a series of lecture modules and videos broken into several topic areas, as outlined below. Fourteen assignments and the required data have been provided as hands-on opportunites to work with data and the discussed technologies and methods. If you have any questions or suggestions, feel free to contact us. We hope to continue to update and improve this course. This course was produced by West Virginia View (http://www.wvview.org/) with support from AmericaView (https://americaview.org/). This material is based upon work supported by the U.S. Geological Survey under Grant/Cooperative Agreement No. G18AP00077. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. Geological Survey. Mention of trade names or commercial products does not constitute their endorsement by the U.S. Geological Survey. After completing this course you will be able to: apply QGIS to visualize, query, and analyze vector and raster spatial data. use available resources to further expand your knowledge of open-source technologies. describe and use a variety of open data formats. code in Python at an intermediate-level. read, summarize, visualize, and analyze data using open Python libraries. create spatial predictive models using Python and associated libraries. use SQL to perform table and spatial queries at an intermediate-level.

  2. a

    13.1 Spatial Analysis with ArcGIS Online

    • hub.arcgis.com
    • training-iowadot.opendata.arcgis.com
    Updated Mar 4, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Iowa Department of Transportation (2017). 13.1 Spatial Analysis with ArcGIS Online [Dataset]. https://hub.arcgis.com/documents/26b60a410070426886914147af4a989c
    Explore at:
    Dataset updated
    Mar 4, 2017
    Dataset authored and provided by
    Iowa Department of Transportation
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    In this seminar, you will learn about the spatial analysis tools built directly into the ArcGIS.com map viewer. You will learn of the spatial analysis capabilities in ArcGIS Online for Organizations, whether for analyzing your own data, data that's publicly available on ArcGIS Online, or a combination of both. You will learn the overall features and benefits of ArcGIS Online Analysis, how to get started, and how to choose the right approach in order to solve a specific spatial problem.

  3. a

    Integrating Data in ArcGIS Pro

    • hub.arcgis.com
    Updated Mar 25, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Delaware (2020). Integrating Data in ArcGIS Pro [Dataset]. https://hub.arcgis.com/documents/3a11f895a7dc4d28ad45cee9cc5ba6d8
    Explore at:
    Dataset updated
    Mar 25, 2020
    Dataset authored and provided by
    State of Delaware
    Description

    In this course, you will learn about some common types of data used for GIS mapping and analysis, and practice adding data to a file geodatabase to support a planned project.Goals Create a file geodatabase. Add data to a file geodatabase. Create an empty geodatabase feature class.

  4. d

    Seattle Parks and Recreation GIS Map Layer Web Services URL - Golf Courses

    • catalog.data.gov
    • data.amerigeoss.org
    Updated Jan 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.seattle.gov (2025). Seattle Parks and Recreation GIS Map Layer Web Services URL - Golf Courses [Dataset]. https://catalog.data.gov/dataset/seattle-parks-and-recreation-gis-map-layer-web-services-url-golf-courses-5cda6
    Explore at:
    Dataset updated
    Jan 31, 2025
    Dataset provided by
    data.seattle.gov
    Area covered
    Seattle
    Description

    Seattle Parks and Recreation ARCGIS park feature map layer web services are hosted on Seattle Public Utilities' ARCGIS server. This web services URL provides a live read only data connection to the Seattle Parks and Recreations Golf Courses dataset.

  5. Geospatial Deep Learning Seminar Online Course

    • ckan.americaview.org
    Updated Nov 2, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.americaview.org (2021). Geospatial Deep Learning Seminar Online Course [Dataset]. https://ckan.americaview.org/dataset/geospatial-deep-learning-seminar-online-course
    Explore at:
    Dataset updated
    Nov 2, 2021
    Dataset provided by
    CKANhttps://ckan.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This seminar is an applied study of deep learning methods for extracting information from geospatial data, such as aerial imagery, multispectral imagery, digital terrain data, and other digital cartographic representations. We first provide an introduction and conceptualization of artificial neural networks (ANNs). Next, we explore appropriate loss and assessment metrics for different use cases followed by the tensor data model, which is central to applying deep learning methods. Convolutional neural networks (CNNs) are then conceptualized with scene classification use cases. Lastly, we explore semantic segmentation, object detection, and instance segmentation. The primary focus of this course is semantic segmenation for pixel-level classification. The associated GitHub repo provides a series of applied examples. We hope to continue to add examples as methods and technologies further develop. These examples make use of a vareity of datasets (e.g., SAT-6, topoDL, Inria, LandCover.ai, vfillDL, and wvlcDL). Please see the repo for links to the data and associated papers. All examples have associated videos that walk through the process, which are also linked to the repo. A variety of deep learning architectures are explored including UNet, UNet++, DeepLabv3+, and Mask R-CNN. Currenlty, two examples use ArcGIS Pro and require no coding. The remaining five examples require coding and make use of PyTorch, Python, and R within the RStudio IDE. It is assumed that you have prior knowledge of coding in the Python and R enviroinments. If you do not have experience coding, please take a look at our Open-Source GIScience and Open-Source Spatial Analytics (R) courses, which explore coding in Python and R, respectively. After completing this seminar you will be able to: explain how ANNs work including weights, bias, activation, and optimization. describe and explain different loss and assessment metrics and determine appropriate use cases. use the tensor data model to represent data as input for deep learning. explain how CNNs work including convolutional operations/layers, kernel size, stride, padding, max pooling, activation, and batch normalization. use PyTorch, Python, and R to prepare data, produce and assess scene classification models, and infer to new data. explain common semantic segmentation architectures and how these methods allow for pixel-level classification and how they are different from traditional CNNs. use PyTorch, Python, and R (or ArcGIS Pro) to prepare data, produce and assess semantic segmentation models, and infer to new data.

  6. A

    Geospatial Deep Learning Seminar Online Course

    • data.amerigeoss.org
    html
    Updated Oct 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AmericaView (2024). Geospatial Deep Learning Seminar Online Course [Dataset]. https://data.amerigeoss.org/dataset/geospatial-deep-learning-seminar-online-course
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Oct 18, 2024
    Dataset provided by
    AmericaView
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This seminar is an applied study of deep learning methods for extracting information from geospatial data, such as aerial imagery, multispectral imagery, digital terrain data, and other digital cartographic representations. We first provide an introduction and conceptualization of artificial neural networks (ANNs). Next, we explore appropriate loss and assessment metrics for different use cases followed by the tensor data model, which is central to applying deep learning methods. Convolutional neural networks (CNNs) are then conceptualized with scene classification use cases. Lastly, we explore semantic segmentation, object detection, and instance segmentation. The primary focus of this course is semantic segmenation for pixel-level classification.

    The associated GitHub repo provides a series of applied examples. We hope to continue to add examples as methods and technologies further develop. These examples make use of a vareity of datasets (e.g., SAT-6, topoDL, Inria, LandCover.ai, vfillDL, and wvlcDL). Please see the repo for links to the data and associated papers. All examples have associated videos that walk through the process, which are also linked to the repo. A variety of deep learning architectures are explored including UNet, UNet++, DeepLabv3+, and Mask R-CNN. Currenlty, two examples use ArcGIS Pro and require no coding. The remaining five examples require coding and make use of PyTorch, Python, and R within the RStudio IDE. It is assumed that you have prior knowledge of coding in the Python and R enviroinments. If you do not have experience coding, please take a look at our Open-Source GIScience and Open-Source Spatial Analytics (R) courses, which explore coding in Python and R, respectively.

    After completing this seminar you will be able to:

    1. explain how ANNs work including weights, bias, activation, and optimization.
    2. describe and explain different loss and assessment metrics and determine appropriate use cases.
    3. use the tensor data model to represent data as input for deep learning.
    4. explain how CNNs work including convolutional operations/layers, kernel size, stride, padding, max pooling, activation, and batch normalization.
    5. use PyTorch, Python, and R to prepare data, produce and assess scene classification models, and infer to new data.
    6. explain common semantic segmentation architectures and how these methods allow for pixel-level classification and how they are different from traditional CNNs.
    7. use PyTorch, Python, and R (or ArcGIS Pro) to prepare data, produce and assess semantic segmentation models, and infer to new data.
    8. explain how object and instance segmentation are different from traditional CNNs and semantic segmentation and how they can be used to generate bounding boxes and feature masks for each instance of a class.
    9. use ArcGIS Pro to perform object detection (to obtain bounding boxes) and instance segmentation (to obtain pixel-level instance masks).
  7. BOGS Training Metrics

    • s.cnmilf.com
    • catalog.data.gov
    • +1more
    Updated May 9, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bureau of Indian Affairs (BIA) (2025). BOGS Training Metrics [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/bogs-training-metrics
    Explore at:
    Dataset updated
    May 9, 2025
    Dataset provided by
    Bureau of Indian Affairshttp://www.bia.gov/
    Description

    Through the Department of the Interior-Bureau of Indian Affairs Enterprise License Agreement (DOI-BIA ELA) program, BIA employees and employees of federally-recognized Tribes may access a variety of geographic information systems (GIS) online courses and instructor-led training events throughout the year at no cost to them. These online GIS courses and instructor-led training events are hosted by the Branch of Geospatial Support (BOGS) or offered by BOGS in partnership with other organizations and federal agencies. Online courses are self-paced and available year-round, while instructor-led training events have limited capacity and require registration and attendance on specific dates. This dataset does not any training where the course was not completed by the participant or where training was cancelled or otherwise not able to be completed. Point locations depict BIA Office locations or Tribal Office Headquarters. For completed trainings where a participant _location was not provided a point locations may not be available. For more information on the Branch of Geospatial Support Geospatial training program, please visit:https://www.bia.gov/service/geospatial-training.

  8. Inform E-learning GIS Course

    • png-data.sprep.org
    • tonga-data.sprep.org
    • +13more
    pdf
    Updated Feb 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SPREP (2025). Inform E-learning GIS Course [Dataset]. https://png-data.sprep.org/dataset/inform-e-learning-gis-course
    Explore at:
    pdf(658923), pdf(501586), pdf(1335336), pdf(587295)Available download formats
    Dataset updated
    Feb 20, 2025
    Dataset provided by
    Pacific Regional Environment Programmehttps://www.sprep.org/
    License

    Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
    License information was derived automatically

    Area covered
    Pacific Region
    Description

    This dataset holds all materials for the Inform E-learning GIS course

  9. a

    ArcGIS Online Fundamentals

    • hub.arcgis.com
    Updated May 17, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Delaware (2019). ArcGIS Online Fundamentals [Dataset]. https://hub.arcgis.com/documents/263e7ee8ae5a4416b3fe0c0bb7e9bd17
    Explore at:
    Dataset updated
    May 17, 2019
    Dataset authored and provided by
    State of Delaware
    Description

    Enroll in this plan to understand ArcGIS Online capabilities, publish content to an ArcGIS Online organizational site, create web maps and apps, and review common ArcGIS Online administrative tasks.

    Goals Access web maps, apps, and other GIS resources that have been shared to an ArcGIS Online organizational site. Publish GIS data as services to an ArcGIS Online organizational site. Create, configure, and share web maps and apps. Manage ArcGIS Online user roles and privileges.

  10. d

    Tutorial: How to use Google Data Studio and ArcGIS Online to create an...

    • dataone.org
    • hydroshare.org
    • +1more
    Updated Dec 5, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sarah Beganskas (2021). Tutorial: How to use Google Data Studio and ArcGIS Online to create an interactive data portal [Dataset]. http://doi.org/10.4211/hs.9edae0ef99224e0b85303c6d45797d56
    Explore at:
    Dataset updated
    Dec 5, 2021
    Dataset provided by
    Hydroshare
    Authors
    Sarah Beganskas
    Description

    This tutorial will teach you how to take time-series data from many field sites and create a shareable online map, where clicking on a field location brings you to a page with interactive graph(s).

    The tutorial can be completed with a sample dataset (provided via a Google Drive link within the document) or with your own time-series data from multiple field sites.

    Part 1 covers how to make interactive graphs in Google Data Studio and Part 2 covers how to link data pages to an interactive map with ArcGIS Online. The tutorial will take 1-2 hours to complete.

    An example interactive map and data portal can be found at: https://temple.maps.arcgis.com/apps/View/index.html?appid=a259e4ec88c94ddfbf3528dc8a5d77e8

  11. d

    Data from: GIS Web Services

    • catalog.data.gov
    • data.brla.gov
    • +2more
    Updated Sep 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.brla.gov (2023). GIS Web Services [Dataset]. https://catalog.data.gov/dataset/gis-web-services
    Explore at:
    Dataset updated
    Sep 15, 2023
    Dataset provided by
    data.brla.gov
    Description

    A listing of web services published from the authoritative East Baton Rouge Parish Geographic Information System (EBRGIS) data repository. Services are offered in Esri REST, and the Open Geospatial Consortium (OGC) Web Mapping Service (WMS) or Web Feature Service (WFS) formats.

  12. G

    QGIS Training Tutorials: Using Spatial Data in Geographic Information...

    • open.canada.ca
    • datasets.ai
    • +2more
    html
    Updated Oct 5, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada (2021). QGIS Training Tutorials: Using Spatial Data in Geographic Information Systems [Dataset]. https://open.canada.ca/data/en/dataset/89be0c73-6f1f-40b7-b034-323cb40b8eff
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Oct 5, 2021
    Dataset provided by
    Statistics Canada
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    Have you ever wanted to create your own maps, or integrate and visualize spatial datasets to examine changes in trends between locations and over time? Follow along with these training tutorials on QGIS, an open source geographic information system (GIS) and learn key concepts, procedures and skills for performing common GIS tasks – such as creating maps, as well as joining, overlaying and visualizing spatial datasets. These tutorials are geared towards new GIS users. We’ll start with foundational concepts, and build towards more advanced topics throughout – demonstrating how with a few relatively easy steps you can get quite a lot out of GIS. You can then extend these skills to datasets of thematic relevance to you in addressing tasks faced in your day-to-day work.

  13. a

    10.4 Creating Web Applications Using Templates and Web AppBuilder for ArcGIS...

    • hub.arcgis.com
    • training-iowadot.opendata.arcgis.com
    Updated Mar 4, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Iowa Department of Transportation (2017). 10.4 Creating Web Applications Using Templates and Web AppBuilder for ArcGIS [Dataset]. https://hub.arcgis.com/documents/317d8d6afba540448443b5630bae01be
    Explore at:
    Dataset updated
    Mar 4, 2017
    Dataset authored and provided by
    Iowa Department of Transportation
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This course demonstrates how to select, modify, create, and share web applications using ArcGIS Online. ArcGIS Online offers many different options for creating web applications that share web maps, web scenes, and spatial functions. But how do you decide which web application best meets your requirements? Each web application option implements different functions and showcases a specific look and feel. You can choose a web application that meets your organization's functional requirements, apply your organization's look and feel, and share your web map without writing any code.Two workflows will be introduced for creating web applications using ArcGIS Online:Applying your web map to an existing template applicationCreating your own web application using Web AppBuilder for ArcGISAfter completing this course, you will be able to do the following:Identify the components of a web application.Create a web application from an existing configurable app template.Create a web application using Web AppBuilder for ArcGIS.Use ArcGIS Online to deploy a web application.

  14. c

    Golf Courses

    • s.cnmilf.com
    • catalog.data.gov
    • +1more
    Updated Jun 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Seattle ArcGIS Online (2025). Golf Courses [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/golf-courses-6a22b
    Explore at:
    Dataset updated
    Jun 29, 2025
    Dataset provided by
    City of Seattle ArcGIS Online
    Description

    Seattle Parks and Recreation Golf Course locations. SPR Golf Courses are managed by contractors.Refresh Cycle: WeeklyFeature Class: DPR.GolfCourse

  15. d

    AFSC/ABL: ShoreZone Ground Stations, web-posted database in ArcGIS

    • catalog.data.gov
    • datadiscoverystudio.org
    • +4more
    Updated Jun 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (Point of Contact, Custodian) (2025). AFSC/ABL: ShoreZone Ground Stations, web-posted database in ArcGIS [Dataset]. https://catalog.data.gov/dataset/afsc-abl-shorezone-ground-stations-web-posted-database-in-arcgis1
    Explore at:
    Dataset updated
    Jun 1, 2025
    Dataset provided by
    (Point of Contact, Custodian)
    Description

    The web-posted Alaska Shore Station Database is a compilation of hundreds of intertidal sites that were visited and evaluated throughout the coastal waters of Alaska. At each station attempts are made to document all observed species and their assemblages, geomorphic features, measurements of beach length and slope, and gather photographic examples. This online database has been designed to integrate with the spatially explicit, Alaska ShoreZone web enabled GIS platform. The end result is a user friendly and accessible version of the Shore Station database with a queryable display of station locations, downloadable species lists and photos.

  16. Searching for and adding map layers in ArcGIS Online

    • teachwithgis.co.uk
    Updated Feb 18, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri UK Education (2020). Searching for and adding map layers in ArcGIS Online [Dataset]. https://teachwithgis.co.uk/datasets/searching-for-and-adding-map-layers-in-arcgis-online-1
    Explore at:
    Dataset updated
    Feb 18, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri UK Education
    Description

    Click here to open the ArcGIS Online Map Viewer and work through the examples shown belowTo add data to ArcGIS Online we reccomend that you log in. For full functionality use a free schools subscription, or if this is not possible you can use a free public account which will have reduced functionality.

  17. ArcGIS Dashboards Training Videos for COVID-19

    • coronavirus-resources.esri.com
    • coronavirus-disasterresponse.hub.arcgis.com
    Updated Apr 23, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri’s Disaster Response Program (2020). ArcGIS Dashboards Training Videos for COVID-19 [Dataset]. https://coronavirus-resources.esri.com/datasets/arcgis-dashboards-training-videos-for-covid-19
    Explore at:
    Dataset updated
    Apr 23, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri’s Disaster Response Program
    Description

    ArcGIS Dashboards Training Videos for COVID-19With the current COVID-19 situation across the world, there’s been a proliferation of corona virus themed dashboards emerging over the last few weeks in ArcGIS Online. Many of these were created with ArcGIS Dashboards, which enables users to convey information by presenting location-based analytics using intuitive and interactive data visualizations on a single screen._Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...

  18. National Hydrography Dataset Plus Version 2.1

    • resilience.climate.gov
    • oregonwaterdata.org
    • +6more
    Updated Aug 16, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). National Hydrography Dataset Plus Version 2.1 [Dataset]. https://resilience.climate.gov/maps/4bd9b6892530404abfe13645fcb5099a
    Explore at:
    Dataset updated
    Aug 16, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The National Hydrography Dataset Plus (NHDplus) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US EPA Office of Water and the US Geological Survey, the NHDPlus provides mean annual and monthly flow estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses. For more information on the NHDPlus dataset see the NHDPlus v2 User Guide.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territories not including Alaska.Geographic Extent: The United States not including Alaska, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: EPA and USGSUpdate Frequency: There is new new data since this 2019 version, so no updates planned in the futurePublication Date: March 13, 2019Prior to publication, the NHDPlus network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the NHDPlus Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, On or Off Network (flowlines only), Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original NHDPlus dataset. No data values -9999 and -9998 were converted to Null values for many of the flowline fields.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but a vector tile layer created from the same data can be used at smaller scales to produce a webmap that displays across the full range of scales. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute. Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map. Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.

  19. Using the map tools in ArcGIS Online

    • teachwithgis.co.uk
    Updated Feb 19, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri UK Education (2020). Using the map tools in ArcGIS Online [Dataset]. https://teachwithgis.co.uk/datasets/using-the-map-tools-in-arcgis-online/about
    Explore at:
    Dataset updated
    Feb 19, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri UK Education
    Description

    1) Use the search tool to find where you go to school or work2) Measure the distance you travel to school or work

  20. a

    Getting Started with GIS

    • hub.arcgis.com
    Updated Jan 30, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Delaware (2019). Getting Started with GIS [Dataset]. https://hub.arcgis.com/documents/52a04f17dfa845d79036ea5f341be606
    Explore at:
    Dataset updated
    Jan 30, 2019
    Dataset authored and provided by
    State of Delaware
    Description

    Get an introduction to the basic components of a GIS. Learn fundamental concepts that underlie the use of a GIS with hands-on experience with maps and geographic data.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
ckan.americaview.org (2021). Open-Source GIScience Online Course [Dataset]. https://ckan.americaview.org/dataset/open-source-giscience-online-course
Organization logo

Open-Source GIScience Online Course

Explore at:
Dataset updated
Nov 2, 2021
Dataset provided by
CKANhttps://ckan.org/
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

In this course, you will explore a variety of open-source technologies for working with geosptial data, performing spatial analysis, and undertaking general data science. The first component of the class focuses on the use of QGIS and associated technologies (GDAL, PROJ, GRASS, SAGA, and Orfeo Toolbox). The second component of the class introduces Python and associated open-source libraries and modules (NumPy, Pandas, Matplotlib, Seaborn, GeoPandas, Rasterio, WhiteboxTools, and Scikit-Learn) used by geospatial scientists and data scientists. We also provide an introduction to Structured Query Language (SQL) for performing table and spatial queries. This course is designed for individuals that have a background in GIS, such as working in the ArcGIS environment, but no prior experience using open-source software and/or coding. You will be asked to work through a series of lecture modules and videos broken into several topic areas, as outlined below. Fourteen assignments and the required data have been provided as hands-on opportunites to work with data and the discussed technologies and methods. If you have any questions or suggestions, feel free to contact us. We hope to continue to update and improve this course. This course was produced by West Virginia View (http://www.wvview.org/) with support from AmericaView (https://americaview.org/). This material is based upon work supported by the U.S. Geological Survey under Grant/Cooperative Agreement No. G18AP00077. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. Geological Survey. Mention of trade names or commercial products does not constitute their endorsement by the U.S. Geological Survey. After completing this course you will be able to: apply QGIS to visualize, query, and analyze vector and raster spatial data. use available resources to further expand your knowledge of open-source technologies. describe and use a variety of open data formats. code in Python at an intermediate-level. read, summarize, visualize, and analyze data using open Python libraries. create spatial predictive models using Python and associated libraries. use SQL to perform table and spatial queries at an intermediate-level.

Search
Clear search
Close search
Google apps
Main menu