99 datasets found
  1. Open-Source GIScience Online Course

    • ckan.americaview.org
    Updated Nov 2, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.americaview.org (2021). Open-Source GIScience Online Course [Dataset]. https://ckan.americaview.org/dataset/open-source-giscience-online-course
    Explore at:
    Dataset updated
    Nov 2, 2021
    Dataset provided by
    CKANhttps://ckan.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    In this course, you will explore a variety of open-source technologies for working with geosptial data, performing spatial analysis, and undertaking general data science. The first component of the class focuses on the use of QGIS and associated technologies (GDAL, PROJ, GRASS, SAGA, and Orfeo Toolbox). The second component of the class introduces Python and associated open-source libraries and modules (NumPy, Pandas, Matplotlib, Seaborn, GeoPandas, Rasterio, WhiteboxTools, and Scikit-Learn) used by geospatial scientists and data scientists. We also provide an introduction to Structured Query Language (SQL) for performing table and spatial queries. This course is designed for individuals that have a background in GIS, such as working in the ArcGIS environment, but no prior experience using open-source software and/or coding. You will be asked to work through a series of lecture modules and videos broken into several topic areas, as outlined below. Fourteen assignments and the required data have been provided as hands-on opportunites to work with data and the discussed technologies and methods. If you have any questions or suggestions, feel free to contact us. We hope to continue to update and improve this course. This course was produced by West Virginia View (http://www.wvview.org/) with support from AmericaView (https://americaview.org/). This material is based upon work supported by the U.S. Geological Survey under Grant/Cooperative Agreement No. G18AP00077. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. Geological Survey. Mention of trade names or commercial products does not constitute their endorsement by the U.S. Geological Survey. After completing this course you will be able to: apply QGIS to visualize, query, and analyze vector and raster spatial data. use available resources to further expand your knowledge of open-source technologies. describe and use a variety of open data formats. code in Python at an intermediate-level. read, summarize, visualize, and analyze data using open Python libraries. create spatial predictive models using Python and associated libraries. use SQL to perform table and spatial queries at an intermediate-level.

  2. Inform E-learning GIS Course

    • png-data.sprep.org
    • tonga-data.sprep.org
    • +13more
    pdf
    Updated Feb 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SPREP (2025). Inform E-learning GIS Course [Dataset]. https://png-data.sprep.org/dataset/inform-e-learning-gis-course
    Explore at:
    pdf(658923), pdf(501586), pdf(1335336), pdf(587295)Available download formats
    Dataset updated
    Feb 20, 2025
    Dataset provided by
    Pacific Regional Environment Programmehttps://www.sprep.org/
    License

    Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
    License information was derived automatically

    Area covered
    Pacific Region
    Description

    This dataset holds all materials for the Inform E-learning GIS course

  3. Geospatial Deep Learning Seminar Online Course

    • ckan.americaview.org
    Updated Nov 2, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.americaview.org (2021). Geospatial Deep Learning Seminar Online Course [Dataset]. https://ckan.americaview.org/dataset/geospatial-deep-learning-seminar-online-course
    Explore at:
    Dataset updated
    Nov 2, 2021
    Dataset provided by
    CKANhttps://ckan.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This seminar is an applied study of deep learning methods for extracting information from geospatial data, such as aerial imagery, multispectral imagery, digital terrain data, and other digital cartographic representations. We first provide an introduction and conceptualization of artificial neural networks (ANNs). Next, we explore appropriate loss and assessment metrics for different use cases followed by the tensor data model, which is central to applying deep learning methods. Convolutional neural networks (CNNs) are then conceptualized with scene classification use cases. Lastly, we explore semantic segmentation, object detection, and instance segmentation. The primary focus of this course is semantic segmenation for pixel-level classification. The associated GitHub repo provides a series of applied examples. We hope to continue to add examples as methods and technologies further develop. These examples make use of a vareity of datasets (e.g., SAT-6, topoDL, Inria, LandCover.ai, vfillDL, and wvlcDL). Please see the repo for links to the data and associated papers. All examples have associated videos that walk through the process, which are also linked to the repo. A variety of deep learning architectures are explored including UNet, UNet++, DeepLabv3+, and Mask R-CNN. Currenlty, two examples use ArcGIS Pro and require no coding. The remaining five examples require coding and make use of PyTorch, Python, and R within the RStudio IDE. It is assumed that you have prior knowledge of coding in the Python and R enviroinments. If you do not have experience coding, please take a look at our Open-Source GIScience and Open-Source Spatial Analytics (R) courses, which explore coding in Python and R, respectively. After completing this seminar you will be able to: explain how ANNs work including weights, bias, activation, and optimization. describe and explain different loss and assessment metrics and determine appropriate use cases. use the tensor data model to represent data as input for deep learning. explain how CNNs work including convolutional operations/layers, kernel size, stride, padding, max pooling, activation, and batch normalization. use PyTorch, Python, and R to prepare data, produce and assess scene classification models, and infer to new data. explain common semantic segmentation architectures and how these methods allow for pixel-level classification and how they are different from traditional CNNs. use PyTorch, Python, and R (or ArcGIS Pro) to prepare data, produce and assess semantic segmentation models, and infer to new data.

  4. g

    BOGS Training Metrics | gimi9.com

    • gimi9.com
    Updated Nov 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). BOGS Training Metrics | gimi9.com [Dataset]. https://gimi9.com/dataset/data-gov_bogs-training-metrics/
    Explore at:
    Dataset updated
    Nov 10, 2023
    Description

    Through the Department of the Interior-Bureau of Indian Affairs Enterprise License Agreement (DOI-BIA ELA) program, BIA employees and employees of federally-recognized Tribes may access a variety of geographic information systems (GIS) online courses and instructor-led training events throughout the year at no cost to them. These online GIS courses and instructor-led training events are hosted by the Branch of Geospatial Support (BOGS) or offered by BOGS in partnership with other organizations and federal agencies. Online courses are self-paced and available year-round, while instructor-led training events have limited capacity and require registration and attendance on specific dates. This dataset does not any training where the course was not completed by the participant or where training was cancelled or otherwise not able to be completed. Point locations depict BIA Office locations or Tribal Office Headquarters. For completed trainings where a participant location was not provided a point locations may not be available. For more information on the Branch of Geospatial Support Geospatial training program, please visit:https://www.bia.gov/service/geospatial-training.

  5. a

    Integrating Data in ArcGIS Pro

    • hub.arcgis.com
    Updated Mar 25, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Delaware (2020). Integrating Data in ArcGIS Pro [Dataset]. https://hub.arcgis.com/documents/3a11f895a7dc4d28ad45cee9cc5ba6d8
    Explore at:
    Dataset updated
    Mar 25, 2020
    Dataset authored and provided by
    State of Delaware
    Description

    In this course, you will learn about some common types of data used for GIS mapping and analysis, and practice adding data to a file geodatabase to support a planned project.Goals Create a file geodatabase. Add data to a file geodatabase. Create an empty geodatabase feature class.

  6. BOGS Training Metrics

    • s.cnmilf.com
    • catalog.data.gov
    • +1more
    Updated May 9, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bureau of Indian Affairs (BIA) (2025). BOGS Training Metrics [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/bogs-training-metrics
    Explore at:
    Dataset updated
    May 9, 2025
    Dataset provided by
    Bureau of Indian Affairshttp://www.bia.gov/
    Description

    Through the Department of the Interior-Bureau of Indian Affairs Enterprise License Agreement (DOI-BIA ELA) program, BIA employees and employees of federally-recognized Tribes may access a variety of geographic information systems (GIS) online courses and instructor-led training events throughout the year at no cost to them. These online GIS courses and instructor-led training events are hosted by the Branch of Geospatial Support (BOGS) or offered by BOGS in partnership with other organizations and federal agencies. Online courses are self-paced and available year-round, while instructor-led training events have limited capacity and require registration and attendance on specific dates. This dataset does not any training where the course was not completed by the participant or where training was cancelled or otherwise not able to be completed. Point locations depict BIA Office locations or Tribal Office Headquarters. For completed trainings where a participant _location was not provided a point locations may not be available. For more information on the Branch of Geospatial Support Geospatial training program, please visit:https://www.bia.gov/service/geospatial-training.

  7. G

    QGIS Training Tutorials: Using Spatial Data in Geographic Information...

    • open.canada.ca
    • datasets.ai
    • +2more
    html
    Updated Oct 5, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada (2021). QGIS Training Tutorials: Using Spatial Data in Geographic Information Systems [Dataset]. https://open.canada.ca/data/en/dataset/89be0c73-6f1f-40b7-b034-323cb40b8eff
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Oct 5, 2021
    Dataset provided by
    Statistics Canada
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    Have you ever wanted to create your own maps, or integrate and visualize spatial datasets to examine changes in trends between locations and over time? Follow along with these training tutorials on QGIS, an open source geographic information system (GIS) and learn key concepts, procedures and skills for performing common GIS tasks – such as creating maps, as well as joining, overlaying and visualizing spatial datasets. These tutorials are geared towards new GIS users. We’ll start with foundational concepts, and build towards more advanced topics throughout – demonstrating how with a few relatively easy steps you can get quite a lot out of GIS. You can then extend these skills to datasets of thematic relevance to you in addressing tasks faced in your day-to-day work.

  8. Remote Sensing of Wildfire Online Course - Datasets - AmericaView - CKAN

    • ckan.americaview.org
    Updated May 4, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.americaview.org (2021). Remote Sensing of Wildfire Online Course - Datasets - AmericaView - CKAN [Dataset]. https://ckan.americaview.org/dataset/remote-sensing-of-wildfire-online-course
    Explore at:
    Dataset updated
    May 4, 2021
    Dataset provided by
    CKANhttps://ckan.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Participants in this course will learn about remote sensing of wildfires from instructors at the University of Alaska Fairbanks, located in one of the world’s most active wildfire zones. Students will learn about wildfire behavior, and get hands-on experience with tools and resources used by professionals to create geospatial maps that support firefighters on the ground. Upon completion, students will be able to: Access web resources that provide near real-time updates on active wildfires, Navigate databases of remote sensing imagery and data, Analyze geospatial data to detect fire hot spots, map burn areas, and assess severity, Process image and GIS data in open source tools like QGIS and Google Earth Engine.

  9. a

    Getting Information from a GIS Map

    • hub.arcgis.com
    Updated May 16, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Delaware (2019). Getting Information from a GIS Map [Dataset]. https://hub.arcgis.com/documents/369de3c4418e48f888e6ae76a9a7d7f5
    Explore at:
    Dataset updated
    May 16, 2019
    Dataset authored and provided by
    State of Delaware
    Description

    GIS maps are windows into a database. Learn how to access the data connected to map features to answer questions about the real world.GoalsExplore patterns with GIS maps.Create GIS maps.Display map labels.Use a table to select features on a map.

  10. H

    Digital Elevation Models and GIS in Hydrology (M2)

    • hydroshare.org
    • beta.hydroshare.org
    • +1more
    zip
    Updated Jun 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Irene Garousi-Nejad; Belize Lane (2021). Digital Elevation Models and GIS in Hydrology (M2) [Dataset]. http://doi.org/10.4211/hs.9c4a6e2090924d97955a197fea67fd72
    Explore at:
    zip(88.2 MB)Available download formats
    Dataset updated
    Jun 7, 2021
    Dataset provided by
    HydroShare
    Authors
    Irene Garousi-Nejad; Belize Lane
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This resource contains data inputs and a Jupyter Notebook that is used to introduce Hydrologic Analysis using Terrain Analysis Using Digital Elevation Models (TauDEM) and Python. TauDEM is a free and open-source set of Digital Elevation Model (DEM) tools developed at Utah State University for the extraction and analysis of hydrologic information from topography. This resource is part of a HydroLearn Physical Hydrology learning module available at https://edx.hydrolearn.org/courses/course-v1:Utah_State_University+CEE6400+2019_Fall/about

    In this activity, the student learns how to (1) derive hydrologically useful information from Digital Elevation Models (DEMs); (2) describe the sequence of steps involved in mapping stream networks, catchments, and watersheds; and (3) compute an approximate water balance for a watershed-based on publicly available data.

    Please note that this exercise is designed for the Logan River watershed, which drains to USGS streamflow gauge 10109000 located just east of Logan, Utah. However, this Jupyter Notebook and the analysis can readily be applied to other locations of interest. If running the terrain analysis for other study sites, you need to prepare a DEM TIF file, an outlet shapefile for the area of interest, and the average annual streamflow and precipitation data. - There are several sources to obtain DEM data. In the U.S., the DEM data (with different spatial resolutions) can be obtained from the National Elevation Dataset available from the national map (http://viewer.nationalmap.gov/viewer/). Another DEM data source is the Shuttle Radar Topography Mission (https://www2.jpl.nasa.gov/srtm/), an international research effort that obtained digital elevation models on a near-global scale (search for Digital Elevation at https://www.usgs.gov/centers/eros/science/usgs-eros-archive-products-overview?qt-science_center_objects=0#qt-science_center_objects). - If not already available, you can generate the outlet shapefile by applying basic terrain analysis steps in geospatial information system models such as ArcGIS or QGIS. - You also need to obtain average annual streamflow and precipitation data for the watershed of interest to assess the annual water balance and calculate the runoff ratio in this exercise. In the U.S., the streamflow data can be obtained from the USGS NWIS website (https://waterdata.usgs.gov/nwis) and the precipitation from PRISM (https://prism.oregonstate.edu/normals/). Note that using other datasets may require preprocessing steps to make data ready to use for this exercise.

  11. f

    Data from: Self-assessment in student’s learning and developing teaching in...

    • tandf.figshare.com
    txt
    Updated May 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nora Fagerholm; Eliisa Lotsari; Tua Nylén; Niina Käyhkö; Jussi Nikander; Vesa Arki; Risto Kalliola (2024). Self-assessment in student’s learning and developing teaching in geoinformatics – case of Geoportti self-assessment tool [Dataset]. http://doi.org/10.6084/m9.figshare.24099390.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    May 29, 2024
    Dataset provided by
    Taylor & Francis
    Authors
    Nora Fagerholm; Eliisa Lotsari; Tua Nylén; Niina Käyhkö; Jussi Nikander; Vesa Arki; Risto Kalliola
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    In successful geoinformatics education, students’ active role in the learning process, e.g. through applying self-assessment, show an increasing interest but the evidence of benefits and challenges of self-assessment are sporadic. In this article, we examine the usefulness of an online self-assessment tool developed for geoinformatics education. We gathered data in two Finnish universities on five courses (n = 11–73 students/course) between 2019 and 2021. We examined 1) how the students’ self-assessed knowledge and understanding in geoinformatics subject topics changed during a course, 2) how the competencies at the end of a course changed between the years in different courses, and 3) what was the perceived usefulness of the self-assessment approach among the students. The results indicate support for the implementation of self-assessment, both as a formative and summative assessment. However, it is crucial to ensure that the students understand the contents of the self-assessment subject topics. To increase students’ motivation to take a self-assessment, it is crucial that the teacher actively highlights how it supports their studying and learning. As the teachers of the examined courses, we discuss the benefits and challenges of the self-assessment approach and the applied tool for the future development of geoinformatics education.

  12. a

    Golf Courses

    • data-seattlecitygis.opendata.arcgis.com
    • s.cnmilf.com
    • +1more
    Updated Oct 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Seattle ArcGIS Online (2023). Golf Courses [Dataset]. https://data-seattlecitygis.opendata.arcgis.com/datasets/SeattleCityGIS::golf-courses
    Explore at:
    Dataset updated
    Oct 2, 2023
    Dataset authored and provided by
    City of Seattle ArcGIS Online
    Area covered
    Description

    Seattle Parks and Recreation Golf Course locations. SPR Golf Courses are managed by contractors.Refresh Cycle: WeeklyFeature Class: DPR.GolfCourse

  13. s

    Golf Course Polygon

    • opendata.suffolkcountyny.gov
    • hub.arcgis.com
    Updated Dec 9, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Suffolk County GIS (2020). Golf Course Polygon [Dataset]. https://opendata.suffolkcountyny.gov/maps/golf-course-polygon
    Explore at:
    Dataset updated
    Dec 9, 2020
    Dataset authored and provided by
    Suffolk County GIS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This vector dataset provides polygons that represent significant golf course facility locations in Suffolk County. These courses can be publicly (State, County, Town, Village) or privately owned. This dataset can be linked with the GolfCoursePoint feature class by the FACILITYID field. In some cases, there may be multiple Golf Course Points for a single Golf Course Polygon. These data are organized for consumption in desktop and web applications.

  14. a

    10.4 Creating Web Applications Using Templates and Web AppBuilder for ArcGIS...

    • hub.arcgis.com
    Updated Mar 4, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Iowa Department of Transportation (2017). 10.4 Creating Web Applications Using Templates and Web AppBuilder for ArcGIS [Dataset]. https://hub.arcgis.com/documents/317d8d6afba540448443b5630bae01be
    Explore at:
    Dataset updated
    Mar 4, 2017
    Dataset authored and provided by
    Iowa Department of Transportation
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This course demonstrates how to select, modify, create, and share web applications using ArcGIS Online. ArcGIS Online offers many different options for creating web applications that share web maps, web scenes, and spatial functions. But how do you decide which web application best meets your requirements? Each web application option implements different functions and showcases a specific look and feel. You can choose a web application that meets your organization's functional requirements, apply your organization's look and feel, and share your web map without writing any code.Two workflows will be introduced for creating web applications using ArcGIS Online:Applying your web map to an existing template applicationCreating your own web application using Web AppBuilder for ArcGISAfter completing this course, you will be able to do the following:Identify the components of a web application.Create a web application from an existing configurable app template.Create a web application using Web AppBuilder for ArcGIS.Use ArcGIS Online to deploy a web application.

  15. e

    Zombie Attack - using ArcGIS Online

    • gisinschools.eagle.co.nz
    • resources-gisinschools-nz.hub.arcgis.com
    Updated May 20, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GIS in Schools - Teaching Materials - New Zealand (2019). Zombie Attack - using ArcGIS Online [Dataset]. https://gisinschools.eagle.co.nz/documents/cce9cfa8f96e4f219e7de8ea4d67fc1b
    Explore at:
    Dataset updated
    May 20, 2019
    Dataset authored and provided by
    GIS in Schools - Teaching Materials - New Zealand
    Description

    The New Zealand version of the Zombie Apocalypse lesson."A huge yet unknown catastrophic event has changed the world as we know it. One of the major results of this event is the spread of zombies across the globe. People all around the world are trying to survive this zombie invasion the best way they can. It will take skill, and of course BRAINS to figure out the best way to survive this catastrophe!
    Do you have what it takes? Can you use what is in YOUR BRAIN to SURVIVE the ZOMBIE APOCALYPSE!?"

  16. a

    Putting Your GIS Skills to Work

    • hub.arcgis.com
    Updated Nov 7, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Delaware (2019). Putting Your GIS Skills to Work [Dataset]. https://hub.arcgis.com/documents/8c5433ca105843c4b4a13f8b90a00f2d
    Explore at:
    Dataset updated
    Nov 7, 2019
    Dataset authored and provided by
    State of Delaware
    Description

    This course is intended to get you thinking about your future. Learn about where GIS professionals work, what they do, and how their educational choices prepare them for different types of jobs.GoalsDiscover the types of projects that GIS professionals work on.Identify qualities and skills that can help you get a GIS-related job.Choose educational options that match your goals and support your future career plans.

  17. e

    US Centric - GeoInquiries for Earth Science by Esri

    • gisinschools.eagle.co.nz
    Updated Jul 30, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GIS in Schools - Teaching Materials - New Zealand (2015). US Centric - GeoInquiries for Earth Science by Esri [Dataset]. https://gisinschools.eagle.co.nz/datasets/us-centric-geoinquiries-for-earth-science-by-esri
    Explore at:
    Dataset updated
    Jul 30, 2015
    Dataset authored and provided by
    GIS in Schools - Teaching Materials - New Zealand
    Area covered
    Earth
    Description

    This collection includes all the major map based concepts found in a typical middle or high school earth science course– topography, earthquakes, volcanoes, oceans, weather, and climate. GeoInquiries are designed to be fast and easy-to-use instructional resources that incorporate advanced web mapping technology. Each 15-minute activity in a collection is intended to be presented by the instructor from a single computer/projector classroom arrangement. No installation, fees, or logins are necessary to use these materials and software.Find the student worksheets for these GeoInquiries here

  18. A

    Remote Sensing

    • data.amerigeoss.org
    html
    Updated Oct 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AmericaView (2024). Remote Sensing [Dataset]. https://data.amerigeoss.org/zh_TW/dataset/remote-sensing1
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Oct 18, 2024
    Dataset provided by
    AmericaView
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This course explores the theory, technology, and applications of remote sensing. It is designed for individuals with an interest in GIS and geospatial science who have no prior experience working with remotely sensed data. Lab exercises make use of the web and the ArcGIS Pro software. You will work with and explore a wide variety of data types including aerial imagery, satellite imagery, multispectral imagery, digital terrain data, light detection and ranging (LiDAR), thermal data, and synthetic aperture RaDAR (SAR). Remote sensing is a rapidly changing field influenced by big data, machine learning, deep learning, and cloud computing. In this course you will gain an overview of the subject of remote sensing, with a special emphasis on principles, limitations, and possibilities. In addition, this course emphasizes information literacy, and will develop your skills in finding, evaluating, and using scholarly information.

    You will be asked to work through a series of modules that present information relating to a specific topic. You will also complete a series of lab exercises to reinforce the material. Lastly, you will complete paper reviews and a term project. We have also provided additional bonus material and links associated with surface hydrologic analysis with TauDEM, geographic object-based image analysis (GEOBIA), Google Earth Engine (GEE), and the geemap Python library for Google Earth Engine. Please see the sequencing document for our suggested order in which to work through the material. We have also provided PDF versions of the lectures with the notes included.

  19. n

    13 - Finding Mango street - Esri GeoInquiries collection for American...

    • library.ncge.org
    Updated Jun 8, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NCGE (2020). 13 - Finding Mango street - Esri GeoInquiries collection for American Literature [Dataset]. https://library.ncge.org/documents/8e955d32b6bd4eb2bbb7b4aa40247b7b
    Explore at:
    Dataset updated
    Jun 8, 2020
    Dataset authored and provided by
    NCGE
    Description

    THE GEOINQUIRIES™ COLLECTION FOR AMERICAN LITERATURE

    http://www.esri.com/geoinquiries

    The Esri GeoInquiry™ collection for American Literature contains 15 free, standards-based activities that correspond and extend map-based concepts found in course texts frequently used in high school literature. The activities use a common inquiry-based instructional model, require only 15 minutes to deliver, and are device/laptop agnostic. Each activity includes an ArcGIS Online map but requires no login or installation. The activities harmonize with the Common Core ELA national curriculum standards.

    All American Literature GeoInquiries™ can be found at: http://esriurl.com/litGeoInquiries

    All GeoInquiries™ can be found at: http://www.esri.com/geoinquiries

  20. Lawn Hill Platform and Leichhardt River Fault Trough measured stratigraphic...

    • data.wu.ac.at
    • ecat.ga.gov.au
    • +1more
    html, zip
    Updated Jun 26, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Geoscience Australia (2018). Lawn Hill Platform and Leichhardt River Fault Trough measured stratigraphic section online GIS [Dataset]. https://data.wu.ac.at/schema/data_gov_au/YTg4MDI4ZGItOGM3OS00M2FiLTg0N2ItNjU2ZGVjNmJkNDBh
    Explore at:
    zip, htmlAvailable download formats
    Dataset updated
    Jun 26, 2018
    Dataset provided by
    Geoscience Australiahttp://ga.gov.au/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    150924324b8115dcd0d11f6fc759ef63c2f1a81d
    Description

    This GIS web browser contains stratigraphic information from the southern flank of the Murphy Inlier, Lawn Hill Platform and Leichhardt River Fault Trough in the Western Succession of the Mount Isa Block. The principal lithostratigraphic units covered by this dataset include the Surprise Creek Formation, Mount Isa and McNamara Groups. The images are pixilated versions of those contained on CD Records AGSO Record 1999/10, AGSO Record 1999/15, GA Record 2002/3. The data contained on the CD's is more comprehensive, at a better resolution and also contains cross sections that are not available over the web. No drill hole data is supplied in this viewer. The data compiled for this viewer was collected during the course of the NABRE, AMIRA P552 and pmd*CRC projects. The respective CD's also provide measured sections at different scales with slightly varying information available at 1:400, 1:1000, 1:2500 and 1:5000 scales. The information at each scale is slightly different. Plot files ready for printing also accompany the measured sections. Each of the measured sections contains primary observational data (grainsize, lithology, bed thickness, sedimentary structure and gamma ray curve) map-based lithostratigraphic units as shown on the 1:100,000 geological sheets, interpreted facies and sequence stratigraphic surfaces. Sections were measured using a Jacobs Staff and Abney Level and the rocks were marked in 1.5 m intervals of true thickness. Gamma ray data was collected at either 50 cm or 75 cm intervals of true thickness using hand-held Scintrex GRS 500 spectrometers that measured total gamma ray counts. A beryllium standard was used to calibrate each spectrometer. Each machine was calibrated at intervals of two to three hours. Each gamma reading was averaged over an interval of ten seconds. Outcrop discontinuities prevented the collection of stratigraphic data in a line of continuous section. As a result most of the sections present in this data set comprise a series of segments combined to form a single composite section. The single sections were all measured within a radius of several kilometres of each other. Individual sections were spliced together at prominent marker beds (outcrop tracing of strata), or by the use of overlapping gamma ray curves in conjunction with facies descriptions. Section locations shown in the web browser depict the base of each composite section. Grid coordinates for the base each composite section can be found in the header block of the appropriate section. The geological maps used in this web browser depict the approximate position of supersequence boundaries. Not all the geology for the region has been included and only the geology relevant to the measured sections has been used. The supersequences provided are based on the most appropriate lithostratigraphic boundaries and no new geological polygons have been created. It should be noted that the Torpedo Creek and Warrina Park Quartzites have been placed in the Prize Supersequence. However, we acknowledge that due to mis-mapping of these sand bodies the Torpedo Creek and Warrina Park Quartzites from the basal part of the Gun Supersequence at some locations.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
ckan.americaview.org (2021). Open-Source GIScience Online Course [Dataset]. https://ckan.americaview.org/dataset/open-source-giscience-online-course
Organization logo

Open-Source GIScience Online Course

Explore at:
Dataset updated
Nov 2, 2021
Dataset provided by
CKANhttps://ckan.org/
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

In this course, you will explore a variety of open-source technologies for working with geosptial data, performing spatial analysis, and undertaking general data science. The first component of the class focuses on the use of QGIS and associated technologies (GDAL, PROJ, GRASS, SAGA, and Orfeo Toolbox). The second component of the class introduces Python and associated open-source libraries and modules (NumPy, Pandas, Matplotlib, Seaborn, GeoPandas, Rasterio, WhiteboxTools, and Scikit-Learn) used by geospatial scientists and data scientists. We also provide an introduction to Structured Query Language (SQL) for performing table and spatial queries. This course is designed for individuals that have a background in GIS, such as working in the ArcGIS environment, but no prior experience using open-source software and/or coding. You will be asked to work through a series of lecture modules and videos broken into several topic areas, as outlined below. Fourteen assignments and the required data have been provided as hands-on opportunites to work with data and the discussed technologies and methods. If you have any questions or suggestions, feel free to contact us. We hope to continue to update and improve this course. This course was produced by West Virginia View (http://www.wvview.org/) with support from AmericaView (https://americaview.org/). This material is based upon work supported by the U.S. Geological Survey under Grant/Cooperative Agreement No. G18AP00077. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. Geological Survey. Mention of trade names or commercial products does not constitute their endorsement by the U.S. Geological Survey. After completing this course you will be able to: apply QGIS to visualize, query, and analyze vector and raster spatial data. use available resources to further expand your knowledge of open-source technologies. describe and use a variety of open data formats. code in Python at an intermediate-level. read, summarize, visualize, and analyze data using open Python libraries. create spatial predictive models using Python and associated libraries. use SQL to perform table and spatial queries at an intermediate-level.

Search
Clear search
Close search
Google apps
Main menu