Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Participants in this course will learn about remote sensing of wildfires from instructors at the University of Alaska Fairbanks, located in one of the world’s most active wildfire zones. Students will learn about wildfire behavior, and get hands-on experience with tools and resources used by professionals to create geospatial maps that support firefighters on the ground. Upon completion, students will be able to: Access web resources that provide near real-time updates on active wildfires, Navigate databases of remote sensing imagery and data, Analyze geospatial data to detect fire hot spots, map burn areas, and assess severity, Process image and GIS data in open source tools like QGIS and Google Earth Engine.
Learn the key factors to consider when planning a cartography project and preparing data that supports your map's purpose, audience, and format.
GIS maps are windows into a database. Learn how to access the data connected to map features to answer questions about the real world.GoalsExplore patterns with GIS maps.Create GIS maps.Display map labels.Use a table to select features on a map.
Seattle Parks and Recreation ARCGIS park feature map layer web services are hosted on Seattle Public Utilities' ARCGIS server. This web services URL provides a live read only data connection to the Seattle Parks and Recreations Golf Courses dataset.
CONABIO provides online cartography through cartographic metadata distributed following the guidelines in the Standards for Digital Geospatial Metadata of FGDC-NBII (Federal Geographic Data Committee – National Biological Information Infrastructure), 1996. The cartographic information is queried through a database that is organized based on themes (biotic, physical and social aspects, regionalization and others), scales, and geographic area. The metadata content is presented as basic information, reports of the information (methodology) and spatial data information. The cartography is available online at no charge in distinct formats like: export file for Arc/Info (.E00) and shape file (ESRI), and DXF (Drawing eXchange Format). Maps is presented in cartographic projections: Lambert Conic Conformal, UTM and geographic coordinates system. GIF format of map images can be obtained as well.
In this course, you will explore different kinds of story maps and learn to create your own.GoalsUse GIS maps to communicate a story.Interpret different types of story maps.Create a web app.Use a template to make a story map.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This data is webscraped from PDGA.com. Please do not abuse their webservers. The source code here caches the html responses so you only hit their site once (per course). If you prefer to use a sql lite file it is located here.
This data is only scoped to the United States. It could easily contain other country data if there is feedback.
I acquire location data (lat/long, addresses) from some course detail pages on PDGA.com if the Google Geocode API doesn't return anything.
PDGA.com
I am not an affiliate of the PDGA. All rights and copyrights reserved by PDGA.com
Popular disc golf websites like PDGA.com, Udisc, and dgcoursereview offer great services, but don't give you a dataset of courses. If you wanted to create your own maps with the geo data or add custom meta data you cannot. This data puts you in control.
Bucknell's summer 2015 "New Orleans in 12 Movements" course aims to help students view New Orleans' natural environment, built infrastructure, and human experience in an integrated way. The course is co-taught by faculty from 3 departments and includes a week of field work in New Orleans. In this course, students will develop an integrated, holistic understanding of how the city of New Orleans has evolved over time. To support this learning, students have been provided an ArcGIS Online web-based map containing key cultural and historic information about New Orleans selected by their instructors. This interactive tool will enable them to explore New Orleans’ natural environment, built infrastructure and human experience through a variety of lenses. Faculty will use the map to deliver presentations and course materials to students. Students will use their own copy of the map to take notes, complete and deliver course assignments, and add their own materials to the course collection. Link to ArcGIS Online resource guide for class: click hereLink to data dictionary for NOLA class map layers: click hereLink to class website/blog: click here
You will learn how to combine layout composition, color, symbology, and text to design a map that clearly communicates your intended message.
This layer is a time series of the annual ESA CCI (Climate Change Initiative) land cover maps of the world. ESA has produced land cover maps for the years 1992-2020. These are available at the European Space Agency Climate Change Initiative website.Time Extent: 1992-2020Cell Size: 300 meter Source Type: ThematicPixel Type: 8 Bit UnsignedData Projection: GCS WGS84Mosaic Projection: Web Mercator Auxiliary Sphere Extent: GlobalSource: ESA Climate Change InitiativeUpdate Cycle: Annual until 2020, no updates thereafterWhat can you do with this layer? This layer may be added to ArcGIS Online maps and applications and shown in a time series to watch a "time lapse" view of land cover change since 1992 for any part of the world. The same behavior exists when the layer is added to ArcGIS Pro. In addition to displaying all layers in a series, this layer may be queried so that only one year is displayed in a map. This layer can be used in analysis. For example, the layer may be added to ArcGIS Pro with a query set to display just one year. Then, an area count of land cover types may be produced for a feature dataset using the zonal statistics tool. Statistics may be compared with the statistics from other years to show a trend. To sum up area by land cover using this service, or any other analysis, be sure to use an equal area projection, such as Albers or Equal Earth. Different Classifications Available to Map Five processing templates are included in this layer. The processing templates may be used to display a smaller set of land cover classes.Cartographic Renderer (Default Template)Displays all ESA CCI land cover classes.*Forested lands TemplateThe forested lands template shows only forested lands (classes 50-90).Urban Lands TemplateThe urban lands template shows only urban areas (class 190).Converted Lands TemplateThe converted lands template shows only urban lands and lands converted to agriculture (classes 10-40 and 190).Simplified RendererDisplays the map in ten simple classes which match the ten simplified classes used in 2050 Land Cover projections from Clark University.Any of these variables can be displayed or analyzed by selecting their processing template. In ArcGIS Online, select the Image Display Options on the layer. Then pull down the list of variables from the Renderer options. Click Apply and Close. In ArcGIS Pro, go into the Layer Properties. Select Processing Templates from the left hand menu. From the Processing Template pull down menu, select the variable to display. Using Time By default, the map will display as a time series animation, one year per frame. A time slider will appear when you add this layer to your map. To see the most current data, move the time slider until you see the most current year. In addition to displaying the past quarter century of land cover maps as an animation, this time series can also display just one year of data by use of a definition query. For a step by step example using ArcGIS Pro on how to display just one year of this layer, as well as to compare one year to another, see the blog called Calculating Impervious Surface Change. Hierarchical ClassificationLand cover types are defined using the land cover classification (LCCS) developed by the United Nations, FAO. It is designed to be as compatible as possible with other products, namely GLCC2000, GlobCover 2005 and 2009. This is a heirarchical classification system. For example, class 60 means "closed to open" canopy broadleaved deciduous tree cover. But in some places a more specific type of broadleaved deciduous tree cover may be available. In that case, a more specific code 61 or 62 may be used which specifies "open" (61) or "closed" (62) cover. Land Cover Processing To provide consistency over time, these maps are produced from baseline land cover maps, and are revised for changes each year depending on the best available satellite data from each period in time. These revisions were made from AVHRR 1km time series from 1992 to 1999, SPOT-VGT time series between 1999 and 2013, and PROBA-V data for years 2013, 2014 and 2015. When MERIS FR or PROBA-V time series are available, changes detected at 1 km are re-mapped at 300 m. The last step consists in back- and up-dating the 10-year baseline LC map to produce the 24 annual LC maps from 1992 to 2015. Source data The datasets behind this layer were extracted from NetCDF files and TIFF files produced by ESA. Years 1992-2015 were acquired from ESA CCI LC version 2.0.7 in TIFF format, and years 2016-2018 were acquired from version 2.1.1 in NetCDF format. These are downloadable from ESA with an account, after agreeing to their terms of use. https://maps.elie.ucl.ac.be/CCI/viewer/download.php CitationESA. Land Cover CCI Product User Guide Version 2. Tech. Rep. (2017). Available at: maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdfMore technical documentation on the source datasets is available here:https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=doc*Index of all classes in this layer:10 Cropland, rainfed11 Herbaceous cover12 Tree or shrub cover20 Cropland, irrigated or post-flooding30 Mosaic cropland (>50%) / natural vegetation (tree, shrub, herbaceous cover) (<50%)40 Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%) / cropland (<50%) 50 Tree cover, broadleaved, evergreen, closed to open (>15%)60 Tree cover, broadleaved, deciduous, closed to open (>15%)61 Tree cover, broadleaved, deciduous, closed (>40%)62 Tree cover, broadleaved, deciduous, open (15-40%)70 Tree cover, needleleaved, evergreen, closed to open (>15%)71 Tree cover, needleleaved, evergreen, closed (>40%)72 Tree cover, needleleaved, evergreen, open (15-40%)80 Tree cover, needleleaved, deciduous, closed to open (>15%)81 Tree cover, needleleaved, deciduous, closed (>40%)82 Tree cover, needleleaved, deciduous, open (15-40%)90 Tree cover, mixed leaf type (broadleaved and needleleaved)100 Mosaic tree and shrub (>50%) / herbaceous cover (<50%)110 Mosaic herbaceous cover (>50%) / tree and shrub (<50%)120 Shrubland121 Shrubland evergreen122 Shrubland deciduous130 Grassland140 Lichens and mosses150 Sparse vegetation (tree, shrub, herbaceous cover) (<15%)151 Sparse tree (<15%)152 Sparse shrub (<15%)153 Sparse herbaceous cover (<15%)160 Tree cover, flooded, fresh or brakish water170 Tree cover, flooded, saline water180 Shrub or herbaceous cover, flooded, fresh/saline/brakish water190 Urban areas200 Bare areas201 Consolidated bare areas202 Unconsolidated bare areas210 Water bodies
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This vector dataset provides polygons that represent significant golf course facility locations in Suffolk County. These courses can be publicly (State, County, Town, Village) or privately owned. This dataset can be linked with the GolfCoursePoint feature class by the FACILITYID field. In some cases, there may be multiple Golf Course Points for a single Golf Course Polygon. These data are organized for consumption in desktop and web applications.
Label placement and properties for identifying features are as important as the symbols that you use to represent the features. Like symbols, labels are included in both basemap and operational map layers. This course will show you how to add and customize labels for your maps.Goals Use ArcGIS Pro to label features in a map.
In the course of the construction of the spatial data infrastructure of the Free State of Thuringia (GDI-Th) selected geodata are made available to internal and external users for free use. From the geobase data of the central spatial data storage and spatial data provision component Geoproxy, data collections of particular public interest are made available to everyone as public data without restriction of access and free of charge via the Geoclient as a viewing service. These are data from the Digital Topographic Map 1:50 000 (DTK50).
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Have you ever wanted to create your own maps, or integrate and visualize spatial datasets to examine changes in trends between locations and over time? Follow along with these training tutorials on QGIS, an open source geographic information system (GIS) and learn key concepts, procedures and skills for performing common GIS tasks – such as creating maps, as well as joining, overlaying and visualizing spatial datasets. These tutorials are geared towards new GIS users. We’ll start with foundational concepts, and build towards more advanced topics throughout – demonstrating how with a few relatively easy steps you can get quite a lot out of GIS. You can then extend these skills to datasets of thematic relevance to you in addressing tasks faced in your day-to-day work.
This collection includes all the major map based concepts found in a typical middle or high school earth science course– topography, earthquakes, volcanoes, oceans, weather, and climate. GeoInquiries are designed to be fast and easy-to-use instructional resources that incorporate advanced web mapping technology. Each 15-minute activity in a collection is intended to be presented by the instructor from a single computer/projector classroom arrangement. No installation, fees, or logins are necessary to use these materials and software.Find the student worksheets for these GeoInquiries here
https://eidc.ceh.ac.uk/licences/lcm-raster/plainhttps://eidc.ceh.ac.uk/licences/lcm-raster/plain
This dataset consists of the 1km raster, percentage target class version of the Land Cover Map 2015 (LCM2015) for Great Britain. The 1km percentage product provides the percentage cover for each of 21 land cover classes for 1km x 1km pixels. This product contains one band per target habitat class (producing a 21 band image). The 21 target classes are based on the Joint Nature Conservation Committee (JNCC) Broad Habitats, which encompass the entire range of UK habitats. This dataset is derived from the vector version of the Land Cover Map, which contains individual parcels of land cover and is the highest available spatial resolution. LCM2015 is a land cover map of the UK which was produced at the Centre for Ecology & Hydrology by classifying satellite images from 2014 and 2015 into 21 Broad Habitat-based classes. LCM2015 consists of a range of raster and vector products and users should familiarise themselves with the full range (see related records, the CEH web site and the LCM2015 Dataset documentation) to select the product most suited to their needs. LCM2015 was produced at the Centre for Ecology & Hydrology by classifying satellite images from 2014 and 2015 into 21 Broad Habitat-based classes. It is one of a series of land cover maps, produced by UKCEH since 1990. They include versions in 1990, 2000, 2007, 2015, 2017, 2018 and 2019.
This webmap is a subset of Global Landcover 1992 - 2020 Image Layer. You can access the source data from here. This layer is a time series of the annual ESA CCI (Climate Change Initiative) land cover maps of the world. ESA has produced land cover maps for the years 1992-2020. These are available at the European Space Agency Climate Change Initiative website.Time Extent: 1992-2020Cell Size: 300 meterSource Type: ThematicPixel Type: 8 Bit UnsignedData Projection: GCS WGS84Mosaic Projection: Web Mercator Auxiliary SphereExtent: GlobalSource: ESA Climate Change InitiativeUpdate Cycle: Annual until 2020, no updates thereafterWhat can you do with this layer?This layer may be added to ArcGIS Online maps and applications and shown in a time series to watch a "time lapse" view of land cover change since 1992 for any part of the world. The same behavior exists when the layer is added to ArcGIS Pro.In addition to displaying all layers in a series, this layer may be queried so that only one year is displayed in a map. This layer can be used in analysis. For example, the layer may be added to ArcGIS Pro with a query set to display just one year. Then, an area count of land cover types may be produced for a feature dataset using the zonal statistics tool. Statistics may be compared with the statistics from other years to show a trend.To sum up area by land cover using this service, or any other analysis, be sure to use an equal area projection, such as Albers or Equal Earth.Different Classifications Available to MapFive processing templates are included in this layer. The processing templates may be used to display a smaller set of land cover classes.Cartographic Renderer (Default Template)Displays all ESA CCI land cover classes.*Forested lands TemplateThe forested lands template shows only forested lands (classes 50-90).Urban Lands TemplateThe urban lands template shows only urban areas (class 190).Converted Lands TemplateThe converted lands template shows only urban lands and lands converted to agriculture (classes 10-40 and 190).Simplified RendererDisplays the map in ten simple classes which match the ten simplified classes used in 2050 Land Cover projections from Clark University.Any of these variables can be displayed or analyzed by selecting their processing template. In ArcGIS Online, select the Image Display Options on the layer. Then pull down the list of variables from the Renderer options. Click Apply and Close. In ArcGIS Pro, go into the Layer Properties. Select Processing Templates from the left hand menu. From the Processing Template pull down menu, select the variable to display.Using TimeBy default, the map will display as a time series animation, one year per frame. A time slider will appear when you add this layer to your map. To see the most current data, move the time slider until you see the most current year.In addition to displaying the past quarter century of land cover maps as an animation, this time series can also display just one year of data by use of a definition query. For a step by step example using ArcGIS Pro on how to display just one year of this layer, as well as to compare one year to another, see the blog called Calculating Impervious Surface Change.Hierarchical ClassificationLand cover types are defined using the land cover classification (LCCS) developed by the United Nations, FAO. It is designed to be as compatible as possible with other products, namely GLCC2000, GlobCover 2005 and 2009.This is a heirarchical classification system. For example, class 60 means "closed to open" canopy broadleaved deciduous tree cover. But in some places a more specific type of broadleaved deciduous tree cover may be available. In that case, a more specific code 61 or 62 may be used which specifies "open" (61) or "closed" (62) cover.Land Cover ProcessingTo provide consistency over time, these maps are produced from baseline land cover maps, and are revised for changes each year depending on the best available satellite data from each period in time. These revisions were made from AVHRR 1km time series from 1992 to 1999, SPOT-VGT time series between 1999 and 2013, and PROBA-V data for years 2013, 2014 and 2015. When MERIS FR or PROBA-V time series are available, changes detected at 1 km are re-mapped at 300 m. The last step consists in back- and up-dating the 10-year baseline LC map to produce the 24 annual LC maps from 1992 to 2015.Source dataThe datasets behind this layer were extracted from NetCDF files and TIFF files produced by ESA. Years 1992-2015 were acquired from ESA CCI LC version 2.0.7 in TIFF format, and years 2016-2018 were acquired from version 2.1.1 in NetCDF format. These are downloadable from ESA with an account, after agreeing to their terms of use. https://maps.elie.ucl.ac.be/CCI/viewer/download.phpCitationESA. Land Cover CCI Product User Guide Version 2. Tech. Rep. (2017). Available at: maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdfMore technical documentation on the source datasets is available here:https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=doc*Index of all classes in this layer:10 Cropland, rainfed11 Herbaceous cover12 Tree or shrub cover20 Cropland, irrigated or post-flooding30 Mosaic cropland (>50%) / natural vegetation (tree, shrub, herbaceous cover) (<50%)40 Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%) / cropland (<50%)50 Tree cover, broadleaved, evergreen, closed to open (>15%)60 Tree cover, broadleaved, deciduous, closed to open (>15%)61 Tree cover, broadleaved, deciduous, closed (>40%)62 Tree cover, broadleaved, deciduous, open (15-40%)70 Tree cover, needleleaved, evergreen, closed to open (>15%)71 Tree cover, needleleaved, evergreen, closed (>40%)72 Tree cover, needleleaved, evergreen, open (15-40%)80 Tree cover, needleleaved, deciduous, closed to open (>15%)81 Tree cover, needleleaved, deciduous, closed (>40%)82 Tree cover, needleleaved, deciduous, open (15-40%)90 Tree cover, mixed leaf type (broadleaved and needleleaved)100 Mosaic tree and shrub (>50%) / herbaceous cover (<50%)110 Mosaic herbaceous cover (>50%) / tree and shrub (<50%)120 Shrubland121 Shrubland evergreen122 Shrubland deciduous130 Grassland140 Lichens and mosses150 Sparse vegetation (tree, shrub, herbaceous cover) (<15%)151 Sparse tree (<15%)152 Sparse shrub (<15%)153 Sparse herbaceous cover (<15%)160 Tree cover, flooded, fresh or brakish water170 Tree cover, flooded, saline water180 Shrub or herbaceous cover, flooded, fresh/saline/brakish water190 Urban areas200 Bare areas201 Consolidated bare areas202 Unconsolidated bare areas210 Water bodies
This layer is subset of World Ecological Facets Landform Classes Image Layer. Landforms are large recognizable features such as mountains, hills and plains; they are an important determinant of ecological character, habitat definition and terrain analysis. Landforms are important to the distribution of life in natural systems and are the basis for opportunities in built systems, and therefore landforms play a useful role in all natural science fields of study and planning disciplines.Dataset SummaryPhenomenon Mapped: LandformsUnits: MetersCell Size: 231.91560581932 metersSource Type: ThematicPixel Type: 8-bit unsigned integerData Coordinate System: WGS 1984Mosaic Projection: Web Mercator Auxiliary SphereExtent: GlobalSource: EsriPublication Date: May 2016ArcGIS Server URL: https://landscape7.arcgis.com/arcgis/In February 2017, Esri updated the World Landforms - Improved Hammond Method service with two display functions: Ecological Land Units landform classes and Ecological Facets landform classes. This layer represents Ecological Facets landform classes. You can view the Ecological Land Units landform classes by choosing Image Display, and changing the Renderer. This layer was produced using the Improved Hammond Landform Classification Algorithm produced by Esri in 2016. This algorithm published and described by Karagulle et al. 2017: Modeling global Hammond landform regions from 250-m elevation data in Transactions in GIS.The algorithm, which is based on the most recent work in this area by Morgan, J. & Lesh, A. 2005: Developing Landform Maps Using Esri’s Model Builder., Esri converted Morgan’s model into a Python script and revised it to work on global 250-meter resolution GMTED2010 elevation data. Hammond’s landform classification characterizes regions rather than identifying individual features, thus, this layer contains sixteen classes of landforms:Nearly flat plainsSmooth plains with some local reliefIrregular plains with moderate relief Irregular plains with low hillsScattered moderate hillsScattered high hillsScattered low mountainsScattered high mountainsModerate hillsHigh hills Tablelands with moderate reliefTablelands with considerable reliefTablelands with high relief Tablelands with very high relief Low mountainsHigh mountainsTo produce these classes, Esri staff first projected the 250-meter resolution GMTED elevation data to the World Equidistant Cylindrical coordinate system. Each cell in this dataset was assigned three characteristics: slope based on 3-km neighborhood, relief based on 6 km neighborhood, and profile based on 6-km neighborhood. The last step was to overlay the combination of these three characteristics with areas that are exclusively plains. Slope is the percentage of the 3-km neighborhood occupied by gentle slope. Hammond specified 8% as the threshold for gentle slope. Slope is used to define how flat or steep the terrain is. Slope was classified into one of four classes: Percent of neighborhood over 8% of slopeSlope Classes0 - 20%40021% -50%30051% - 80%200>81% 100Local Relief is the difference between the maximum and minimum elevation within in the 6-km neighborhood. Local relief is used to define terrain how rugged or the complexity of the terrain's texture. Relief was assigned one of six classes:Change in elevationRelief Class ID0 – 30 meters1031 meter – 90 meters2091 meter – 150 meters30151 meter – 300 meters40301 meter – 900 meters50>900 meters60The combination of slope and relief begin to define terrain as mountains, hills and plains. However, the difference between mountains or hills and tablelands cannot be distinguished using only these parameters. Profile is used to determine tableland areas. Profile identifies neighborhoods with upland and lowland areas, and calculates the percent area of gently sloping terrain within those upland and lowland areas. A 6-km circular neighborhood was used to calculate the profile parameter. Upland/lowland is determined by the difference between average local relief and elevation. In the 6-km neighborhood window, if the difference between maximum elevation and cell’s elevation is smaller than half of the local relief it’s an upland. If the difference between maximum elevation and cell’s elevation is larger than half of the local relief it’s a lowland. Profile was assigned one of five classes:Percent of neighborhood over 8% slope in upland or lowland areasProfile ClassLess than 50% gentle slope is in upland or lowland0More than 75% of gentle slope is in lowland150%-75% of gentle slope is in lowland250-75% of gentle slope is in upland3More than 75% of gentle slope is in upland4Early reviewers of the resulting classes noted one confusing outcome, which was that areas were classified as "plains with low mountains", or "plains with hills" were often mostly plains, and the hills or mountains were part of an adjacent set of exclusively identified hills or mountains. To address this areas that are exclusively plains were produced, and used to override these confusing areas. The hills and mountains within those areas were converted to their respective landform class.The combination of slope, relief and profile merged with the areas of plains, can be better understood using the following diagram, which uses the colors in this layer to show which classes are present and what parameter values produced them:What can you do with this layer?This layer is suitable for both visualization and analysis. It can be used in ArcGIS Online in web maps and applications and can be used in ArcGIS Desktop. This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.The Living Atlas of the World provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Geonet is a good resource for learning more about landscape layers and the Living Atlas of the World. To get started see the Living Atlas Discussion Group.The Esri Insider Blog provides an introduction to the Ecophysiographic Mapping project.
The basis for this data is the biotope type and usage type mapping of Thuringia in the 1993/94 collection years for scale 1: 10 000. By summarising usage types, the specialist layers BNTNUTZ11 with 11 land use classes or BNTNUTZ25 with 25 land use classes were created. The complexes according to §18 — Thuringian Nature Conservation Act — cannot be distinguished according to their land use. There is no provision for updating the data.
This course teaches how to best symbolize your map data so that your audience gets the information that it needs.Goals Apply principles of map symbology to map features. Understand basic principles of map symbology.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Participants in this course will learn about remote sensing of wildfires from instructors at the University of Alaska Fairbanks, located in one of the world’s most active wildfire zones. Students will learn about wildfire behavior, and get hands-on experience with tools and resources used by professionals to create geospatial maps that support firefighters on the ground. Upon completion, students will be able to: Access web resources that provide near real-time updates on active wildfires, Navigate databases of remote sensing imagery and data, Analyze geospatial data to detect fire hot spots, map burn areas, and assess severity, Process image and GIS data in open source tools like QGIS and Google Earth Engine.