80 datasets found
  1. Public Schools

    • hub.arcgis.com
    • data.amerigeoss.org
    • +7more
    Updated Mar 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoPlatform ArcGIS Online (2024). Public Schools [Dataset]. https://hub.arcgis.com/datasets/geoplatform::public-schools
    Explore at:
    Dataset updated
    Mar 28, 2024
    Dataset provided by
    Authors
    GeoPlatform ArcGIS Online
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Pacific Ocean, North Pacific Ocean
    Description

    This Public Schools feature dataset is composed of all Public elementary and secondary education facilities in the United States as defined by the Common Core of Data (CCD, https://nces.ed.gov/ccd/), National Center for Education Statistics (NCES, https://nces.ed.gov), US Department of Education for the 2022-2023 school year. This includes all Kindergarten through 12th grade schools as tracked by the Common Core of Data. Included in this dataset are military schools in US territories and referenced in the city field with an APO or FPO address. DOD schools represented in the NCES data that are outside of the United States or US territories have been omitted. Complete field and attribute information is available in the "Entities and Attributes" metadata section. Geographical coverage is depicted in the thumbnail above and detailed in the Place Keyword section of the metadata. This release includes the addition of 2,556 new records, modifications to the spatial location and/or attribution of 99,712 records.

  2. Inform E-learning GIS Course

    • png-data.sprep.org
    • tonga-data.sprep.org
    • +13more
    pdf
    Updated Feb 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SPREP (2025). Inform E-learning GIS Course [Dataset]. https://png-data.sprep.org/dataset/inform-e-learning-gis-course
    Explore at:
    pdf(658923), pdf(501586), pdf(1335336), pdf(587295)Available download formats
    Dataset updated
    Feb 20, 2025
    Dataset provided by
    Pacific Regional Environment Programmehttps://www.sprep.org/
    License

    Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
    License information was derived automatically

    Area covered
    Pacific Region
    Description

    This dataset holds all materials for the Inform E-learning GIS course

  3. Getting to Know Web GIS, fourth edition

    • dados-edu-pt.hub.arcgis.com
    Updated Aug 13, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Portugal - Educação (2020). Getting to Know Web GIS, fourth edition [Dataset]. https://dados-edu-pt.hub.arcgis.com/datasets/getting-to-know-web-gis-fourth-edition
    Explore at:
    Dataset updated
    Aug 13, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri Portugal - Educação
    License

    Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
    License information was derived automatically

    Description

    Learn state-of-the-art skills to build compelling, useful, and fun Web GIS apps easily, with no programming experience required.Building on the foundation of the previous three editions, Getting to Know Web GIS, fourth edition,features the latest advances in Esri’s entire Web GIS platform, from the cloud server side to the client side.Discover and apply what’s new in ArcGIS Online, ArcGIS Enterprise, Map Viewer, Esri StoryMaps, Web AppBuilder, ArcGIS Survey123, and more.Learn about recent Web GIS products such as ArcGIS Experience Builder, ArcGIS Indoors, and ArcGIS QuickCapture. Understand updates in mobile GIS such as ArcGIS Collector and AuGeo, and then build your own web apps.Further your knowledge and skills with detailed sections and chapters on ArcGIS Dashboards, ArcGIS Analytics for the Internet of Things, online spatial analysis, image services, 3D web scenes, ArcGIS API for JavaScript, and best practices in Web GIS.Each chapter is written for immediate productivity with a good balance of principles and hands-on exercises and includes:A conceptual discussion section to give you the big picture and principles,A detailed tutorial section with step-by-step instructions,A Q/A section to answer common questions,An assignment section to reinforce your comprehension, andA list of resources with more information.Ideal for classroom lab work and on-the-job training for GIS students, instructors, GIS analysts, managers, web developers, and other professionals, Getting to Know Web GIS, fourth edition, uses a holistic approach to systematically teach the breadth of the Esri Geospatial Cloud.AUDIENCEProfessional and scholarly. College/higher education. General/trade.AUTHOR BIOPinde Fu leads the ArcGIS Platform Engineering team at Esri Professional Services and teaches at universities including Harvard University Extension School. His specialties include web and mobile GIS technologies and applications in various industries. Several of his projects have won specialachievement awards. Fu is the lead author of Web GIS: Principles and Applications (Esri Press, 2010).Pub Date: Print: 7/21/2020 Digital: 6/16/2020 Format: Trade paperISBN: Print: 9781589485921 Digital: 9781589485938 Trim: 7.5 x 9 in.Price: Print: $94.99 USD Digital: $94.99 USD Pages: 490TABLE OF CONTENTSPrefaceForeword1 Get started with Web GIS2 Hosted feature layers and storytelling with GIS3 Web AppBuilder for ArcGIS and ArcGIS Experience Builder4 Mobile GIS5 Tile layers and on-premises Web GIS6 Spatial temporal data and real-time GIS7 3D web scenes8 Spatial analysis and geoprocessing9 Image service and online raster analysis10 Web GIS programming with ArcGIS API for JavaScriptPinde Fu | Interview with Esri Press | 2020-07-10 | 15:56 | Link.

  4. a

    Colleges and Universities Campuses

    • hifld-geoplatform.hub.arcgis.com
    • share-open-data-njtpa.hub.arcgis.com
    • +5more
    Updated Jun 28, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoPlatform ArcGIS Online (2019). Colleges and Universities Campuses [Dataset]. https://hifld-geoplatform.hub.arcgis.com/datasets/bc7ef39f9d2a4605b9d5aad0e050af11
    Explore at:
    Dataset updated
    Jun 28, 2019
    Dataset authored and provided by
    GeoPlatform ArcGIS Online
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Pacific Ocean, North Pacific Ocean
    Description

    The College and University Campuses feature class/shapefile is composed of all Post Secondary Education facilities as defined by the Homeland Infrastructure Foundation-Level Data (HIFLD) Colleges and Universities and Supplemental Colleges point feature classes/shapefiles with a POPULATION value greater than or equal to 500. Also included is a subset of campuses with a POPULATION value under 500 or equal to -999. Included are Doctoral/Research Universities, Masters Colleges and Universities, Baccalaureate Colleges, Associates Colleges, Theological seminaries, Medical Schools and other health care professions, Schools of engineering and technology, business and management, art, music, design, Law schools, Teachers colleges, Tribal colleges, and other specialized institutions. Excluded are online institutions and administrative records as well as colleges and universities that do not have a verifiable campus map. Overall, this data layer covers all 50 states, as well as Puerto Rico and other assorted U.S. territories. This feature class/shapefile contains all MEDS/MEDS+ as approved by the National Geospatial-Intelligence Agency (NGA) Homeland Security Infrastructure Program (HSIP) Team. Complete field and attribute information is available in the ”Entities and Attributes” metadata section. Geographical coverage is depicted in the thumbnail above and detailed in the "Place Keyword" section of the metadata. This feature class does not have a relationship class but is related to Supplemental Colleges and Colleges and Universities. Note that attribution is derived from the Colleges and Universities and Supplemental Colleges feature classes/shapefiles. Refer to the metadata of those feature classes/shapefiles for further information regarding attribution. This release includes 21 new records and the removal of 88 records that are no longer applicable based on the sourced datasets.

  5. G

    QGIS Training Tutorials: Using Spatial Data in Geographic Information...

    • open.canada.ca
    • datasets.ai
    • +2more
    html
    Updated Oct 5, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada (2021). QGIS Training Tutorials: Using Spatial Data in Geographic Information Systems [Dataset]. https://open.canada.ca/data/en/dataset/89be0c73-6f1f-40b7-b034-323cb40b8eff
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Oct 5, 2021
    Dataset provided by
    Statistics Canada
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    Have you ever wanted to create your own maps, or integrate and visualize spatial datasets to examine changes in trends between locations and over time? Follow along with these training tutorials on QGIS, an open source geographic information system (GIS) and learn key concepts, procedures and skills for performing common GIS tasks – such as creating maps, as well as joining, overlaying and visualizing spatial datasets. These tutorials are geared towards new GIS users. We’ll start with foundational concepts, and build towards more advanced topics throughout – demonstrating how with a few relatively easy steps you can get quite a lot out of GIS. You can then extend these skills to datasets of thematic relevance to you in addressing tasks faced in your day-to-day work.

  6. Essential configurations for highly scalable ArcGIS Online web apps (viral...

    • coronavirus-disasterresponse.hub.arcgis.com
    • coronavirus-resources.esri.com
    Updated Mar 16, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri’s Disaster Response Program (2020). Essential configurations for highly scalable ArcGIS Online web apps (viral apps) [Dataset]. https://coronavirus-disasterresponse.hub.arcgis.com/datasets/essential-configurations-for-highly-scalable-arcgis-online-web-apps-viral-apps
    Explore at:
    Dataset updated
    Mar 16, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri’s Disaster Response Program
    Description

    Essential configurations for highly scalable ArcGIS Online web apps (ArcGIS Blog).Learn best practices for configuring web applications that receive a high amount of web traffic, use a quick checklist focus on critical settings._Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...

  7. M1L1 Student Directions - MOW Module 1 Lesson1 (Word)

    • library.ncge.org
    Updated Jun 8, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NCGE (2020). M1L1 Student Directions - MOW Module 1 Lesson1 (Word) [Dataset]. https://library.ncge.org/documents/46516233e53948939c1aea99098e7e36
    Explore at:
    Dataset updated
    Jun 8, 2020
    Dataset provided by
    National Council for Geographic Educationhttp://www.ncge.org/
    Authors
    NCGE
    Description

    Mapping Our World Using GIS is a 1:1 set of instructional materials for teaching basic concepts found in middle school world geography. Each module consists of multiple files.

    The Mapping Our World collection is at: http://esriurl.com/MOW.

    All Esri GeoInquiries can be found at: http://www.esri.com/geoinquiries

            This computer activity will show you how to start the ArcGIS Online program. You will be guided
    

    through the basics of using ArcGIS Online map viewer to explore maps. After you do this activity, you will be prepared to complete other GIS activities.

  8. World Imagery

    • cacgeoportal.com
    • inspiracie.arcgeo.sk
    • +11more
    Updated Dec 12, 2009
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2009). World Imagery [Dataset]. https://www.cacgeoportal.com/maps/10df2279f9684e4a9f6a7f08febac2a9
    Explore at:
    Dataset updated
    Dec 12, 2009
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    World,
    Description

    World Imagery provides one meter or better satellite and aerial imagery for most of the world’s landmass and lower resolution satellite imagery worldwide. The map is currently comprised of the following sources:Worldwide 15-m resolution TerraColor imagery at small and medium map scales.Maxar imagery basemap products around the world: Vivid Premium at 15-cm HD resolution for select metropolitan areas, Vivid Advanced 30-cm HD for more than 1,000 metropolitan areas, and Vivid Standard from 1.2-m to 0.6-cm resolution for the most of the world, with 30-cm HD across the United States and parts of Western Europe. More information on the Maxar products is included below. High-resolution aerial photography contributed by the GIS User Community. This imagery ranges from 30-cm to 3-cm resolution. You can contribute your imagery to this map and have it served by Esri via the Community Maps Program.Maxar Basemap ProductsVivid PremiumProvides committed image currency in a high-resolution, high-quality image layer over defined metropolitan and high-interest areas across the globe. The product provides 15-cm HD resolution imagery.Vivid AdvancedProvides committed image currency in a high-resolution, high-quality image layer over defined metropolitan and high-interest areas across the globe. The product includes a mix of native 30-cm and 30-cm HD resolution imagery.Vivid StandardProvides a visually consistent and continuous image layer over large areas through advanced image mosaicking techniques, including tonal balancing and seamline blending across thousands of image strips. Available from 1.2-m down to 30-cm HD. More on Maxar HD.Updates and CoverageYou can use the World Imagery Updates app to learn more about recent updates and map coverage.CitationsThis layer includes imagery provider, collection date, resolution, accuracy, and source of the imagery. With the Identify tool in ArcGIS Desktop or the ArcGIS Online Map Viewer you can see imagery citations. Citations returned apply only to the available imagery at that location and scale. You may need to zoom in to view the best available imagery. Citations can also be accessed in the World Imagery with Metadata web map.UseYou can add this layer to the ArcGIS Online Map Viewer, ArcGIS Desktop, or ArcGIS Pro. To view this layer with a useful reference overlay, open the Imagery Hybrid web map.FeedbackHave you ever seen a problem in the Esri World Imagery Map that you wanted to report? You can use the Imagery Map Feedback web map to provide comments on issues. The feedback will be reviewed by the ArcGIS Online team and considered for one of our updates.

  9. f

    Data from: Self-assessment in student’s learning and developing teaching in...

    • tandf.figshare.com
    txt
    Updated May 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nora Fagerholm; Eliisa Lotsari; Tua Nylén; Niina Käyhkö; Jussi Nikander; Vesa Arki; Risto Kalliola (2024). Self-assessment in student’s learning and developing teaching in geoinformatics – case of Geoportti self-assessment tool [Dataset]. http://doi.org/10.6084/m9.figshare.24099390.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    May 29, 2024
    Dataset provided by
    Taylor & Francis
    Authors
    Nora Fagerholm; Eliisa Lotsari; Tua Nylén; Niina Käyhkö; Jussi Nikander; Vesa Arki; Risto Kalliola
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    In successful geoinformatics education, students’ active role in the learning process, e.g. through applying self-assessment, show an increasing interest but the evidence of benefits and challenges of self-assessment are sporadic. In this article, we examine the usefulness of an online self-assessment tool developed for geoinformatics education. We gathered data in two Finnish universities on five courses (n = 11–73 students/course) between 2019 and 2021. We examined 1) how the students’ self-assessed knowledge and understanding in geoinformatics subject topics changed during a course, 2) how the competencies at the end of a course changed between the years in different courses, and 3) what was the perceived usefulness of the self-assessment approach among the students. The results indicate support for the implementation of self-assessment, both as a formative and summative assessment. However, it is crucial to ensure that the students understand the contents of the self-assessment subject topics. To increase students’ motivation to take a self-assessment, it is crucial that the teacher actively highlights how it supports their studying and learning. As the teachers of the examined courses, we discuss the benefits and challenges of the self-assessment approach and the applied tool for the future development of geoinformatics education.

  10. ArcGIS Dashboards Training Videos for COVID-19

    • coronavirus-resources.esri.com
    • coronavirus-disasterresponse.hub.arcgis.com
    Updated Apr 23, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri’s Disaster Response Program (2020). ArcGIS Dashboards Training Videos for COVID-19 [Dataset]. https://coronavirus-resources.esri.com/documents/fbc4179e362a4609a10fd479b82af386
    Explore at:
    Dataset updated
    Apr 23, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri’s Disaster Response Program
    Description

    ArcGIS Dashboards Training Videos for COVID-19With the current COVID-19 situation across the world, there’s been a proliferation of corona virus themed dashboards emerging over the last few weeks in ArcGIS Online. Many of these were created with ArcGIS Dashboards, which enables users to convey information by presenting location-based analytics using intuitive and interactive data visualizations on a single screen._Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...

  11. a

    Year 11 - GIS in NZ Schools

    • resources-gisinschools-nz.hub.arcgis.com
    • gisinschools.eagle.co.nz
    Updated Sep 16, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GIS in Schools - Teaching Materials - New Zealand (2021). Year 11 - GIS in NZ Schools [Dataset]. https://resources-gisinschools-nz.hub.arcgis.com/datasets/year-11-gis-in-nz-schools-1
    Explore at:
    Dataset updated
    Sep 16, 2021
    Dataset authored and provided by
    GIS in Schools - Teaching Materials - New Zealand
    Area covered
    New Zealand
    Description

    To do more than the very basics of GIS you will need to sign up for a FREE Schools ArcGIS Online subscription. To sign up for a subscription contact gisinschools@eagle.co.nz

  12. Nonindigenous Aquatic Species (NAS) - USGS [ds731]

    • data.cnra.ca.gov
    • data.ca.gov
    • +6more
    Updated Mar 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Fish and Wildlife (2022). Nonindigenous Aquatic Species (NAS) - USGS [ds731] [Dataset]. https://data.cnra.ca.gov/dataset/nonindigenous-aquatic-species-nas-usgs-ds731
    Explore at:
    kml, zip, csv, geojson, html, arcgis geoservices rest apiAvailable download formats
    Dataset updated
    Mar 15, 2022
    Dataset authored and provided by
    California Department of Fish and Wildlifehttps://wildlife.ca.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This GIS dataset offers a link to the California portion of the Nonindigenous Aquatic Species (NAS) information resource for the United States Geological Survey. The NAS program has been established as a central repository for accurate and spatially referenced biogeographic accounts of nonindigenous aquatic species. The program provides scientic reports, online/realtime queries, spatial data sets, regional contact lists, and general information. The goal of the information system is to provide timely, reliable data about the presence and distribution of nonindigenous aquatic species. The NAS database contains locality information for more than 1100 species of vertebrates, invertebrates, and vascular plants. The NAS program provides a continual national repository of distribution information for nonindigenous aquatic species that is used to gain an understanding of aquatic introductions, identify geographic gaps, and access the status of introduced aquatic species nationwide. Data are obtained from many sources including literature, museums, databases, monitoring programs, state and federal agencies, professional communications, online reporting forms, and Aquatic Nuisance Species (ANS) hotline reports. The NAS program defines a nonindigenous aquatic species as a member(s) of a species that enters a body of water of aquatic ecosystem outside of its historic or native range. This includes not only species that arrived from outside of North America but also species native to North America that have been introduced to drainages outside their ranges within the country. Please visit http://nas.er.usgs.gov for more information and to see all of the products and data available through the NAS program.

  13. World Bioclimates

    • hub.arcgis.com
    • cacgeoportal.com
    • +13more
    Updated Dec 3, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2014). World Bioclimates [Dataset]. https://hub.arcgis.com/datasets/5826b14592ab4ebc99574919165bd860
    Explore at:
    Dataset updated
    Dec 3, 2014
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Climate plays a major role in determining the distribution of plants and animals. Bioclimatology, the study of climate as it affects and is affected by living organisms, is key to understanding the patterns of forests and deserts on the landscape, where productive agricultural lands may be found, and how changes in the climate will affect rare species. This layer is part of the Ecophysiographic Project and is one of the four input layers used to create the World Ecological Land Units Map.Dataset Summary This layer provides access to a 250m cell-sized raster with a bioclimatic stratification. The source dataset was a 30-arcsecond resolution raster (equivalent to 0.86 km2 at the equator or about a 920m pixel size). The layer has the following attributes: Temperature Description - Seven classes based on the number of growing degree days (the monthly mean temperature multiplied by number of days in the month summed for all months). The 1950 to 2000 monthly average temperature was used to calculate growing degree days. Values in this field and associated number of growing degree days are:Temperature DescriptionGrowing Degree DaysVery Hot9,000 – 13,500Hot7,000 – 9,000Warm4,500 – 7,000Cool2,500 – 4,500Cold1,000 – 2,500Very Cold300 – 1,000Arctic0 - 300Aridity Description - Six classes based on an index of aridity calculated by dividing precipitation by evapotranspiration. Precipitation and evapotranspiration are average values from 1950 to 2000.Aridity DescriptionAridity IndexVery Wet1.5 – 70Wet1.0 – 1.5Moist0.6 – 1.0Semi-dry0.3 – 0.6Dry0.1 – 0.3Very Dry0.01 – 0.1Bioclimate Class - a 2-part description that combines the value of the Temperature Description field and the Aridity Description field. The alias for this field is ELU Bioclimate Reclass. This layer was created by modifying the dataset documented in the publication: Metzger and others. 2012. A high-resolution bioclimate map of the world: a unifying framework for global biodiversity research and monitoring. What can you do with this layer? This layer is suitable for both visualization and analysis. It can be used in ArcGIS Online in web maps and applications and can be used in ArcGIS Desktop.This layer has query, identify, and export image services available. This layer is restricted to a maximum area of 16,000 x 16,000 pixels - an area 4,000 kilometers on a side or an area approximately the size of Europe. A service is available providing access to the data table associated with this layer. The data table services can be used by developers to quickly and efficiently query the data and to create custom applications. For more information see the World Ecophysiographic Tables.This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.The Living Atlas of the World provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Geonet is a good resource for learning more about landscape layers and the Living Atlas of the World. To get started see the Living Atlas Discussion Group.The Esri Insider Blog provides an introduction to the Ecophysiographic Mapping project.

  14. State Land - All

    • hub.arcgis.com
    • gis.data.alaska.gov
    • +2more
    Updated Apr 5, 2006
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alaska Department of Natural Resources ArcGIS Online (2006). State Land - All [Dataset]. https://hub.arcgis.com/maps/6d07486cc5794308917dfbd72ce8cb5f
    Explore at:
    Dataset updated
    Apr 5, 2006
    Dataset provided by
    Authors
    Alaska Department of Natural Resources ArcGIS Online
    Area covered
    Description

    Lands approved or conveyed to the State of Alaska for a variety of reasons such as general purpose, expansion of communities, University of Alaska, and recreation.

    This shape file characterizes the geographic representation of land parcels within the State of Alaska contained by the Ownership - State Owned, Managed - State Tentatively Approved or Patented category. It has been extracted from data sets used to produce the State status plats. This data set includes cases noted on the digital status plats up to one day prior to data extraction.

    Each feature has an associated attribute record, including a Land Administration System (LAS) file-type and file-number which serves as an index to related LAS case-file information. Additional LAS case-file and customer information may be obtained at: http://dnr.alaska.gov/projects/las/ Those requiring more information regarding State land records should contact the Alaska Department of Natural Resources Public Information Center directly.

  15. Sentinel-2 10m Land Use/Land Cover Change from 2018 to 2021 (Mature Support)...

    • pacificgeoportal.com
    • geoportal-pacificcore.hub.arcgis.com
    • +3more
    Updated Feb 10, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). Sentinel-2 10m Land Use/Land Cover Change from 2018 to 2021 (Mature Support) [Dataset]. https://www.pacificgeoportal.com/datasets/30c4287128cc446b888ca020240c456b
    Explore at:
    Dataset updated
    Feb 10, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Important Note: This item is in mature support as of February 2023 and will be retired in December 2025. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version. This layer displays change in pixels of the Sentinel-2 10m Land Use/Land Cover product developed by Esri, Impact Observatory, and Microsoft. Available years to compare with 2021 are 2018, 2019 and 2020. By default, the layer shows all comparisons together, in effect showing what changed 2018-2021. But the layer may be changed to show one of three specific pairs of years, 2018-2021, 2019-2021, or 2020-2021.Showing just one pair of years in ArcGIS Online Map ViewerTo show just one pair of years in ArcGIS Online Map viewer, create a filter. 1. Click the filter button. 2. Next, click add expression. 3. In the expression dialogue, specify a pair of years with the ProductName attribute. Use the following example in your expression dialogue to show only places that changed between 2020 and 2021:ProductNameis2020-2021By default, places that do not change appear as a transparent symbol in ArcGIS Pro. But in ArcGIS Online Map Viewer, a transparent symbol may need to be set for these places after a filter is chosen. To do this:4. Click the styles button. 5. Under unique values click style options. 6. Click the symbol next to No Change at the bottom of the legend. 7. Click the slider next to "enable fill" to turn the symbol off.Showing just one pair of years in ArcGIS ProTo show just one pair of years in ArcGIS Pro, choose one of the layer's processing templates to single out a particular pair of years. The processing template applies a definition query that works in ArcGIS Pro. 1. To choose a processing template, right click the layer in the table of contents for ArcGIS Pro and choose properties. 2. In the dialogue that comes up, choose the tab that says processing templates. 3. On the right where it says processing template, choose the pair of years you would like to display. The processing template will stay applied for any analysis you may want to perform as well.How the change layer was created, combining LULC classes from two yearsImpact Observatory, Esri, and Microsoft used artificial intelligence to classify the world in 10 Land Use/Land Cover (LULC) classes for the years 2017-2021. Mosaics serve the following sets of change rasters in a single global layer: Change between 2018 and 2021Change between 2019 and 2021Change between 2020 and 2021To make this change layer, Esri used an arithmetic operation combining the cells from a source year and 2021 to make a change index value. ((from year * 16) + to year) In the example of the change between 2020 and 2021, the from year (2020) was multiplied by 16, then added to the to year (2021). Then the combined number is served as an index in an 8 bit unsigned mosaic with an attribute table which describes what changed or did not change in that timeframe. Variable mapped: Change in land cover between 2018, 2019, or 2020 and 2021 Data Projection: Universal Transverse Mercator (UTM)Mosaic Projection: WGS84Extent: GlobalSource imagery: Sentinel-2Cell Size: 10m (0.00008983152098239751 degrees)Type: ThematicSource: Esri Inc.Publication date: January 2022What can you do with this layer?Global LULC maps provide information on conservation planning, food security, and hydrologic modeling, among other things. This dataset can be used to visualize land cover anywhere on Earth. This layer can also be used in analyses that require land cover input. For example, the Zonal Statistics tools allow a user to understand the composition of a specified area by reporting the total estimates for each of the classes. Land Cover processingThis map was produced by a deep learning model trained using over 5 billion hand-labeled Sentinel-2 pixels, sampled from over 20,000 sites distributed across all major biomes of the world. The underlying deep learning model uses 6 bands of Sentinel-2 surface reflectance data: visible blue, green, red, near infrared, and two shortwave infrared bands. To create the final map, the model is run on multiple dates of imagery throughout the year, and the outputs are composited into a final representative map. Processing platformSentinel-2 L2A/B data was accessed via Microsoft’s Planetary Computer and scaled using Microsoft Azure Batch.Class definitions1. WaterAreas where water was predominantly present throughout the year; may not cover areas with sporadic or ephemeral water; contains little to no sparse vegetation, no rock outcrop nor built up features like docks; examples: rivers, ponds, lakes, oceans, flooded salt plains.2. TreesAny significant clustering of tall (~15-m or higher) dense vegetation, typically with a closed or dense canopy; examples: wooded vegetation,
    clusters of dense tall vegetation within savannas, plantations, swamp or mangroves (dense/tall vegetation with ephemeral water or canopy too thick to detect water underneath).4. Flooded vegetationAreas of any type of vegetation with obvious intermixing of water throughout a majority of the year; seasonally flooded area that is a mix of grass/shrub/trees/bare ground; examples: flooded mangroves, emergent vegetation, rice paddies and other heavily irrigated and inundated agriculture.5. CropsHuman planted/plotted cereals, grasses, and crops not at tree height; examples: corn, wheat, soy, fallow plots of structured land.7. Built AreaHuman made structures; major road and rail networks; large homogenous impervious surfaces including parking structures, office buildings and residential housing; examples: houses, dense villages / towns / cities, paved roads, asphalt.8. Bare groundAreas of rock or soil with very sparse to no vegetation for the entire year; large areas of sand and deserts with no to little vegetation; examples: exposed rock or soil, desert and sand dunes, dry salt flats/pans, dried lake beds, mines.9. Snow/IceLarge homogenous areas of permanent snow or ice, typically only in mountain areas or highest latitudes; examples: glaciers, permanent snowpack, snow fields. 10. CloudsNo land cover information due to persistent cloud cover.11. Rangeland Open areas covered in homogenous grasses with little to no taller vegetation; wild cereals and grasses with no obvious human plotting (i.e., not a plotted field); examples: natural meadows and fields with sparse to no tree cover, open savanna with few to no trees, parks/golf courses/lawns, pastures. Mix of small clusters of plants or single plants dispersed on a landscape that shows exposed soil or rock; scrub-filled clearings within dense forests that are clearly not taller than trees; examples: moderate to sparse cover of bushes, shrubs and tufts of grass, savannas with very sparse grasses, trees or other plants.CitationKarra, Kontgis, et al. “Global land use/land cover with Sentinel-2 and deep learning.” IGARSS 2021-2021 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2021.AcknowledgementsTraining data for this project makes use of the National Geographic Society Dynamic World training dataset, produced for the Dynamic World Project by National Geographic Society in partnership with Google and the World Resources Institute.For questions please email environment@esri.com

  16. ACS Educational Attainment Variables - Boundaries

    • atlas-connecteddmv.hub.arcgis.com
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • +7more
    Updated Oct 20, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). ACS Educational Attainment Variables - Boundaries [Dataset]. https://atlas-connecteddmv.hub.arcgis.com/maps/84e3022a376e41feb4dd8addf25835a3
    Explore at:
    Dataset updated
    Oct 20, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows education level for adults 25+. Counts broken down by sex. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized by the percentage of adults (25+) who were not high school graduates. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B15002Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  17. g

    National Flood Hazard Layer (NFHL)

    • data.globalchange.gov
    • catalog.data.gov
    • +9more
    Updated Apr 3, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2015). National Flood Hazard Layer (NFHL) [Dataset]. https://data.globalchange.gov/dataset/fema-national-flood-hazard-layer-nfhl
    Explore at:
    Dataset updated
    Apr 3, 2015
    Description

    The National Flood Hazard Layer (NFHL) is a compilation of GIS data that comprises a nationwide digital Flood Insurance Rate Map. The GIS data and services are designed to provide the user with the ability to determine the flood zone, base flood elevation, and floodway status for a particular location. It also has information about the NFIP communities, map panels, cross sections, hydraulic structures, Coastal Barrier Resource System, and base maps such as road, stream, and public land survey data. Through flood studies, FEMA produces Flood Insurance Study Reports, FIRM Panels, and FIRM Databases. FIRM Databases that become effective are incorporated into the NFHL. Updates to the NFHL are issued through Letters of Map Revision (LOMRs) and Letters of Map Amendment (LOMAs). Continuously updated, the NFHL serves as a Digital Flood Insurance Rate Map representing the current effective flood data for those communities where maps have been digitized. NFHL data can be viewed with widely available GIS software, including freely available programs that work with GIS shapefiles. For more information on the NFHL, see the online resources referenced herein. Using base maps: The minimum horizontal positional accuracy for base map hydrographic and transportation features used with the NFHL is the NSSDA radial accuracy of 38 feet. Letter of Map Amendment (LOMA) point locations are approximate. The location of the LOMA is referenced in the legal description of the letter itself. LOMA points can be viewed in the NFHL Interactive Map on the FEMA GeoPlatform.

  18. u

    Iowa Geographic Map Server

    • agdatacommons.nal.usda.gov
    bin
    Updated Nov 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Iowa State University Geographic Information Systems Support and Research Facility (2023). Iowa Geographic Map Server [Dataset]. https://agdatacommons.nal.usda.gov/articles/dataset/Iowa_Geographic_Map_Server/24661716
    Explore at:
    binAvailable download formats
    Dataset updated
    Nov 30, 2023
    Dataset provided by
    Iowa State University
    Authors
    Iowa State University Geographic Information Systems Support and Research Facility
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Area covered
    Iowa
    Description

    This site provides free access to Iowa geographic map data through an on-line map viewer and through Web Map Service (WMS) connections for GIS. The site was developed by the Iowa State University Geographic Information Systems Support and Research Facility in cooperation with the Iowa Department of Natural Resources, the USDA Natural Resources Conservation Service, and the Massachusetts Institute of Technology. This site was first launched in March 1999. Resources in this dataset:Resource Title: Iowa Geographic Map Server. File Name: Web Page, url: http://ortho.gis.iastate.edu/#MapLayers Online access to Iowa geographic map data through an on-line map viewer and through Web Map Service (WMS) connections for GIS, as well as a full featured ArcGIS web app.

  19. e

    Alpine Fault - Effects of a Large Earthquake - Student Materials

    • gisinschools.eagle.co.nz
    • resources-gisinschools-nz.hub.arcgis.com
    Updated Dec 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GIS in Schools - Teaching Materials - New Zealand (2023). Alpine Fault - Effects of a Large Earthquake - Student Materials [Dataset]. https://gisinschools.eagle.co.nz/documents/15247e3537ad4dee9288a3c3760e9e6e
    Explore at:
    Dataset updated
    Dec 6, 2023
    Dataset authored and provided by
    GIS in Schools - Teaching Materials - New Zealand
    Description

    Lesson in ArcGIS Online to help explore the effects if a Large Earthquake on the Alpine Fault in New Zealand. This lesson can be used to supplement existing materials you may already be teaching in the classroom.It is not designed for assessment.This lesson requires students to have a username and password for the schools ArcGIS Online subscription.For assistance with adding your students into the schools ArcGIS Online subscription or to order a schools ArcGIS Online subscription free of charge contact gisinschools@eagle.co.nzThumbnail NASA-Johnson Space Center Reference: International Space Station Crew Earth Observations Experiment and the Image Science & Analysis Group, ISS006-E-39488

  20. c

    Nonindigenous Aquatic Species (NAS) - USGS [ds731] GIS Dataset

    • map.dfg.ca.gov
    Updated Mar 15, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Nonindigenous Aquatic Species (NAS) - USGS [ds731] GIS Dataset [Dataset]. https://map.dfg.ca.gov/metadata/ds0731.html
    Explore at:
    Dataset updated
    Mar 15, 2022
    Description

    CDFW BIOS GIS Dataset, Contact: Laura Ryley, Description: This GIS dataset offers a link to the California portion of the Nonindigenous Aquatic Species (NAS) information resource for the United States Geological Survey. The NAS program has been established as a central repository for accurate and spatially referenced biogeographic accounts of nonindigenous aquatic species. The program provides scientic reports, online/realtime queries, spatial data sets, regional contact lists, and general information

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
GeoPlatform ArcGIS Online (2024). Public Schools [Dataset]. https://hub.arcgis.com/datasets/geoplatform::public-schools
Organization logo

Public Schools

Explore at:
4 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Mar 28, 2024
Dataset provided by
Authors
GeoPlatform ArcGIS Online
License

MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically

Area covered
Pacific Ocean, North Pacific Ocean
Description

This Public Schools feature dataset is composed of all Public elementary and secondary education facilities in the United States as defined by the Common Core of Data (CCD, https://nces.ed.gov/ccd/), National Center for Education Statistics (NCES, https://nces.ed.gov), US Department of Education for the 2022-2023 school year. This includes all Kindergarten through 12th grade schools as tracked by the Common Core of Data. Included in this dataset are military schools in US territories and referenced in the city field with an APO or FPO address. DOD schools represented in the NCES data that are outside of the United States or US territories have been omitted. Complete field and attribute information is available in the "Entities and Attributes" metadata section. Geographical coverage is depicted in the thumbnail above and detailed in the Place Keyword section of the metadata. This release includes the addition of 2,556 new records, modifications to the spatial location and/or attribution of 99,712 records.

Search
Clear search
Close search
Google apps
Main menu