100+ datasets found
  1. a

    QGIS - Open Source GIS Software

    • hub.arcgis.com
    • home-ecgis.hub.arcgis.com
    Updated Aug 9, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eaton County Michigan (2018). QGIS - Open Source GIS Software [Dataset]. https://hub.arcgis.com/documents/57198670f4234919bfab87fb64d40a82
    Explore at:
    Dataset updated
    Aug 9, 2018
    Dataset authored and provided by
    Eaton County Michigan
    Description

    This is a link to the QGIS website where you can download open-source GIS software for viewing, analyzing and manipulating geodata like our downloadable shapefiles.

  2. a

    OpenStreetMap

    • ethiopia.africageoportal.com
    • data.baltimorecity.gov
    • +32more
    Updated May 19, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Africa GeoPortal (2020). OpenStreetMap [Dataset]. https://ethiopia.africageoportal.com/maps/a5511fbe18ce46788b78adbcba13bc1e
    Explore at:
    Dataset updated
    May 19, 2020
    Dataset authored and provided by
    Africa GeoPortal
    Area covered
    Description

    This web map references the live tiled map service from the OpenStreetMap project. OpenStreetMap (OSM) is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information such as free satellite imagery, and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap server: http://www.OpenStreetMap.org. See that website for additional information about OpenStreetMap. It is made available as a basemap for GIS work in Esri products under a Creative Commons Attribution-ShareAlike license.Tip: This service is one of the basemaps used in the ArcGIS.com map viewer and ArcGIS Explorer Online. Simply click one of those links to launch the interactive application of your choice, and then choose Open Street Map from the Basemap control to start using this service. You'll also find this service in the Basemap gallery in ArcGIS Explorer Desktop and ArcGIS Desktop 10.

  3. t

    TRCA GIS Open Data (ArcGIS Online)

    • data.trca.ca
    Updated Oct 5, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Corporate Services (2022). TRCA GIS Open Data (ArcGIS Online) [Dataset]. https://data.trca.ca/dataset/gis-spatial-data
    Explore at:
    Dataset updated
    Oct 5, 2022
    Dataset provided by
    Corporate Services
    Description

    TRCA GIS Open data on ArcGIS online. This link will take you to an external site URL: https://trca-camaps.opendata.arcgis.com/

  4. a

    OGC Web Map Service (WMS): Petroleum System and Assessment of Oil and Gas,...

    • catalogue.arctic-sdi.org
    Updated May 23, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). OGC Web Map Service (WMS): Petroleum System and Assessment of Oil and Gas, Cotton Valley Group, East Texas Basin and Louisiana-Mississippi Salt Basins Provinces, Texas, Louisiana, Mississippi, Alabama, and Florida [Dataset]. https://catalogue.arctic-sdi.org/geonetwork/srv/search?keyword=Gulf%20Coast,%20Impacts%20of%20Energy%20Production,%20Sedimentary%20Basin,%20Oil%20and%20Natural%20Gas,%20Energy%20Resources,%20Earth%20Science,%20Natural%20Resources,%20U.S.%20Geological%20Survey,%20USGS,%20Geology,%20Natural%20Gas,%20Petroleum,%20Oil,%20Gas,%20Oil%20and%20Gas%20Exploration,%20Oil%20and%20Gas%20Production
    Explore at:
    Dataset updated
    May 23, 2022
    Description

    (See USGS Digital Data Series DDS-69-E) A geographic information system focusing on the Jurassic-Cretaceous Cotton Valley Group was developed for the U.S. Geological Survey's (USGS) 2002 assessment of undiscovered, technically recoverable oil and natural gas resources of the Gulf Coast Region. The USGS Energy Resources Science Center has developed map and metadata services to deliver the 2002 assessment results GIS data and services online. The Gulf Coast assessment is based on geologic elements of a total petroleum system (TPS) as described in Dyman and Condon (2005). The estimates of undiscovered oil and gas resources are within assessment units (AUs). The hydrocarbon assessment units include the assessment results as attributes within the AU polygon feature class (in geodatabase and shapefile format). Quarter-mile cells of the land surface that include single or multiple wells were created by the USGS to illustrate the degree of exploration and the type and distribution of production for each assessment unit. Other data that are available in the map documents and services include the TPS and USGS province boundaries. To easily distribute the Gulf Coast maps and GIS data, a web mapping application has been developed by the USGS, and customized ArcMap (by ESRI) projects are available for download at the Energy Resources Science Center Gulf Coast website. ArcGIS Publisher (by ESRI) was used to create a published map file (pmf) from each ArcMap document (.mxd). The basemap services being used in the GC map applications are from ArcGIS Online Services (by ESRI), and include the following layers: -- Satellite imagery -- Shaded relief -- Transportation -- States -- Counties -- Cities -- National Forests With the ESRI_StreetMap_World_2D service, detailed data, such as railroads and airports, appear as the user zooms in at larger scales. This map service shows the structural configuration on the top of the Cotton Valley Group in feet below sea level. The map was produced by calculating the difference between a datum at the land surface (either the kelly bushing elevation or the ground surface elevation) and the reported depth of the Cotton Valley Group. This map service also shows the thickness of the interval from the top of the Cotton Valley Group to the top of the Smackover Formation.

  5. a

    GIS Data Download

    • gis-dodgecounty.opendata.arcgis.com
    Updated Mar 15, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dodge County GIS Online (2019). GIS Data Download [Dataset]. https://gis-dodgecounty.opendata.arcgis.com/datasets/gis-data-download
    Explore at:
    Dataset updated
    Mar 15, 2019
    Dataset authored and provided by
    Dodge County GIS Online
    Area covered
    Description

    DO NOT DELETE OR MODIFY THIS ITEM. This item is managed by the ArcGIS Hub application. To make changes to this site, please visit https://hub.arcgis.com/admin/

  6. Federal Railroad Administration GIS Web Mapping Application

    • catalog.data.gov
    • data.transportation.gov
    • +3more
    Updated Oct 10, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Federal Railroad Administration (2024). Federal Railroad Administration GIS Web Mapping Application [Dataset]. https://catalog.data.gov/dataset/federal-railroad-administration-gis-web-mapping-application
    Explore at:
    Dataset updated
    Oct 10, 2024
    Dataset provided by
    Federal Railroad Administrationhttp://www.fra.dot.gov/
    Description

    The GIS Web Mapping Application is design to have the look and feel as Google Earth. The primary functionality is to provide the user information about FRA's rail lines, rail crossings, freight stations, and mileposting.

  7. a

    OGC Web Map Service (WMS): Petroleum Systems and Geologic Assessment of...

    • catalogue.arctic-sdi.org
    Updated May 23, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). OGC Web Map Service (WMS): Petroleum Systems and Geologic Assessment of Undiscovered Oil and Gas, Taylor and Navarro Groups, Western Gulf Province, Texas [Dataset]. https://catalogue.arctic-sdi.org/geonetwork/srv/search?keyword=Gulf%20Coast,%20Impacts%20of%20Energy%20Production,%20Sedimentary%20Basin,%20Oil%20and%20Natural%20Gas,%20Energy%20Resources,%20Earth%20Science,%20Natural%20Resources,%20U.S.%20Geological%20Survey,%20USGS,%20Geology,%20Natural%20Gas,%20Petroleum,%20Oil,%20Gas,%20Oil%20and%20Gas%20Exploration,%20Oil%20and%20Gas%20Production
    Explore at:
    Dataset updated
    May 23, 2022
    Description

    (See USGS Digital Data Series DDS-69-H) A geographic information system focusing on the Upper Cretaceous Taylor and Navarro Groups was developed for the U.S. Geological Survey's (USGS) 2003 assessment of undiscovered, technically recoverable oil and natural gas resources of the Gulf Coast Region. The USGS Energy Resources Science Center has developed map and metadata services to deliver the 2003 assessment results GIS data and services online. The Gulf Coast assessment is based on geologic elements of a total petroleum system (TPS) as described in Condon and Dyman (2005). The estimates of undiscovered oil and gas resources are within assessment units (AUs). The hydrocarbon assessment units include the assessment results as attributes within the AU polygon feature class (in geodatabase and shapefile format). Quarter-mile cells of the land surface that include single or multiple wells were created by the USGS to illustrate the degree of exploration and the type and distribution of production for each assessment unit. Other data that are available in the map documents and services include the TPS and USGS province boundaries. To easily distribute the Gulf Coast maps and GIS data, a web mapping application has been developed by the USGS, and customized ArcMap (by ESRI) projects are available for download at the Energy Resources Science Center Gulf Coast website. ArcGIS Publisher (by ESRI) was used to create a published map file (pmf) from each ArcMap document (.mxd). The basemap services being used in the GC map applications are from ArcGIS Online Services (by ESRI), and include the following layers: -- Satellite imagery -- Shaded relief -- Transportation -- States -- Counties -- Cities -- National Forests With the ESRI_StreetMap_World_2D service, detailed data, such as railroads and airports, appear as the user zooms in at larger scales.

  8. a

    OGC Web Map Service (WMS):Petroleum System and Assessment of Oil and Gas,...

    • catalogue.arctic-sdi.org
    Updated May 23, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). OGC Web Map Service (WMS):Petroleum System and Assessment of Oil and Gas, Travis Peak-Hosston Formations, East Texas Basin and Louisiana-Mississippi Salt Basins Provinces, Texas, Louisiana, Mississippi, Alabama, and Florida [Dataset]. https://catalogue.arctic-sdi.org/geonetwork/srv/resources/datasets/c8997b22-359e-4046-a988-f67ee73f034a
    Explore at:
    Dataset updated
    May 23, 2022
    Area covered
    Travis Peak
    Description

    (See USGS Digital Data Series DDS-69-E) A geographic information system focusing on the Cretaceous Travis Peak and Hosston Formations was developed for the U.S. Geological Survey's (USGS) 2002 assessment of undiscovered, technically recoverable oil and natural gas resources of the Gulf Coast Region. The USGS Energy Resources Science Center has developed map and metadata services to deliver the 2002 assessment results GIS data and services online. The Gulf Coast assessment is based on geologic elements of a total petroleum system (TPS) as described in Dyman and Condon (2005). The estimates of undiscovered oil and gas resources are within assessment units (AUs). The hydrocarbon assessment units include the assessment results as attributes within the AU polygon feature class (in geodatabase and shapefile format). Quarter-mile cells of the land surface that include single or multiple wells were created by the USGS to illustrate the degree of exploration and the type and distribution of production for each assessment unit. Other data that are available in the map documents and services include the TPS and USGS province boundaries. To easily distribute the Gulf Coast maps and GIS data, a web mapping application has been developed by the USGS, and customized ArcMap (by ESRI) projects are available for download at the Energy Resources Science Center Gulf Coast website. ArcGIS Publisher (by ESRI) was used to create a published map file (pmf) from each ArcMap document (.mxd). The basemap services being used in the GC map applications are from ArcGIS Online Services (by ESRI), and include the following layers: -- Satellite imagery -- Shaded relief -- Transportation -- States -- Counties -- Cities -- National Forests With the ESRI_StreetMap_World_2D service, detailed data, such as railroads and airports, appear as the user zooms in at larger scales. This map service shows the structural configuration of the top of the Travis Peak or Hosston Formations in feet below sea level. The map was produced by calculating the difference between a datum at the land surface (either the Kelly bushing elevation or the ground surface elevation) and the reported depth of the Travis Peak or Hosston. This map service also shows the thickness of the interval from the top of the Travis Peak or Hosston Formations to the top of the Cotton Valley Group.

  9. j

    Tax Lots (ArcGIS Online service)

    • gis.jacksoncountyor.gov
    • gis-jcgis.opendata.arcgis.com
    • +1more
    Updated Dec 2, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jackson County GIS (2021). Tax Lots (ArcGIS Online service) [Dataset]. https://gis.jacksoncountyor.gov/items/9ac3074d7c6d43b9a674feddda722874
    Explore at:
    Dataset updated
    Dec 2, 2021
    Dataset authored and provided by
    Jackson County GIS
    Area covered
    Description

    This feature services is a 'hosted' copy of the County's Taxlots. It is updated weekly. Occasionally, our primary feature service - Tax Lots - Overview - gets hung-up while attempting to download from the data Hub site. Alternatively, users can download from this service.

  10. a

    QGIS - Open Source GIS Software

    • data-ecgis.opendata.arcgis.com
    Updated Aug 9, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eaton County Michigan (2018). QGIS - Open Source GIS Software [Dataset]. https://data-ecgis.opendata.arcgis.com/documents/57198670f4234919bfab87fb64d40a82
    Explore at:
    Dataset updated
    Aug 9, 2018
    Dataset authored and provided by
    Eaton County Michigan
    Description

    This is a link to the QGIS website where you can download open-source GIS software for viewing, analyzing and manipulating geodata like our downloadable shapefiles.

  11. d

    Queensland geology and structural framework - GIS data July 2012

    • data.gov.au
    • cloud.csiss.gmu.edu
    • +2more
    zip
    Updated Apr 13, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bioregional Assessment Program (2022). Queensland geology and structural framework - GIS data July 2012 [Dataset]. https://data.gov.au/data/dataset/69da6301-04c1-4993-93c1-4673f3e22762
    Explore at:
    zip(427576964)Available download formats
    Dataset updated
    Apr 13, 2022
    Dataset authored and provided by
    Bioregional Assessment Program
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Area covered
    Queensland
    Description

    Abstract

    This dataset and its metadata statement were supplied to the Bioregional Assessment Programme by a third party and are presented here as originally supplied.

    This dataset was sourced from the Queensland Department of Natural Resources and Mines in 2012. Information provided by the Department describes the dataset as follows:

    This data was originally provided on DVD and contains the converted shapefiles, layer files, raster images and project .mxd files used on the Queensland geology and structural framework map. The maps were done in ArcGIS 9.3.1 and the data stored in file geodatabases, topology created and validated. This provides greater data quality by performing topological validation on the feature's spatial relationships. For the purposes of the DVD, shapefiles were created from the file geodatabases and for MapInfo users MapInfo .tab and .wor files. The shapefiles on the DVD are a revision of the 1975 Queensland geology data, and are both are available for display, query and download on the department's online GIS application.

    The Queensland geology map is a digital representation of the distribution or extent of geological units within Queensland. In the GIS, polygons have a range of attributes including unit name, type of unit, age, lithological description, dominant rock type, and an abbreviated symbol for use in labelling the polygons. The lines in this dataset are a digital representation of the position of the boundaries of geological units and other linear features such as faults and folds. The lines are attributed with a description of the type of line represented. Approximately 2000 rock units were grouped into the 250 map units in this data set. The digital data was generalised and simplified from the Department's detailed geological data and was captured at 1:500 000 scale for output at 1:2 000 000 scale.

    In the ESRI version, a layer file is provided which presents the units in the colours and patterns used on the printed hard copy map. For Map Info users, a simplified colour palette is provided without patterns. However a georeferenced image of the hard copy map is included and can be displayed as a background in both Arc Map and Map Info.

    The geological framework of Queensland is classified by structural or tectonic unit (provinces and basins) in which the rocks formed. These are referred to as basins (or in some cases troughs and depressions) where the original form and structure are still apparent. Provinces (and subprovinces) are generally older basins that have been strongly tectonised and/or metamorphosed so that the original basin extent and form are no longer preserved. Note that intrusive and some related volcanic rocks that overlap these provinces and basins have not been included in this classification. The map was compiled using boundaries modified and generalised from the 1:2 000 000 Queensland Geology map (2012). Outlines of subsurface basins are also shown and these are based on data and published interpretations from petroleum exploration and geophysical surveys (seismic, gravity and magnetics).

    For the structural framework dataset, two versions are provided. In QLD_STRUCTURAL_FRAMEWORK, polygons are tagged with the name of the surface structural unit, and names of underlying units are imbedded in a text string in the HIERARCHY field. In QLD_STRUCTURAL_FRAMEWORK_MULTI_POLYS, the data is structured into a series of overlapping, multi-part polygons, one for each structural unit. Two layer files are provided with the ESRI data, one where units are symbolised by name. Because the dataset has been designed for units display in the order of superposition, this layer file assigns colours to the units that occur at the surface with concealed units being left uncoloured. Another layer file symbolises them by the orogen of which they are part. A similar set of palettes has been provided for Map Info.

    Dataset History

    Details on the source data can be found in the xml file associated with data layer.

    Data in this release

    *ESRI.shp and MapInfo .tab files of rock unit polygons and lines with associated layer attributes of Queensland geology

    *ESRI.shp and MapInfo .tab files of structural unit polygons and lines with associated layer attributes of structural framework

    *ArcMap .mxd and .lyr files and MapInfo .wor files containing symbology

    *Georeferenced Queensland geology map, gravity and magnetic images

    *Queensland geology map, structural framework and schematic diagram PDF files

    *Data supplied in geographical coordinates (latitude/longitude) based on Geocentric Datum of Australia - GDA94

    Accessing the data

    Programs exist for the viewing and manipulation of the digital spatial data contained on this DVD. Accessing the digital datasets will require GIS software. The following GIS viewers can be downloaded from the internet. ESRI ArcExplorer can be found by a search of www.esriaustralia.com.au and MapInfo ProViewer by a search on www.pbinsight.com.au collectively ("the websites").

    Metadata

    Metadata is contained in .htm files placed in the root folder of each vector data folder. For ArcMap users metadata for viewing in ArcCatalog is held in an .xml file with each shapefile within the ESRI Shapefile folders.

    Disclaimer

    The State of Queensland is not responsible for the privacy practices or the content of the websites and makes no statements, representations, or warranties about the content or accuracy or completeness of, any information or products contained on the websites.

    Despite our best efforts, the State of Queensland makes no warranties that the information or products available on the websites are free from infection by computer viruses or other contamination.

    The State of Queensland disclaims all responsibility and all liability (including without limitation, liability in negligence) for all expenses, losses, damages and costs you might incur as a result of accessing the websites or using the products available on the websites in any way, and for any reason.

    The State of Queensland has included the websites in this document as an information source only. The State of Queensland does not promote or endorse the websites or the programs contained on them in any way.

    WARNING: The Queensland Government and the Department of Natural Resources and Mines accept no liability for and give no undertakings, guarantees or warranties concerning the accuracy, completeness or fitness for the purposes of the information provided. The consumer must take all responsible steps to protect the data from unauthorised use, reproduction, distribution or publication by other parties.

    Please view the 'readme.html' and 'licence.html' file for further, more complete information

    Dataset Citation

    Geological Survey of Queensland (2012) Queensland geology and structural framework - GIS data July 2012. Bioregional Assessment Source Dataset. Viewed 07 December 2018, http://data.bioregionalassessments.gov.au/dataset/69da6301-04c1-4993-93c1-4673f3e22762.

  12. l

    SMMLCP GIS Data Layers

    • geohub.lacity.org
    • data.lacounty.gov
    Updated Jan 21, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Los Angeles (2021). SMMLCP GIS Data Layers [Dataset]. https://geohub.lacity.org/items/594c161b58b547428ffd00911824c773
    Explore at:
    Dataset updated
    Jan 21, 2021
    Dataset authored and provided by
    County of Los Angeles
    Description

    These are the main layers that were used in the mapping and analysis for the Santa Monica Mountains Local Coastal Plan, which was adopted by the Board of Supervisors on August 26, 2014, and certified by the California Coastal Commission on October 10, 2014. Below are some links to important documents and web mapping applications, as well as a link to the actual GIS data:

    Plan Website – This has links to the actual plan, maps, and a link to our online web mapping application known as SMMLCP-NET. Click here for website. Online Web Mapping Application – This is the online web mapping application that shows all the layers associated with the plan. These are the same layers that are available for download below. Click here for the web mapping application. GIS Layers – This is a link to the GIS layers in the form of an ArcGIS Map Package, click here (LINK TO FOLLOW SOON) for ArcGIS Map Package (version 10.3). Also, included are layers in shapefile format. Those are included below.

    Below is a list of the GIS Layers provided (shapefile format):

    Recreation (Zipped - 5 MB - click here)

    Coastal Zone Campground Trails (2012 National Park Service) Backbone Trail Class III Bike Route – Existing Class III Bike Route – Proposed

    Scenic Resources (Zipped - 3 MB - click here)

    Significant Ridgeline State-Designated Scenic Highway State-Designated Scenic Highway 200-foot buffer Scenic Route Scenic Route 200-foot buffer Scenic Element

    Biological Resources (Zipped - 45 MB - click here)

    National Hydrography Dataset – Streams H2 Habitat (High Scrutiny) H1 Habitat H1 Habitat 100-foot buffer H1 Habitat Quiet Zone H2 Habitat H3 Habitat

    Hazards (Zipped - 8 MB - click here)

    FEMA Flood Zone (100-year flood plain) Liquefaction Zone (Earthquake-Induced Liquefaction Potential) Landslide Area (Earthquake-Induced Landslide Potential) Fire Hazard and Responsibility Area

    Zoning and Land Use (Zipped - 13 MB - click here)

    Malibu LCP – LUP (1986) Malibu LCP – Zoning (1986) Land Use Policy Zoning

    Other Layers (Zipped - 38 MB - click here)

    Coastal Commission Appeal Jurisdiction Community Names Santa Monica Mountains (SMM) Coastal Zone Boundary Pepperdine University Long Range Development Plan (LRDP) Rural Village

    Contact the L.A. County Dept. of Regional Planning's GIS Section if you have questions. Send to our email.

  13. 2013: Web GIS Overview and Update

    • anrgeodata.vermont.gov
    Updated Jul 26, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri's Hydrology Team (2013). 2013: Web GIS Overview and Update [Dataset]. https://anrgeodata.vermont.gov/documents/3eb9a132340f433b87b330eac6c32b4d
    Explore at:
    Dataset updated
    Jul 26, 2013
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri's Hydrology Team
    Description

    ArcGIS is a platform, and the platform is extending to the web. ArcGIS Online offers shared content, and has become a living atlas of the world. Ready-to-use curated content is published by Esri, Partners, and Users, and Esri is getting the ball rolling by offering authoritative data layers and tools.Specifically for Natural Resources data, Esri is offering foundational data useful for biogeographic analysis, natural resource management, land use planning and conservation. Some of the layers available are Land Cover, Wilderness Areas, Soils Range Production, Soils Frost Free Days, Watershed Delineation, Slope. The layers are available as Image Services that are analysis-ready and Geoprocessing Services that extract data for download and perform analysis.We've made large strides with online analysis. The latest release of ArcGIS Online's map viewer allows you to perform analysis on ArcGIS Online. Some of the currently available analysis tools are Find Hot Spots, Create Buffers, Summarize Within, Summarize Nearby. In addition, we've created Ready-to-use Esri hosted analysis tools that run on Esri hosted data. These are in Beta, and they include Watershed Delineation, Viewshed, Profile, and Summarize Elevation.

  14. Visualize 2045: Constrained Element (Data Download)

    • hub.arcgis.com
    • rtdc-mwcog.opendata.arcgis.com
    Updated Jun 20, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Metropolitan Washington Council of Governments (2019). Visualize 2045: Constrained Element (Data Download) [Dataset]. https://hub.arcgis.com/content/54c2682fde8e4a0c9a8a1c0a8e81fef5
    Explore at:
    Dataset updated
    Jun 20, 2019
    Dataset authored and provided by
    Metropolitan Washington Council of Governmentshttp://www.mwcog.org/
    Area covered
    Description

    The financially constrained element of Visualize 2045 identifies all the regionally significant capital improvements to the region’s highway and transit systems that transportation agencies expect to make and to be able to afford through 2045.For more information on Visualize 2045, visit https://www.mwcog.org/visualize2045/.To view the web map, visit https://www.mwcog.org/maps/map-listing/visualize-2045-project-map/.* NOTE: the online map shows projects in the current version of the plan (2022 update); this data download is for the 2018 update to the plan.Adding GIS Data to ArcMap from a Map Package:To load the .mpk file if saved locally: From Windows Explorer1. Browse to the location of the .mpk file. 2. Double-click the file to launch ArcMap and unpack all the data in the package. From ArcCatalog1. Browse to the location of the .mpk file. 2. Right-click the file, and select Unpack. This action launches ArcMap and unpacks the data in the package. The process is the same if you are using ArcCatalog from within ArcMap.Note: The .mpk file cannot be opened within ArcMap.Regardless of where the .mpk file is stored originally, the data within the map package when unpacked saves on your hard drive in the Documents and Settings folder:C:\Documents_and_Settings\MyDocuments\ArcGIS\Packages*.gdb

  15. Links to all datasets and downloads for 80 A0/A3 digital image of map...

    • data.csiro.au
    • researchdata.edu.au
    Updated Jan 18, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kristen Williams; Nat Raisbeck-Brown; Tom Harwood; Suzanne Prober (2016). Links to all datasets and downloads for 80 A0/A3 digital image of map posters accompanying AdaptNRM Guide: Helping Biodiversity Adapt: supporting climate adaptation planning using a community-level modelling approach [Dataset]. http://doi.org/10.4225/08/569C1F6F9DCC3
    Explore at:
    Dataset updated
    Jan 18, 2016
    Dataset provided by
    CSIROhttp://www.csiro.au/
    Authors
    Kristen Williams; Nat Raisbeck-Brown; Tom Harwood; Suzanne Prober
    License

    https://research.csiro.au/dap/licences/csiro-data-licence/https://research.csiro.au/dap/licences/csiro-data-licence/

    Time period covered
    Jan 1, 2015 - Jan 10, 2015
    Area covered
    Dataset funded by
    CSIROhttp://www.csiro.au/
    Description

    This dataset is a series of digital map-posters accompanying the AdaptNRM Guide: Helping Biodiversity Adapt: supporting climate adaptation planning using a community-level modelling approach.

    These represent supporting materials and information about the community-level biodiversity models applied to climate change. Map posters are organised by four biological groups (vascular plants, mammals, reptiles and amphibians), two climate change scenario (1990-2050 MIROC5 and CanESM2 for RCP8.5), and five measures of change in biodiversity.

    The map-posters present the nationally consistent data at locally relevant resolutions in eight parts – representing broad groupings of NRM regions based on the cluster boundaries used for climate adaptation planning (http://www.environment.gov.au/climate-change/adaptation) and also Nationally.

    Map-posters are provided in PNG image format at moderate resolution (300dpi) to suit A0 printing. The posters were designed to meet A0 print size and digital viewing resolution of map detail. An additional set in PDF image format has been created for ease of download for initial exploration and printing on A3 paper. Some text elements and map features may be fuzzy at this resolution.

    Each map-poster contains four dataset images coloured using standard legends encompassing the potential range of the measure, even if that range is not represented in the dataset itself or across the map extent.

    Most map series are provided in two parts: part 1 shows the two climate scenarios for vascular plants and mammals and part 2 shows reptiles and amphibians. Eight cluster maps for each series have a different colour theme and map extent. A national series is also provided. Annotation briefly outlines the topics presented in the Guide so that each poster stands alone for quick reference.

    An additional 77 National maps presenting the probability distributions of each of 77 vegetation types – NVIS 4.1 major vegetation subgroups (NVIS subgroups) - are currently in preparation.

    Example citations:

    Williams KJ, Raisbeck-Brown N, Prober S, Harwood T (2015) Generalised projected distribution of vegetation types – NVIS 4.1 major vegetation subgroups (1990 and 2050), A0 map-poster 8.1 - East Coast NRM regions. CSIRO Land and Water Flagship, Canberra. Available online at www.AdaptNRM.org and https://data.csiro.au/dap/.

    Williams KJ, Raisbeck-Brown N, Harwood T, Prober S (2015) Revegetation benefit (cleared natural areas) for vascular plants and mammals (1990-2050), A0 map-poster 9.1 - East Coast NRM regions. CSIRO Land and Water Flagship, Canberra. Available online at www.AdaptNRM.org and https://data.csiro.au/dap/.

    This dataset has been delivered incrementally. Please check that you are accessing the latest version of the dataset. Lineage: The map posters show case the scientific data. The data layers have been developed at approximately 250m resolution (9 second) across the Australian continent to incorporate the interaction between climate and topography, and are best viewed using a geographic information system (GIS). Each data layers is 1Gb, and inaccessible to non-GIS users. The map posters provide easy access to the scientific data, enabling the outputs to be viewed at high resolution with geographical context information provided.

    Maps were generated using layout and drawing tools in ArcGIS 10.2.2

    A check list of map posters and datasets is provided with the collection.

    Map Series: 7.(1-77) National probability distribution of vegetation type – NVIS 4.1 major vegetation subgroup pre-1750 #0x

    8.1 Generalised projected distribution of vegetation types (NVIS subgroups) (1990 and 2050)

    9.1 Revegetation benefit (cleared natural areas) for plants and mammals (1990-2050)

    9.2 Revegetation benefit (cleared natural areas) for reptiles and amphibians (1990-2050)

    10.1 Need for assisted dispersal for vascular plants and mammals (1990-2050)

    10.2 Need for assisted dispersal for reptiles and amphibians (1990-2050)

    11.1 Refugial potential for vascular plants and mammals (1990-2050)

    11.1 Refugial potential for reptiles and amphibians (1990-2050)

    12.1 Climate-driven future revegetation benefit for vascular plants and mammals (1990-2050)

    12.2 Climate-driven future revegetation benefit for vascular reptiles and amphibians (1990-2050)

  16. All Chapters Tutorial Data

    • hub.arcgis.com
    Updated Jun 14, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Tutorials (2020). All Chapters Tutorial Data [Dataset]. https://hub.arcgis.com/datasets/9f9984c3eadd420689cbeced693292b2
    Explore at:
    Dataset updated
    Jun 14, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri Tutorials
    Description

    Total file size: about 367M in zip format and about 600M after extracted. (To download: click the Download button at the upper right area of this page)Alternatively, you can download the data by chapters:- Go to https://go.esri.com/gtkwebgis4- Under Group Categories on the left, click each chapter, you will see the data file to download for that chapter.

  17. n

    MedOBIS (EUROBIS)

    • cmr.earthdata.nasa.gov
    Updated Apr 20, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). MedOBIS (EUROBIS) [Dataset]. https://cmr.earthdata.nasa.gov/search/concepts/C1214586056-SCIOPS.html
    Explore at:
    Dataset updated
    Apr 20, 2017
    Time period covered
    Jan 1, 1937 - Dec 31, 2000
    Area covered
    Description

    An attempt to collect, format, analyse and disseminate surveyed marine biological data deriving from the Eastern Mediterranean and Black Sea region is currently under development at the Hellenic Center for Marine Research (HCMR, Greece). The effort has been supported by the MedOBIS project (Mediterranean Ocean Biogeographic Information System) and has been carried out in cooperation with the Aristotelian University of Thessaloniki (Greece), the National Institute of Oceanography (Israel) and the Institute of Biology of the Southern Seas (Ukraine).

        The aim is to develop a taxon-based biogeography database and online data server with a link to survey and provide satellite environmental data. Currently, the primary features of the MedOBIS application are its offline GIS data formatting capabilities and its online Java and JavaScript enabling data server with taxon-based search, mapping and data downloading capabilities. In its completion, the MedOBIS online marine biological data system (http://www.iobis.org/OBISWEB/ObisDynPage1.jsp?content=meta/42.html) will be a single source of biological and environmental data (raw and analysed) as well as an online GIS tool for access of historical and current data by marine researchers. It will function as the Eastern Mediterranean and Black Sea node of EurOBIS (the European node of the International OBIS initiative, part of the Census of Marine Life).
    
        INTRODUCTION
    
        The international and interdisciplinary nature of the biological degradation issue as well as the technological advances of the Internet capabilities allowed the development of a considerable number of interrelated online databases. The free dissemination of valuable historical and current biological, environmental and genetic information has contributed to the establishment of an interdisciplinary platform targeted towards information integration at regional and also at global scales and to the development of information-based management schemes about our common interest.
    
        The spatial component of these data has led to the integration of the information by means of the Geographic Information System (GIS) technology. The latter is widely used as the natural framework for spatial data handling (Wright & Bartlett 1999, Valavanis 2002). GIS serves as the basic technological infrastructure for several online marine biodiversity databases available on the Internet today. Developments like OBIS (Ocean Biogeographic Information System, "http://www.iobis.org/"), OBIS-SEAMAP (Spatial Ecological Analysis of Megavertebrate Populations, "http://seamap.env.duke.edu/") and FIGIS (FAO Fisheries Global Information System, http://www.fao.org/fishery/figis) facilitate the study of anthropogenic impacts on threatened species, enhance our ability to test biogeographic and biodiversity models, support modelling efforts to predict distribution changes in response to environmental change and develop a strong potential for the public outreach component. In addition, such online database systems provide a broader view of marine biodiversity problems and allow the development of management practices that are based on synthetic analysis of interdisciplinary data (Schalk 1998, Decker & O'Dor 2002, Tsontos & Kiefer 2002).
    
        Towards this end, a development of a new online marine biological information system is presented here in its initial phase. MedOBIS (Mediterranean Ocean Biogeographic Information System) intends to assemble, formulate and disseminate marine biological data for the Eastern Mediterranean and Black Sea regions focusing on the assurance and longevity of historical surveyed data, the assembly of current and new information and the dissemination of raw and integrated biological and environmental data and future products through the Internet.
    
        MedOBIS DESCRIPTION
    
        MedOBIS current development consists of four main phases (Fig. 1). The data assembly phase is based on the free contribution of biological data from various national and international scientific surveys in the region. The data formatting phase is based on a GIS (ESRI, 1994), under which the geographic location of data stations is used to convert station data and their attributes to GIS shapefiles. The data analysis phase is based on data integration through GIS and spatial analyses (e.g. species distribution maps, species-environment relations, etc). Finally, the dissemination phase is based on ALOV Map, a free portable Java application for publication of vector and raster maps to the Internet and interactive viewing on web browsers. It supports navigation and search capabilities and allows working with multiple layers, thematic maps, hyperlinked features and attributed data.
    
        During the on-going data assembly phase, a total number of 776 stations with surveyed benthic biological data was employed. These data include mainly benthic species abundance (for nearly 3000 benthic organisms), benthic substrate types and several environmental parameters. Currently, 100 stations have been assembled for the Ionian Sea, 570 stations for the Aegean Sea and 106 stations for the Black Sea. The temporal resolution of these data extends for the period 1937-2000 while most data cover the period 1986-1996. Additionally, monthly satellite images of sea surface temperature (SST) and chlorophyll (Chl-a) were assembled for the period 1998-2003. Satellite data were obtained from the Advanced Very High Resolution Radiometer (AVHRR SST) and the Sea-viewing Wide Field-of-view Sensor (SeaWiFS Chl-a). 
    
        During the data formatting phase, all assembled surveyed stations were converted to a GIS shapefile (Fig. 2). This GIS information layer includes the geographic coordinates of the stations as well as stations' identification number. Station data attributes were organised in an MS Access Database while satellite data were embedded in a GIS database as GIS regular grids. The MedOBIS data analysis phase is still at the initial stage. Several off line analytical published efforts (e.g. Arvanitidis et al. 2002, Valavanis et al. 2004a,b,c) will be included in the MedOBIS development, which mainly focus on species distribution maps, mapping of productive oceanic processes and species-environment interactions. 
    
        The MedOBIS dissemination phase ("http://www.medobis.org/") is based on ALOV Map ("http://www.alov.org/"), a joint project of ALOV Software and the Archaeological Computing Laboratory, University of Sydney, Australia. ALOV Map is a Java-based application for publication of GIS data on the Internet and interactive viewing on web browsers. ALOV Map is designed to display geographical information stored in shapefiles or in any SQL database or even in an XML (Extensible Markup Language) document serving as a database. MedOBIS uses ALOV Map's full capabilities and runs in a client-server mode (Fig. 3). ALOV Map is connected to an MS Access database via a servlet container. This architecture was needed to connect the biological data with the spatial data and facilitate search options, such as, which species are found at which stations. Additionally, a JavaScript code is invoked, which searches the data, pops up a window with the results and then shows the relevant stations on the map.
    
        To provide a taxon-based search capability to the MedOBIS development, the sampling data as well as the relevant spatial data are stored in the database, so taxonomic data can be linked with the geographical data by SQL (Structured Query Language) queries. To reference each species to its location on the map, the database queries are stored and added to the applet as individual layers. A search function written in JavaScript searches the attribute data of that layer, displays the results in a separate window and marks the matching stations on the map (Fig. 4). Finally, selecting several stations by drawing a zooming rectangle on the map provides a list with predefined themes from which the user may select more information (Fig. 5). 
    
        CURRENT LIMITATIONS AND FUTURE PLANS
    
        A disadvantage of embedding information from the database as a layer is the relatively long download time due to the current MedOBIS-ALOV Map client-server architecture. An appropriate solution would be a direct search on the server side, which will allow partial data downloading to the client side. This work will be embedded in the MedOBIS application in the future (client-side architecture), when the size of assembled data becomes relatively 'heavy' for the current client-server architecture. This is an on-going process, since the MedOBIS initiative has been endorsed by the "Excellence of the Institute of Marine Biology of Crete (IMBC) in Marine Biodiversity", a Hellenic National Project that has been evaluated and approved by European experts. As more data will be assembled in time-series databases, an additional future work will include the development of MedOBIS data analysis phase, which is planned to include GIS modelling/mapping of species-environment interactions.
    
        Size reference: 2953 species; 776 stations
    
        [Source: The information provided in the summary was extracted from the MarBEF Data System at "http://www.marbef.org/data/eurobisproviders.php"]
    
  18. l

    SMMNA GIS Data Layers

    • geohub.lacity.org
    Updated Feb 2, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Los Angeles (2022). SMMNA GIS Data Layers [Dataset]. https://geohub.lacity.org/datasets/lacounty::smmna-gis-data-layers
    Explore at:
    Dataset updated
    Feb 2, 2022
    Dataset authored and provided by
    County of Los Angeles
    Description

    These are the main layers that were used in mapping and analysis for the Santa Monica Mountains North Area Plan, which was adopted by the Board of Supervisors on May 4, 2021. Below are some links to important documents and to actually GIS data.Plan Website - This has links to the actual plan, maps and all project related materials. Click here for website.Online Web Mapping Application - This is the online application that shows all of the layers associated with the plan. These are the same layers that will be available for download below. Click here for the web mapping application.GIS Layers - The main GIS layers used in the application are available below.Below is a list of the GIS layers provided (shapefile format):Environmental (Zipped - 4.4 MB - click here)Habitat Connectivity - Essential Connectivity Area (ECA)Vegetation Sensitivity (includes ArcGIS .lyr file for version 10.0 and higher)Scenic Resources (Zipped - 1.3 MB - click here)State-Designated Scenic Highway 200-foot buffer (Please see 'State-Designated Scenic Highway' on our Open Data site here)Scenic RouteScenic Route 200-foot buffer

  19. USGS Historical Topographic Map Explorer

    • data.amerigeoss.org
    • hub.arcgis.com
    Updated Oct 10, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2019). USGS Historical Topographic Map Explorer [Dataset]. https://data.amerigeoss.org/dataset/usgs-historical-topographic-map-explorer1
    Explore at:
    html, arcgis geoservices rest apiAvailable download formats
    Dataset updated
    Oct 10, 2019
    Dataset provided by
    Esrihttp://esri.com/
    Description

    The ArcGIS Online US Geological Survey (USGS) topographic map collection now contains over 177,000 historical quadrangle maps dating from 1882 to 2006. The USGS Historical Topographic Map Explorer app brings these maps to life through an interface that guides users through the steps for exploring the map collection:

    • Find a location of interest.
    • View the maps.
    • Compare the maps.
    • Download and share the maps or open them in ArcGIS Desktop (ArcGIS Pro or ArcMap) where places will appear in their correct geographic location.
    • Save the maps in an ArcGIS Online web map.

    Finding the maps of interest is simple. Users can see a footprint of the map in the map view before they decide to add it to the display, and thumbnails of the maps are shown in pop-ups on the timeline. The timeline also helps users find maps because they can zoom and pan, and maps at select scales can be turned on or off by using the legend boxes to the left of the timeline. Once maps have been added to the display, users can reorder them by dragging them. Users can also download maps as zipped GeoTIFF images. Users can also share the current state of the app through a hyperlink or social media. This ArcWatch article guides you through each of these steps: https://www.esri.com/esri-news/arcwatch/1014/envisioning-the-past.


    Once signed in, users can create a web map with the current map view and any maps they have selected. The web map will open in ArcGIS Online. The title of the web map will be the same as the top map on the side panel of the app. All historical maps that were selected in the app will appear in the Contents section of the web map with the earliest at the top and the latest at the bottom. Turning the historical maps on and off or setting the transparency on the layers allows users to compare the historical maps over time. Also, the web map can be opened in ArcGIS Desktop (ArcGIS Pro or ArcMap) and used for exploration or data capture.

    Users can find out more about the USGS topograhic map collection and the app by clicking on the information button at the upper right. This opens a pop-up with information about the maps and app. The pop-up includes a useful link to a USGS web page that provides access to documents with keys explaining the symbols on historic and current USGS topographic maps. The pop-up also has a link to send Esri questions or comments about the map collection or the app.

    We have shared the updated app on GitHub, so users can download it and configure it to work with their own map collections.

  20. a

    Los Angeles Storm Drain System

    • dpw-hub-site-lacounty.hub.arcgis.com
    • data.lacounty.gov
    • +2more
    Updated Jun 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Los Angeles (2021). Los Angeles Storm Drain System [Dataset]. https://dpw-hub-site-lacounty.hub.arcgis.com/datasets/los-angeles-storm-drain-system
    Explore at:
    Dataset updated
    Jun 7, 2021
    Dataset authored and provided by
    County of Los Angeles
    Area covered
    Los Angeles
    Description

    The Los Angeles County Storm Drain System is a geometric network model representing the storm drain infrastructure within Los Angeles County. The long term goal of this network is to seamlessly integrate the countywide drainage infrastructure, regardless of ownership or jurisdiction. Current uses by the Department of Public Works (DPW) include asset inventory, operational maintenance, and compliance with environmental regulations.

    GIS DATA DOWNLOADS: (More information is in the table below)

    File geodatabase: A limited set of feature classes comprise the majority of this geometric network. These nine feature classes are available in one file geodatabase (.gdb). ArcMap versions compatible with the .gdb are 10.1 and later. Read-only access is provided by the open-source software QGIS. Instructions on opening a .gdb file are available here, and a QGIS plugin can be downloaded here.

    Acronyms and Definitions (pdf) are provided to better understand terms used.

    ONLINE VIEWING: Use your PC’s browser to search for drains by street address or drain name and download engineering drawings. The Web Viewer link is: https://dpw.lacounty.gov/fcd/stormdrain/

    MOBILE GIS: This storm drain system can also be viewed on mobile devices as well as your PC via ArcGIS Online. (As-built plans are not available with this mobile option.)

    More About these Downloads All data added or updated by Public Works is contained in nine feature classes, with definitions listed below. The file geodatabase (.gdb) download contains these eleven feature classes without network connectivity. Feature classes include attributes with unabbreviated field names and domains.

    ArcMap versions compatible with the .gdb are 10.1 and later.

    Feature Class Download Description

    CatchBasin In .gdb Catch basins collect urban runoff from gutters

    Culvert In .gdb A relatively short conduit that conveys storm water runoff underneath a road or embankment. Typical materials include reinforced concrete pipe (RCP) and corrugated metal pipe (CMP). Typical shapes are circular, rectangular, elliptical, or arched.

    ForceMain In .gdb Force mains carry stormwater uphill from pump stations into gravity mains and open channels.

    GravityMain In .gdb Underground pipes and channels.

    LateralLine In .gdb Laterals connect catch basins to underground gravity mains or open channels.

    MaintenanceHole In .gdb The top opening to an underground gravity main used for inspection and maintenance.

    NaturalDrainage In .gdb Streams and rivers that flow through natural creek beds

    OpenChannel In .gdb Concrete lined stormwater channels.

    PumpStation In .gdb Where terrain causes accumulation, lift stations are used to pump stormwater to where it can once again flow towards the ocean

    Data Field Descriptions

    Most of the feature classes in this storm drain geometric network share the same GIS table schema. Only the most critical attributes are listed here per LACFCD operations.

    Attribute Description

    ASBDATE The date the design plans were approved “as-built” or accepted as “final records”.

    CROSS_SECTIN_SHAPE The cross-sectional shape of the pipe or channel. Examples include round, square, trapezoidal, arch, etc.

    DIAMETER_HEIGHT The diameter of a round pipe or the height of an underground box or open channel.

    DWGNO Drain Plan Drawing Number per LACFCD Nomenclature

    EQNUM Asset No. assigned by the Department of Public Works’ (in Maximo Database).

    MAINTAINED_BY Identifies, to the best of LAFCD’s knowledge, the agency responsible for maintaining the structure.

    MOD_DATE Date the GIS features were last modified.

    NAME Name of the individual drainage infrastructure.

    OWNER Agency that owns the drainage infrastructure in question.

    Q_DESIGN The peak storm water runoff used for the design of the drainage infrastructure.

    SOFT_BOTTOM For open channels, indicates whether the channel invert is in its natural state (not lined).

    SUBTYPE Most feature classes in this drainage geometric nature contain multiple subtypes.

    UPDATED_BY The person who last updated the GIS feature.

    WIDTH Width of a channel in feet.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Eaton County Michigan (2018). QGIS - Open Source GIS Software [Dataset]. https://hub.arcgis.com/documents/57198670f4234919bfab87fb64d40a82

QGIS - Open Source GIS Software

Explore at:
30 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Aug 9, 2018
Dataset authored and provided by
Eaton County Michigan
Description

This is a link to the QGIS website where you can download open-source GIS software for viewing, analyzing and manipulating geodata like our downloadable shapefiles.

Search
Clear search
Close search
Google apps
Main menu