16 datasets found
  1. Open-Source GIScience Online Course

    • ckan.americaview.org
    Updated Nov 2, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.americaview.org (2021). Open-Source GIScience Online Course [Dataset]. https://ckan.americaview.org/dataset/open-source-giscience-online-course
    Explore at:
    Dataset updated
    Nov 2, 2021
    Dataset provided by
    CKANhttps://ckan.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    In this course, you will explore a variety of open-source technologies for working with geosptial data, performing spatial analysis, and undertaking general data science. The first component of the class focuses on the use of QGIS and associated technologies (GDAL, PROJ, GRASS, SAGA, and Orfeo Toolbox). The second component of the class introduces Python and associated open-source libraries and modules (NumPy, Pandas, Matplotlib, Seaborn, GeoPandas, Rasterio, WhiteboxTools, and Scikit-Learn) used by geospatial scientists and data scientists. We also provide an introduction to Structured Query Language (SQL) for performing table and spatial queries. This course is designed for individuals that have a background in GIS, such as working in the ArcGIS environment, but no prior experience using open-source software and/or coding. You will be asked to work through a series of lecture modules and videos broken into several topic areas, as outlined below. Fourteen assignments and the required data have been provided as hands-on opportunites to work with data and the discussed technologies and methods. If you have any questions or suggestions, feel free to contact us. We hope to continue to update and improve this course. This course was produced by West Virginia View (http://www.wvview.org/) with support from AmericaView (https://americaview.org/). This material is based upon work supported by the U.S. Geological Survey under Grant/Cooperative Agreement No. G18AP00077. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. Geological Survey. Mention of trade names or commercial products does not constitute their endorsement by the U.S. Geological Survey. After completing this course you will be able to: apply QGIS to visualize, query, and analyze vector and raster spatial data. use available resources to further expand your knowledge of open-source technologies. describe and use a variety of open data formats. code in Python at an intermediate-level. read, summarize, visualize, and analyze data using open Python libraries. create spatial predictive models using Python and associated libraries. use SQL to perform table and spatial queries at an intermediate-level.

  2. Inform E-learning GIS Course

    • png-data.sprep.org
    • tonga-data.sprep.org
    • +13more
    pdf
    Updated Feb 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SPREP (2025). Inform E-learning GIS Course [Dataset]. https://png-data.sprep.org/dataset/inform-e-learning-gis-course
    Explore at:
    pdf(658923), pdf(501586), pdf(1335336), pdf(587295)Available download formats
    Dataset updated
    Feb 20, 2025
    Dataset provided by
    Pacific Regional Environment Programmehttps://www.sprep.org/
    License

    Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
    License information was derived automatically

    Area covered
    Pacific Region
    Description

    This dataset holds all materials for the Inform E-learning GIS course

  3. G

    QGIS Training Tutorials: Using Spatial Data in Geographic Information...

    • open.canada.ca
    • datasets.ai
    • +2more
    html
    Updated Oct 5, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada (2021). QGIS Training Tutorials: Using Spatial Data in Geographic Information Systems [Dataset]. https://open.canada.ca/data/en/dataset/89be0c73-6f1f-40b7-b034-323cb40b8eff
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Oct 5, 2021
    Dataset provided by
    Statistics Canada
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    Have you ever wanted to create your own maps, or integrate and visualize spatial datasets to examine changes in trends between locations and over time? Follow along with these training tutorials on QGIS, an open source geographic information system (GIS) and learn key concepts, procedures and skills for performing common GIS tasks – such as creating maps, as well as joining, overlaying and visualizing spatial datasets. These tutorials are geared towards new GIS users. We’ll start with foundational concepts, and build towards more advanced topics throughout – demonstrating how with a few relatively easy steps you can get quite a lot out of GIS. You can then extend these skills to datasets of thematic relevance to you in addressing tasks faced in your day-to-day work.

  4. g

    BOGS Training Metrics | gimi9.com

    • gimi9.com
    Updated Nov 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). BOGS Training Metrics | gimi9.com [Dataset]. https://gimi9.com/dataset/data-gov_bogs-training-metrics
    Explore at:
    Dataset updated
    Nov 10, 2023
    Description

    Through the Department of the Interior-Bureau of Indian Affairs Enterprise License Agreement (DOI-BIA ELA) program, BIA employees and employees of federally-recognized Tribes may access a variety of geographic information systems (GIS) online courses and instructor-led training events throughout the year at no cost to them. These online GIS courses and instructor-led training events are hosted by the Branch of Geospatial Support (BOGS) or offered by BOGS in partnership with other organizations and federal agencies. Online courses are self-paced and available year-round, while instructor-led training events have limited capacity and require registration and attendance on specific dates. This dataset does not any training where the course was not completed by the participant or where training was cancelled or otherwise not able to be completed. Point locations depict BIA Office locations or Tribal Office Headquarters. For completed trainings where a participant location was not provided a point locations may not be available. For more information on the Branch of Geospatial Support Geospatial training program, please visit:https://www.bia.gov/service/geospatial-training.

  5. BOGS Training Metrics

    • opendata-1-bia-geospatial.hub.arcgis.com
    • catalog.data.gov
    Updated Feb 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bureau of Indian Affairs (2025). BOGS Training Metrics [Dataset]. https://opendata-1-bia-geospatial.hub.arcgis.com/items/cb84475860084633b4f44f8ddcd0d78f
    Explore at:
    Dataset updated
    Feb 19, 2025
    Dataset authored and provided by
    Bureau of Indian Affairshttp://www.bia.gov/
    Area covered
    Description

    Through the Department of the Interior-Bureau of Indian Affairs Enterprise License Agreement (DOI-BIA ELA) program, BIA employees and employees of federally-recognized Tribes may access a variety of geographic information systems (GIS) online courses and instructor-led training events throughout the year at no cost to them. These online GIS courses and instructor-led training events are hosted by the Branch of Geospatial Support (BOGS) or offered by BOGS in partnership with other organizations and federal agencies. Online courses are self-paced and available year-round, while instructor-led training events have limited capacity and require registration and attendance on specific dates. This dataset does not any training where the course was not completed by the participant or where training was cancelled or otherwise not able to be completed. Point locations depict BIA Office locations or Tribal Office Headquarters. For completed trainings where a participant location was not provided a point locations may not be available. For more information on the Branch of Geospatial Support Geospatial training program, please visit:https://www.bia.gov/service/geospatial-training.

  6. Climate data and geographic data from Madagascar for learning multi-criteria...

    • zenodo.org
    bin, pdf, tiff
    Updated Jul 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Francesco Pirotti; Francesco Pirotti (2024). Climate data and geographic data from Madagascar for learning multi-criteria analysis in GIS courses [Dataset]. http://doi.org/10.5281/zenodo.10422567
    Explore at:
    tiff, pdf, binAvailable download formats
    Dataset updated
    Jul 7, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Francesco Pirotti; Francesco Pirotti
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Climate data and geographic data from Madagascar for learning multi-criteria analysis in GIS courses.

  7. Getting to Know ArcGIS Pro 2.6

    • dados-edu-pt.hub.arcgis.com
    Updated Aug 19, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Portugal - Educação (2020). Getting to Know ArcGIS Pro 2.6 [Dataset]. https://dados-edu-pt.hub.arcgis.com/datasets/getting-to-know-arcgis-pro-2-6
    Explore at:
    Dataset updated
    Aug 19, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri Portugal - Educação
    License

    Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
    License information was derived automatically

    Description

    Continuing the tradition of the best-selling Getting to Know series, Getting to Know ArcGIS Pro 2.6 teaches new and existing GIS users how to get started solving problems using ArcGIS Pro. Using ArcGIS Pro for these tasks allows you to understand complex data with the leading GIS software that many businesses and organizations use every day.Getting to Know ArcGIS Pro 2.6 introduces the basic tools and capabilities of ArcGIS Pro through practical project workflows that demonstrate best practices for productivity. Explore spatial relationships, building a geodatabase, 3D GIS, project presentation, and more. Learn how to navigate ArcGIS Pro and ArcGIS Online by visualizing, querying, creating, editing, analyzing, and presenting geospatial data in both 2D and 3D environments. Using figures to show each step, Getting to Know ArcGIS Pro 2.6 demystifies complicated process like developing a geoprocessing model, using Python to write a script tool, and the creation of space-time cubes. Cartographic techniques for both web and physical maps are included.Each chapter begins with a prompt using a real-world scenario in a different industry to help you explore how ArcGIS Pro can be applied for operational efficiency, analysis, and problem solving. A summary and glossary terms at the end of every chapter help reinforce the lessons and skills learned.Ideal for students, self-learners, and seasoned professionals looking to learn a new GIS product, Getting to Know ArcGIS Pro 2.6 is a broad textbook and desk reference designed to leave users feeling confident in using ArcGIS Pro on their own.AUDIENCEProfessional and scholarly. Higher education.AUTHOR BIOMichael Law is a cartographer and GIS professional with more than a decade of experience. He was a cartographer for Esri, where he developed cartography for books, edited and tested GIS workbooks, and was the editor of the Esri Map Book. He continues to work with GIS software, writing technical documentation, teaching training courses, and designing and optimizing user interfaces.Amy Collins is a writer and editor who has worked with GIS for over 16 years. She was a technical editor for Esri, where she honed her GIS skills and cultivated an interest in designing effective instructional materials. She continues to develop books on GIS education, among other projects.Pub Date: Print: 10/6/2020 Digital: 8/18/2020 ISBN: Print: 9781589486355 Digital: 9781589486362 Price: Print: $84.99 USD Digital: $84.99 USD Pages: 420 Trim: 7.5 x 9.25 in.Table of ContentsPrefaceChapter 1 Introducing GISExercise 1a: Explore ArcGIS OnlineChapter 2 A first look at ArcGIS Pro Exercise 2a: Learn some basics Exercise 2b: Go beyond the basics Exercise 2c: Experience 3D GISChapter 3 Exploring geospatial relationshipsExercise 3a: Extract part of a dataset Exercise 3b: Incorporate tabular data Exercise 3c: Calculate data statistics Exercise 3d: Connect spatial datasetsChapter 4 Creating and editing spatial data Exercise 4a: Build a geodatabase Exercise 4b: Create features Exercise 4c: Modify featuresChapter 5 Facilitating workflows Exercise 5a: Manage a repeatable workflow using tasks Exercise 5b: Create a geoprocessing model Exercise 5c: Run a Python command and script toolChapter 6 Collaborative mapping Exercise 6a: Prepare a database for data collection Exercise 6b: Prepare a map for data collection Exercise 6c: Collect data using ArcGIS CollectorChapter 7 Geoenabling your projectExercise 7a: Prepare project data Exercise 7b: Geocode location data Exercise 7c: Use geoprocessing tools to analyze vector dataChapter 8 Analyzing spatial and temporal patternsExercise 8a: Create a kernel density map Exercise 8b: Perform a hot spot analysis Exercise 8c: Explore the results in 3D Exercise 8d: Animate the dataChapter 9 Determining suitability Exercise 9a: Prepare project data Exercise 9b: Derive new surfaces Exercise 9c: Create a weighted suitability modelChapter 10 Presenting your project Exercise 10a: Apply detailed symbology Exercise 10b: Label features Exercise 10c: Create a page layout Exercise 10d: Share your projectAppendix Image and data source credits Data license agreement GlossaryGetting to Know ArcGIS Pro 2.6 | Official Trailer | 2020-08-10 | 00:57

  8. Geospatial Services, Solutions (Expertise resources 800+ GIS Engineers)

    • datarade.ai
    Updated Dec 3, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MapMyIndia (2021). Geospatial Services, Solutions (Expertise resources 800+ GIS Engineers) [Dataset]. https://datarade.ai/data-products/geospatial-services-solutions-expertise-resources-800-gis-mapmyindia
    Explore at:
    Dataset updated
    Dec 3, 2021
    Dataset provided by
    MapmyIndiahttps://www.mapmyindia.com/
    Authors
    MapMyIndia
    Area covered
    Niger, United Republic of, Estonia, Congo, Nigeria, South Sudan, Ascension and Tristan da Cunha, United States of America, Comoros, Burkina Faso
    Description

    800+ GIS Engineers with 25+ years of experience in geospatial, We provide following as Advance Geospatial Services:

    Analytics (AI) Change detection Feature extraction Road assets inventory Utility assets inventory Map data production Geodatabase generation Map data Processing /Classifications
    Contour Map Generation Analytics (AI) Change Detection Feature Extraction Imagery Data Processing Ortho mosaic Ortho rectification Digital Ortho Mapping Ortho photo Generation Analytics (Geo AI) Change Detection Map Production Web application development Software testing Data migration Platform development

    AI-Assisted Data Mapping Pipeline AI models trained on millions of images are used to predict traffic signs, road markings , lanes for better and faster data processing

    Our Value Differentiator

    Experience & Expertise -More than Two decade in Map making business with 800+ GIS expertise -Building world class products with our expertise service division & skilled project management -International Brand “Mappls” in California USA, focused on “Advance -Geospatial Services & Autonomous drive Solutions”

    Value Added Services -Production environment with continuous improvement culture -Key metrics driven production processes to align customer’s goals and deliverables -Transparency & visibility to all stakeholder -Technology adaptation by culture

    Flexibility -Customer driven resource management processes -Flexible resource management processes to ramp-up & ramp-down within short span of time -Robust training processes to address scope and specification changes -Priority driven project execution and management -Flexible IT environment inline with critical requirements of projects

    Quality First -Delivering high quality & cost effective services -Business continuity process in place to address situation like Covid-19/ natural disasters -Secure & certified infrastructure with highly skilled resources and management -Dedicated SME team to ensure project quality, specification & deliverables

  9. a

    Golf Courses

    • data-seattlecitygis.opendata.arcgis.com
    Updated Oct 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Seattle ArcGIS Online (2023). Golf Courses [Dataset]. https://data-seattlecitygis.opendata.arcgis.com/datasets/SeattleCityGIS::golf-courses
    Explore at:
    Dataset updated
    Oct 2, 2023
    Dataset authored and provided by
    City of Seattle ArcGIS Online
    Area covered
    Description

    Seattle Parks and Recreation Golf Course locations. SPR Golf Courses are managed by contractors.Refresh Cycle: WeeklyFeature Class: DPR.GolfCourse

  10. d

    Seattle Parks and Recreation GIS Map Layer Web Services URL - Golf Courses

    • catalog.data.gov
    • data.seattle.gov
    • +1more
    Updated Jan 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.seattle.gov (2025). Seattle Parks and Recreation GIS Map Layer Web Services URL - Golf Courses [Dataset]. https://catalog.data.gov/dataset/seattle-parks-and-recreation-gis-map-layer-web-services-url-golf-courses-5cda6
    Explore at:
    Dataset updated
    Jan 31, 2025
    Dataset provided by
    data.seattle.gov
    Area covered
    Seattle
    Description

    Seattle Parks and Recreation ARCGIS park feature map layer web services are hosted on Seattle Public Utilities' ARCGIS server. This web services URL provides a live read only data connection to the Seattle Parks and Recreations Golf Courses dataset.

  11. f

    Data from: Self-assessment in student’s learning and developing teaching in...

    • tandf.figshare.com
    txt
    Updated May 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nora Fagerholm; Eliisa Lotsari; Tua Nylén; Niina Käyhkö; Jussi Nikander; Vesa Arki; Risto Kalliola (2024). Self-assessment in student’s learning and developing teaching in geoinformatics – case of Geoportti self-assessment tool [Dataset]. http://doi.org/10.6084/m9.figshare.24099390.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    May 29, 2024
    Dataset provided by
    Taylor & Francis
    Authors
    Nora Fagerholm; Eliisa Lotsari; Tua Nylén; Niina Käyhkö; Jussi Nikander; Vesa Arki; Risto Kalliola
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    In successful geoinformatics education, students’ active role in the learning process, e.g. through applying self-assessment, show an increasing interest but the evidence of benefits and challenges of self-assessment are sporadic. In this article, we examine the usefulness of an online self-assessment tool developed for geoinformatics education. We gathered data in two Finnish universities on five courses (n = 11–73 students/course) between 2019 and 2021. We examined 1) how the students’ self-assessed knowledge and understanding in geoinformatics subject topics changed during a course, 2) how the competencies at the end of a course changed between the years in different courses, and 3) what was the perceived usefulness of the self-assessment approach among the students. The results indicate support for the implementation of self-assessment, both as a formative and summative assessment. However, it is crucial to ensure that the students understand the contents of the self-assessment subject topics. To increase students’ motivation to take a self-assessment, it is crucial that the teacher actively highlights how it supports their studying and learning. As the teachers of the examined courses, we discuss the benefits and challenges of the self-assessment approach and the applied tool for the future development of geoinformatics education.

  12. H

    Digital Elevation Models and GIS in Hydrology (M2)

    • hydroshare.org
    • beta.hydroshare.org
    • +1more
    zip
    Updated Jun 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Irene Garousi-Nejad; Belize Lane (2021). Digital Elevation Models and GIS in Hydrology (M2) [Dataset]. http://doi.org/10.4211/hs.9c4a6e2090924d97955a197fea67fd72
    Explore at:
    zip(88.2 MB)Available download formats
    Dataset updated
    Jun 7, 2021
    Dataset provided by
    HydroShare
    Authors
    Irene Garousi-Nejad; Belize Lane
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This resource contains data inputs and a Jupyter Notebook that is used to introduce Hydrologic Analysis using Terrain Analysis Using Digital Elevation Models (TauDEM) and Python. TauDEM is a free and open-source set of Digital Elevation Model (DEM) tools developed at Utah State University for the extraction and analysis of hydrologic information from topography. This resource is part of a HydroLearn Physical Hydrology learning module available at https://edx.hydrolearn.org/courses/course-v1:Utah_State_University+CEE6400+2019_Fall/about

    In this activity, the student learns how to (1) derive hydrologically useful information from Digital Elevation Models (DEMs); (2) describe the sequence of steps involved in mapping stream networks, catchments, and watersheds; and (3) compute an approximate water balance for a watershed-based on publicly available data.

    Please note that this exercise is designed for the Logan River watershed, which drains to USGS streamflow gauge 10109000 located just east of Logan, Utah. However, this Jupyter Notebook and the analysis can readily be applied to other locations of interest. If running the terrain analysis for other study sites, you need to prepare a DEM TIF file, an outlet shapefile for the area of interest, and the average annual streamflow and precipitation data. - There are several sources to obtain DEM data. In the U.S., the DEM data (with different spatial resolutions) can be obtained from the National Elevation Dataset available from the national map (http://viewer.nationalmap.gov/viewer/). Another DEM data source is the Shuttle Radar Topography Mission (https://www2.jpl.nasa.gov/srtm/), an international research effort that obtained digital elevation models on a near-global scale (search for Digital Elevation at https://www.usgs.gov/centers/eros/science/usgs-eros-archive-products-overview?qt-science_center_objects=0#qt-science_center_objects). - If not already available, you can generate the outlet shapefile by applying basic terrain analysis steps in geospatial information system models such as ArcGIS or QGIS. - You also need to obtain average annual streamflow and precipitation data for the watershed of interest to assess the annual water balance and calculate the runoff ratio in this exercise. In the U.S., the streamflow data can be obtained from the USGS NWIS website (https://waterdata.usgs.gov/nwis) and the precipitation from PRISM (https://prism.oregonstate.edu/normals/). Note that using other datasets may require preprocessing steps to make data ready to use for this exercise.

  13. l

    SMMLCP GIS Data Layers

    • data.lacounty.gov
    Updated Jan 21, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Los Angeles (2021). SMMLCP GIS Data Layers [Dataset]. https://data.lacounty.gov/datasets/smmlcp-gis-data-layers
    Explore at:
    Dataset updated
    Jan 21, 2021
    Dataset authored and provided by
    County of Los Angeles
    Description

    These are the main layers that were used in the mapping and analysis for the Santa Monica Mountains Local Coastal Plan, which was adopted by the Board of Supervisors on August 26, 2014, and certified by the California Coastal Commission on October 10, 2014. Below are some links to important documents and web mapping applications, as well as a link to the actual GIS data:

    Plan Website – This has links to the actual plan, maps, and a link to our online web mapping application known as SMMLCP-NET. Click here for website. Online Web Mapping Application – This is the online web mapping application that shows all the layers associated with the plan. These are the same layers that are available for download below. Click here for the web mapping application. GIS Layers – This is a link to the GIS layers in the form of an ArcGIS Map Package, click here (LINK TO FOLLOW SOON) for ArcGIS Map Package (version 10.3). Also, included are layers in shapefile format. Those are included below.

    Below is a list of the GIS Layers provided (shapefile format):

    Recreation (Zipped - 5 MB - click here)

    Coastal Zone Campground Trails (2012 National Park Service) Backbone Trail Class III Bike Route – Existing Class III Bike Route – Proposed

    Scenic Resources (Zipped - 3 MB - click here)

    Significant Ridgeline State-Designated Scenic Highway State-Designated Scenic Highway 200-foot buffer Scenic Route Scenic Route 200-foot buffer Scenic Element

    Biological Resources (Zipped - 45 MB - click here)

    National Hydrography Dataset – Streams H2 Habitat (High Scrutiny) H1 Habitat H1 Habitat 100-foot buffer H1 Habitat Quiet Zone H2 Habitat H3 Habitat

    Hazards (Zipped - 8 MB - click here)

    FEMA Flood Zone (100-year flood plain) Liquefaction Zone (Earthquake-Induced Liquefaction Potential) Landslide Area (Earthquake-Induced Landslide Potential) Fire Hazard and Responsibility Area

    Zoning and Land Use (Zipped - 13 MB - click here)

    Malibu LCP – LUP (1986) Malibu LCP – Zoning (1986) Land Use Policy Zoning

    Other Layers (Zipped - 38 MB - click here)

    Coastal Commission Appeal Jurisdiction Community Names Santa Monica Mountains (SMM) Coastal Zone Boundary Pepperdine University Long Range Development Plan (LRDP) Rural Village

    Contact the L.A. County Dept. of Regional Planning's GIS Section if you have questions. Send to our email.

  14. D

    Data from: Soil and Land Information

    • data.nsw.gov.au
    • researchdata.edu.au
    html, pdf +1
    Updated Mar 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NSW Department of Climate Change, Energy, the Environment and Water (2024). Soil and Land Information [Dataset]. https://data.nsw.gov.au/data/dataset/soil-and-land-information
    Explore at:
    spatial viewer, html, pdfAvailable download formats
    Dataset updated
    Mar 13, 2024
    Dataset provided by
    NSW Department of Climate Change, Energy, the Environment and Water
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Statewide soil and land information can be discovered and viewed through eSPADE or SEED. Datasets include soil profiles, soil landscapes, soil and land resources, acid sulfate soil risk mapping, hydrogeological landscapes, land systems and land use. There are also various statewide coverages of specific soil and land characteristics, such as soil type, land and soil capability, soil fertility, soil regolith, soil hydrology and modelled soil properties.

    Both eSPADE and SEED enable soil and land data to be viewed on a map. SEED focuses more on the holistic approach by enabling you to add other environmental layers such as mining boundaries, vegetation or water monitoring points. SEED also provides access to metadata and data quality statements for layers.

    eSPADE provides greater functions and allows you to drill down into soil points or maps to access detailed information such as reports and images. You can navigate to a specific location, then search and select multiple objects and access detailed information about them. You can also export spatial information for use in other applications such as Google Earth™ and GIS software.

    eSPADE is a free Internet information system and works on desktop computers, laptops and mobile devices such as smartphones and tablets and uses a Google maps-based platform familiar to most users. It has over 42,000 soil profile descriptions and approximately 4,000 soil landscape descriptions. This includes the maps and descriptions from the Soil Landscape Mapping program. eSPADE also includes the base maps underpinning Biophysical Strategic Agricultural Land (BSAL).

    For more information on eSPADE visit: https://www.environment.nsw.gov.au/topics/land-and-soil/soil-data/espade

  15. e

    GIS Shapefile - Crime Risk Database, MSA

    • portal.edirepository.org
    zip
    Updated Dec 31, 2009
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jarlath O'Neil-Dunne (2009). GIS Shapefile - Crime Risk Database, MSA [Dataset]. http://doi.org/10.6073/pasta/46369b3e4f41b0a4ef2c8ef9a116e531
    Explore at:
    zip(3235 kilobyte)Available download formats
    Dataset updated
    Dec 31, 2009
    Dataset provided by
    EDI
    Authors
    Jarlath O'Neil-Dunne
    Time period covered
    Jan 1, 2004 - Nov 17, 2011
    Area covered
    Description

    Crime data assembled by census block group for the MSA from the Applied Geographic Solutions' (AGS) 1999 and 2005 'CrimeRisk' databases distributed by the Tetrad Computer Applications Inc. CrimeRisk is the result of an extensive analysis of FBI crime statistics. Based on detailed modeling of the relationships between crime and demographics, CrimeRisk provides an accurate view of the relative risk of specific crime types at the block group level. Data from 1990 - 1996,1999, and 2004-2005 were used to compute the attributes, please refer to the 'Supplemental Information' section of the metadata for more details. Attributes are available for two categories of crimes, personal crimes and property crimes, along with total and personal crime indices. Attributes for personal crimes include murder, rape, robbery, and assault. Attributes for property crimes include burglary, larceny, and mother vehicle theft. 12 block groups have no attribute information. CrimeRisk is a block group and higher level geographic database consisting of a series of standardized indexes for a range of serious crimes against both persons and property. It is derived from an extensive analysis of several years of crime reports from the vast majority of law enforcement jurisdictions nationwide. The crimes included in the database are the "Part I" crimes and include murder, rape, robbery, assault, burglary, theft, and motor vehicle theft. These categories are the primary reporting categories used by the FBI in its Uniform Crime Report (UCR), with the exception of Arson, for which data is very inconsistently reported at the jurisdictional level. Part II crimes are not reported in the detail databases and are generally available only for selected areas or at high levels of geography. In accordance with the reporting procedures using in the UCR reports, aggregate indexes have been prepared for personal and property crimes separately, as well as a total index. While this provides a useful measure of the relative "overall" crime rate in an area, it must be recognized that these are unweighted indexes, in that a murder is weighted no more heavily than a purse snatching in the computation. For this reason, caution is advised when using any of the aggregate index values. The block group boundaries used in the dataset come from TeleAtlas's (formerly GDT) Dynamap data, and are consistent with all other block group boundaries in the BES geodatabase.

       This is part of a collection of 221 Baltimore Ecosystem Study metadata records that point to a geodatabase.
    
    
       The geodatabase is available online and is considerably large. Upon request, and under certain arrangements, it can be shipped on media, such as a usb hard drive.
    
    
       The geodatabase is roughly 51.4 Gb in size, consisting of 4,914 files in 160 folders.
    
    
       Although this metadata record and the others like it are not rich with attributes, it is nonetheless made available because the data that it represents could be indeed useful.
    
    
       This is part of a collection of 221 Baltimore Ecosystem Study metadata records that point to a geodatabase.
    
    
       The geodatabase is available online and is considerably large. Upon request, and under certain arrangements, it can be shipped on media, such as a usb hard drive.
    
    
       The geodatabase is roughly 51.4 Gb in size, consisting of 4,914 files in 160 folders.
    
    
       Although this metadata record and the others like it are not rich with attributes, it is nonetheless made available because the data that it represents could be indeed useful.
    
  16. a

    Elevation Certificate - Public App

    • city-of-friendswood-mapping-home-page-fwd.hub.arcgis.com
    Updated Sep 16, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Friendswood - GIS (2024). Elevation Certificate - Public App [Dataset]. https://city-of-friendswood-mapping-home-page-fwd.hub.arcgis.com/datasets/elevation-certificate-public-app
    Explore at:
    Dataset updated
    Sep 16, 2024
    Dataset authored and provided by
    City of Friendswood - GIS
    Description

    A community's permit file must have an official record that shows new buildings and substantial improvements in all identified Special Flood Hazard Areas (SFHAs)are properly elevated. This elevation information is needed to show compliance with the floodplain management ordinance. FEMA encourages communities to use the Elevation Certificate developed by FEMA to fulfill this requirement since it also can be used by the property owner to obtain flood insurance. Communities participating in the Community Rating System (CRS) are required to use the FEMA Online Elevation Certificate, FEMA Form FF-206-FY-22-152 (formerly 086-0-33).

  17. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
ckan.americaview.org (2021). Open-Source GIScience Online Course [Dataset]. https://ckan.americaview.org/dataset/open-source-giscience-online-course
Organization logo

Open-Source GIScience Online Course

Explore at:
Dataset updated
Nov 2, 2021
Dataset provided by
CKANhttps://ckan.org/
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

In this course, you will explore a variety of open-source technologies for working with geosptial data, performing spatial analysis, and undertaking general data science. The first component of the class focuses on the use of QGIS and associated technologies (GDAL, PROJ, GRASS, SAGA, and Orfeo Toolbox). The second component of the class introduces Python and associated open-source libraries and modules (NumPy, Pandas, Matplotlib, Seaborn, GeoPandas, Rasterio, WhiteboxTools, and Scikit-Learn) used by geospatial scientists and data scientists. We also provide an introduction to Structured Query Language (SQL) for performing table and spatial queries. This course is designed for individuals that have a background in GIS, such as working in the ArcGIS environment, but no prior experience using open-source software and/or coding. You will be asked to work through a series of lecture modules and videos broken into several topic areas, as outlined below. Fourteen assignments and the required data have been provided as hands-on opportunites to work with data and the discussed technologies and methods. If you have any questions or suggestions, feel free to contact us. We hope to continue to update and improve this course. This course was produced by West Virginia View (http://www.wvview.org/) with support from AmericaView (https://americaview.org/). This material is based upon work supported by the U.S. Geological Survey under Grant/Cooperative Agreement No. G18AP00077. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. Geological Survey. Mention of trade names or commercial products does not constitute their endorsement by the U.S. Geological Survey. After completing this course you will be able to: apply QGIS to visualize, query, and analyze vector and raster spatial data. use available resources to further expand your knowledge of open-source technologies. describe and use a variety of open data formats. code in Python at an intermediate-level. read, summarize, visualize, and analyze data using open Python libraries. create spatial predictive models using Python and associated libraries. use SQL to perform table and spatial queries at an intermediate-level.

Search
Clear search
Close search
Google apps
Main menu