Web map displaying Wisconsin DNR-produced Digital Elevation Model (DEM) and Hillshade image services, along with their index layer, in formats that are clickable and can be symbolized and filtered. This map can also be used as a starting point to create a new map. To open the web map from DNR's GIS Open Data Portal, click the View Metadata: link to the right of the description, then click Open in Map Viewer.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This data was collected by the Geological Survey Ireland, the Department of Culture, Heritage and the Gaeltacht, the Discovery Programme, the Heritage Council, Transport Infrastructure Ireland, New York University, the Office of Public Works and Westmeath County Council. All data formats are provided as GeoTIFF rasters but are at different resolutions. Data resolution varies depending on survey requirements. Resolutions for each organisation are as follows: GSI – 1m DCHG/DP/HC - 0.13m, 0.14m, 1m NY – 1m TII – 2m OPW – 2m WMCC - 0.25m Both a DTM and DSM are raster data. Raster data is another name for gridded data. Raster data stores information in pixels (grid cells). Each raster grid makes up a matrix of cells (or pixels) organised into rows and columns. The grid cell size varies depending on the organisation that collected it. GSI data has a grid cell size of 1 meter by 1 meter. This means that each cell (pixel) represents an area of 1 meter squared.
Detroit Street View (DSV) is an urban remote sensing program run by the Enterprise Geographic Information Systems (EGIS) Team within the Department of Innovation and Technology at the City of Detroit. The mission of Detroit Street View is ‘To continuously observe and document Detroit’s changing physical environment through remote sensing, resulting in freely available foundational data that empowers effective city operations, informed decision making, awareness, and innovation.’ LiDAR (as well as panoramic imagery) is collected using a vehicle-mounted mobile mapping system.
Due to variations in processing, index lines are not currently available for all existing LiDAR datasets, including all data collected before September 2020. Index lines represent the approximate path of the vehicle within the time extent of the given LiDAR file. The actual geographic extent of the LiDAR point cloud varies dependent on line-of-sight.
Compressed (LAZ format) point cloud files may be requested by emailing gis@detroitmi.gov with a description of the desired geographic area, any specific dates/file names, and an explanation of interest and/or intended use. Requests will be filled at the discretion and availability of the Enterprise GIS Team. Deliverable file size limitations may apply and requestors may be asked to provide their own online location or physical media for transfer.
LiDAR was collected using an uncalibrated Trimble MX2 mobile mapping system. The data is not quality controlled, and no accuracy assessment is provided or implied. Results are known to vary significantly. Users should exercise caution and conduct their own comprehensive suitability assessments before requesting and applying this data.
Sample Dataset: https://detroitmi.maps.arcgis.com/home/item.html?id=69853441d944442f9e79199b57f26fe3
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Lidar point cloud data with classifications – unclassified (1), ground (2), low vegetation (3), medium vegetation (4), high vegetation (5), buildings (6), low point - noise (7), reserved – model keypoint (8), high noise (18).
Statewide 2016 Lidar points colorized with 2018 NAIP imagery as a scene created by Esri using ArcGIS Pro for the entire State of Connecticut. This service provides the colorized Lidar point in interactive 3D for visualization, interaction of the ability to make measurements without downloading.Lidar is referenced at https://cteco.uconn.edu/data/lidar/ and can be downloaded at https://cteco.uconn.edu/data/download/flight2016/. Metadata: https://cteco.uconn.edu/data/flight2016/info.htm#metadata. The Connecticut 2016 Lidar was captured between March 11, 2016 and April 16, 2016. Is covers 5,240 sq miles and is divided into 23, 381 tiles. It was acquired by the Captiol Region Council of Governments with funding from multiple state agencies. It was flown and processed by Sanborn. The delivery included classified point clouds and 1 meter QL2 DEMs. The 2016 Lidar is published on the Connecticut Environmental Conditions Online (CT ECO) website. CT ECO is the collaborative work of the Connecticut Department of Energy and Environmental Protection (DEEP) and the University of Connecticut Center for Land Use Education and Research (CLEAR) to share environmental and natural resource information with the general public. CT ECO's mission is to encourage, support, and promote informed land use and development decisions in Connecticut by providing local, state and federal agencies, and the public with convenient access to the most up-to-date and complete natural resource information available statewide.Process used:Extract Building Footprints from Lidar1. Prepare Lidar - Download 2016 Lidar from CT ECO- Create LAS Dataset2. Extract Building Footprints from LidarUse the LAS Dataset in the Classify Las Building Tool in ArcGIS Pro 2.4.Colorize LidarColorizing the Lidar points means that each point in the point cloud is given a color based on the imagery color value at that exact location.1. Prepare Imagery- Acquire 2018 NAIP tif tiles from UConn (originally from USDA NRCS).- Create mosaic dataset of the NAIP imagery.2. Prepare and Analyze Lidar Points- Change the coordinate system of each of the lidar tiles to the Projected Coordinate System CT NAD 83 (2011) Feet (EPSG 6434). This is because the downloaded tiles come in to ArcGIS as a Custom Projection which cannot be published as a Point Cloud Scene Layer Package.- Convert Lidar to zlas format and rearrange. - Create LAS Datasets of the lidar tiles.- Colorize Lidar using the Colorize LAS tool in ArcGIS Pro. - Create a new LAS dataset with a division of Eastern half and Western half due to size limitation of 500GB per scene layer package. - Create scene layer packages (.slpk) using Create Cloud Point Scene Layer Package. - Load package to ArcGIS Online using Share Package. - Publish on ArcGIS.com and delete the scene layer package to save storage cost.Additional layers added:Visit https://cteco.uconn.edu/projects/lidar3D/layers.htm for a complete list and links. 3D Buildings and Trees extracted by Esri from the lidarShaded Relief from CTECOImpervious Surface 2012 from CT ECONAIP Imagery 2018 from CTECOContours (2016) from CTECOLidar 2016 Download Link derived from https://www.cteco.uconn.edu/data/download/flight2016/index.htm
This web map allows for the download of KyFromAbove LiDAR data by 5k tile in LAZ format. This point cloud data was acquired during the typical leaf-off acquisition period (winter-spring) over a period of several years and may be provided as LAS version 1.1, 1.2, or 1.4 depending upon the acquisition period. Users will need to download the LAZIP.exe in order to decompress each tile. LiDAR data specifications adopted by the KyFromAbove Technical Advisory Committee can be found here. This is the source data used to create the Commonwealth's 5 foot digital elevation model (DEM) and its associated derivatives. More information regarding this data resource can be found on the KyGeoPortal.
This shaded relief image was generated from the lidar-based bare-earth digital elevation model (DEM). A shaded relief image provides an illustration of variations in elevation using artificial shadows. Based on a specified position of the sun, areas that would be in sunlight are highlighted and areas that would be in shadow are shaded. In this instance, the position of the sun was assumed to be 45 degrees above the northwest horizon.The shaded relief image shows areas that are not in direct sunlight as shadowed. It does not show shadows that would be cast by topographic features onto the surrounding surface.Using ERDAS IMAGINE, a 3X3 neighborhood around each pixel in the DEM was analyzed, and a comparison was made between the sun's position and the angle that each pixel faces. The pixel was then assigned a value between -1 and +1 to represent the amount of light reflected. Negative numbers and zero values represent shadowed areas, and positive numbers represent sunny areas. In ArcGIS Desktop 10.7.1, the image was converted to a JPEG 2000 format with values from 0 (black) to 255 (white).See the MassGIS datalayer page to download the data as a JPEG 2000 image file.View this service in the Massachusetts Elevation Finder.MassGIS has also published a Lidar Shaded Relief tile service (cache) hosted in ArcGIS Online.
The LIDAR Composite DTM (Digital Terrain Model) is a raster elevation model covering ~99% of England at 1m spatial resolution.The DTM (Digital Terrain Model) is produced from the last or only laser pulse returned to the sensor. We remove surface objects from the Digital Surface Model (DSM), using bespoke algorithms and manual editing of the data, to produce a terrain model of just the surface. Produced by the Environment Agency in 2022, the DTM is derived from a combination of our Time Stamped archive and National LIDAR Programme surveys, which have been merged and re-sampled to give the best possible coverage. Where repeat surveys have been undertaken the newest, best resolution data is used. Where data was resampled a bilinear interpolation was used before being merged. The 2022 LIDAR Composite contains surveys undertaken between 6th June 2000 and 2nd April 2022. Please refer to the metadata index catalgoues which show for any location which survey was used in the production of the LIDAR composite.DEFRA Data Services Platform Metadata URLDefra Network WMS server provided by the Environment Agency
Lidar (light detection and ranging) is a technology that can measure the 3-dimentional location of objects, including the solid earth surface. The data consists of a point cloud of the positions of solid objects that reflected a laser pulse, typically from an airborne platform. In addition to the position, each point may also be attributed by the type of object it reflected from, the intensity of the reflection, and other system dependent metadata. The NOAA Coastal Lidar Data is a collection of lidar projects from many different sources and agencies, geographically focused on the coastal areas of the United States of America. The data is provided in Entwine Point Tiles (EPT; https://entwine.io) format, which is a lossless streamable octree of the point cloud, and in LAZ format. Datasets are maintained in their original projects and care should be taken when merging projects. The coordinate reference system for the data is The NAD83(2011) UTM zone appropriate for the center of each data set for EPT and geographic coordinates for LAZ. Vertically they are in the orthometric datum appropriate for that area (for example, NAVD88 in the mainland United States, PRVD02 in Puerto Rico, or GUVD03 in Guam). The geoid model used is reflected in the data set resource name.
The data are organized under directories entwine and laz for the EPT and LAZ versions respectively. Some datasets are not in EPT format, either because the dataset is already in EPT on the USGS public lidar site, they failed to build or their content does not work well in EPT format. Topobathy lidar datasets using the topobathy domain profile do not translate well to EPT format.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is a footprint of the current available LiDAR data over for the State of Queensland compiled from numerous LiDAR projects captured on or after the year 2008.
https://www.ontario.ca/page/open-government-licence-ontariohttps://www.ontario.ca/page/open-government-licence-ontario
Zoom in on the map above and click your area of interest or use the Tile Index linked below to determine which package(s) you require for download.The DSM data is available in the form of 1-km by 1-km non-overlapping tiles grouped into packages for download.This dataset is a compilation of lidar data from multiple acquisition projects, as such specifications, parameters and sensors may vary by project. See the detailed User Guide linked below for additional information. You can monitor the availability and status of lidar projects on the Ontario Lidar Coverage map on the Ontario Elevation Mapping Program hub page. Now also available through a web service which exposes the data for visualization, geoprocessing and limited download. The service is best accessed through the ArcGIS REST API, either directly or by setting up an ArcGIS server connectionusing the REST endpoint URL. The service draws using the Web Mercator projection. For more information on what functionality is available and how to work with the service, read the Ontario Web Raster Services User Guide. If you have questions about how to use the service, email Geospatial Ontario (GEO) at geospatial@ontario.ca. Service Endpointshttps://ws.geoservices.lrc.gov.on.ca/arcgis5/rest/services/Elevation/Ontario_DSM_LidarDerived/ImageServer https://intra.ws.geoservices.lrc.gov.on.ca/arcgis5/rest/services/Elevation/Ontario_DSM_LidarDerived/ImageServer (Government of Ontario Internal Users)Additional DocumentationOntario DSM (Lidar-Derived) - User Guide (DOCX) OMAFRA Lidar 2016-2018 - Cochrane - Additional Contractor Metadata (PDF)OMAFRA Lidar 2016-2018 - Peterborough - Additional Contractor Metadata (PDF)OMAFRA Lidar 2016-2018 - Lake Erie - Additional Contractor Metadata (PDF)CLOCA Lidar 2018 - Additional Contractor Metadata (PDF)South Nation Lidar 2018-19 - Additional Contractor Metadata (PDF)OMAFRA Lidar 2022 - Lake Huron - Additional Contractor Metadata (PDF)OMAFRA Lidar 2022 - Lake Simcoe - Additional Contractor Metadata (PDF)Huron-Georgian Bay Lidar 2022-23 - Additional Contractor Metadata (Word)Kawartha Lakes Lidar 2023 - Additional Contractor Metadata (Word)Sault Ste Marie Lidar 2023-24 - Additional Contractor Metadata (Word)Thunder Bay Lidar 2023-24 - Additional Contractor Metadata (Word)Timmins Lidar 2024 - Additional Contractor Metadata (Word) Ontario DSM (Lidar-Derived) - Tile Index (SHP)Ontario Lidar Project Extents (SHP)Product PackagesDownload links for the Ontario DSM (Lidar-Derived) (Word)Projects:LEAP 2009GTA 2014-18OMAFRA 2016-18CLOCA 2018South Nation CA 2018-19Muskoka 2018-23York-Lake Simcoe 2019Ottawa River 2019-20Ottawa-Gatineau 2019-20Lake Nipissing 2020Hamilton-Niagara 2021Huron Shores 2021Eastern Ontario 2021-22OMAFRA Lake Huron 2022OMAFRA Lake Simcoe 2022Belleville 2022Digital Elevation Data to Support Flood Mapping 2022-26Huron-Georgian Bay 2022-23Kawartha Lakes 2023Sault Ste Marie 2023-24Sudbury 2023-24Thunder Bay 2023-24Timmins 2024Cataraqui 2024Greater Toronto Area Lidar 2023StatusOn going: Data is continually being updated Maintenance and Update FrequencyAs needed: Data is updated as deemed necessary ContactOntario Ministry of Natural Resources - Geospatial Ontario, geospatial@ontario.ca
Note: The shapefile download may fail when downloading the entire dataset. If this happens, download the file geodatabase instead.Feature class contains 2-foot interval contours of the area surrounding and including the Eugene urban growth boundary. Contours have been derived by LCOG from 2009 LiDAR data. The LiDAR data was prepared by Watershed Science for DOGAMI. General processing includes (1) joining Junction City, Coburg, Eugene East and Eugene West bare-earth quads into one mosaic, (2) smoothing the mosaic with a focal mean (3 x 3 rectangle), (3) contouring the smoothed bare-earth mosaic, and (4) quality-checking along the edges of the quads to insure matching contours. (DISCLAIMER: The maps and data available for access from the City of Eugene are provided "as is" without warranty or any representation of accuracy, timeliness or completeness. The burden for determining accuracy, completeness, timeliness, merchantability and fitness for or the appropriateness for use rests solely on the user accessing this information. The City of Eugene makes no warranties, expressed or implied, as to the use of the maps and data available for access at this website. There are no implied warranties of merchantability or fitness for a particular purpose. The user acknowledges and accepts all inherent limitations of the maps and data, including the fact that the maps and data are dynamic and in a constant state of maintenance, correction and revision. Any maps and associated data for access do not represent a survey. No liability is assumed for the accuracy of the data delineated on any map, either expressed or implied.)
https://www.ontario.ca/page/open-government-licence-ontariohttps://www.ontario.ca/page/open-government-licence-ontario
Zoom in on the map above and click your area of interest or use the Tile Index linked below to determine which package(s) you require for download.The DTM data is available in the form of 1-km by 1-km non-overlapping tiles grouped into packages for download.This dataset is a compilation of lidar data from multiple acquisition projects, as such specifications, parameters and sensors may vary by project. See the detailed User Guide linked below for additional information. You can monitor the availability and status of lidar projects on the Ontario Lidar Coverage map on the Ontario Elevation Mapping Program hub page. Now also available through a web service which exposes the data for visualization, geoprocessing and limited download. The service is best accessed through the ArcGIS REST API, either directly or by setting up an ArcGIS server connection using the REST endpoint URL. The service draws using the Web Mercator projection. For more information on what functionality is available and how to work with the service, read the Ontario Web Raster Services User Guide. If you have questions about how to use the service, email Geospatial Ontario (GEO) at geospatial@ontario.ca.Service Endpointshttps://ws.geoservices.lrc.gov.on.ca/arcgis5/rest/services/Elevation/Ontario_DTM_LidarDerived/ImageServer https://intra.ws.geoservices.lrc.gov.on.ca/arcgis5/rest/services/Elevation/Ontario_DTM_LidarDerived/ImageServer (Government of Ontario Internal Users)Additional Documentation Ontario DTM (Lidar-Derived) - User Guide (DOCX) OMAFRA Lidar 2016-2018 - Cochrane - Additional Contractor Metadata (PDF)OMAFRA Lidar 2016-2018 - Peterborough - Additional Contractor Metadata (PDF)OMAFRA Lidar 2016-2018 - Lake Erie - Additional Contractor Metadata (PDF)CLOCA Lidar 2018 - Additional Contractor Metadata (PDF)South Nation Lidar 2018-19 - Additional Contractor Metadata (PDF)OMAFRA Lidar 2022 - Lake Huron - Additional Contractor Metadata (PDF)OMAFRA Lidar 2022 - Lake Simcoe - Additional Contractor Metadata (PDF)Huron-Georgian Lidar 2022-23 - Additional Contractor Metadata (Word)Kawartha Lakes Lidar 2023 - Additional Contractor Metadata (Word)Sault Ste Marie Lidar 2023-24 - Additional Contractor Metadata (Word)Thunder Bay Lidar 2023-24 - Additional Contractor Metadata (Word)Timmins Lidar 2024 - Additional Contractor Metadata (Word) Ontario DTM (Lidar-Derived) - Tile Index (SHP) Ontario Lidar Project Extents (SHP)OMAFRA Lidar DTM 2016-2018 - Cochrane - Breaklines (SHP)OMAFRA Lidar DTM 2016-2018 - Peterborough - Breaklines (SHP)OMAFRA Lidar DTM 2016-2018 - Lake Erie - Breaklines (SHP)CLOCA Lidar DTM 2018 - Breaklines (SHP)South Nation Lidar DTM 2018-19 - Breaklines (SHP)Ottawa-Gatineau Lidar DTM 2019-20 - Breaklines (SHP)OMAFRA Lidar DTM 2022 - Lake Huron - Breaklines (SHP)OMAFRA Lidar DTM 2022 - Lake Simcoe - Breaklines (SHP)Eastern Ontario Lidar DTM 2021-22 - Breaklines (SHP)Muskoka Lidar DTM 2018 - Breaklines CGVD2013 (SHP) / CGVD28 (SHP)Muskoka Lidar DTM 2021 - Breaklines CGVD2013 (SHP) / CGVD28 (SHP)Muskoka Lidar DTM 2023 - Breaklines CGVD2013 (SHP) / CGVD28 (SHP)DEDSFM Huron-Georgian Bay 2022-23 - Breaklines (SHP)DEDSFM Kawartha Lakes 2023 - Breaklines (SHP)DEDSFM Sault Ste Marie 2023-24- UTM16 - Breaklines (SHP)DEDSFM Sault Ste Marie 2023-24- UTM17 - Breaklines (SHP)DEDSFM Sudbury 2023-24 - Breaklines (SHP)DEDSFM Thunder Bay 2023-24 - Breaklines (SHP)DEDSFM Timmins 2024 - Breaklines (SHP)Product PackagesDownload links for the Ontario DTM (Lidar-Derived) (Word)Projects:LEAP 2009GTA 2014-18OMAFRA 2016-18CLOCA 2018South Nation CA 2018-19Muskoka 2018-23York-Lake Simcoe 2019Ottawa River 2019-20Ottawa-Gatineau 2019-20Lake Nipissing 2020Hamilton-Niagara 2021Huron Shores 2021Eastern Ontario 2021-22OMAFRA Lake Huron 2022OMAFRA Lake Simcoe 2022Belleville 2022Digital Elevation Data to Support Flood Mapping 2022-26Huron-Georgian Bay 2022-23Kawartha Lakes 2023Sault Ste Marie 2023-24Sudbury 2023-24Thunder Bay 2023-24Timmins 2024Cataraqui 2024Greater Toronto Area Lidar 2023StatusOn going: Data is continually being updatedMaintenance and Update FrequencyAs needed: Data is updated as deemed necessaryContactOntario Ministry of Natural Resources - Geospatial Ontario, geospatial@ontario.ca
The goal of the USGS 3D Elevation Program (3DEP) is to collect elevation data in the form of light detection and ranging (LiDAR) data over the conterminous United States, Hawaii, and the U.S. territories, with data acquired over an 8-year period. This dataset provides two realizations of the 3DEP point cloud data. The first resource is a public access organization provided in Entwine Point Tiles format, which a lossless, full-density, streamable octree based on LASzip (LAZ) encoding. The second resource is a Requester Pays of the original, Raw LAZ (Compressed LAS) 1.4 3DEP format, and more complete in coverage, as sources with incomplete or missing CRS, will not have an ETP tile generated. Resource names in both buckets correspond to the USGS project names.
This is compilation of Maine DEMs generated from lidar as a hillshade for MGS web applications. Not all view scales have been created.Users looking for lidar data and/or data derivatives should contact, in order:United States Interagency Elevation Inventory (USIEI): https://coast.noaa.gov/inventory/Maine GeoLibrary Elevation Discovery and Download: https://www1.maine.gov/geolib/ediscovery/site/landing.htmlNational Map (USGS) ftp: ftp://rockyftp.cr.usgs.gov/vdelivery/Datasets/Staged/
https://www.ign.es/resources/licencia/Condiciones_licenciaUso_IGN.pdfhttps://www.ign.es/resources/licencia/Condiciones_licenciaUso_IGN.pdf
Digital Surface Model (DSM) has three layers. Two layers come from the rasterisation of the building and vegetation classes among all the points of the LiDAR file .las; and the third layer is the hydrography of the Geographical Reference Information. By applying a suitable colour for each layer, the final product is visualised. ECW file format. ETRS89 reference geodetic system (in the Canary Islands REGCAN95, compatible with ETRS89) and EPSG projection: 3857 throughout the national territory
This layer shows LiDAR Data in Hong Kong. It is a set of data made available by the Civil Engineering and Development Department under the Government of Hong Kong Special Administrative Region (the "Government") at https://portal.csdi.gov.hk ("CSDI Portal"). The source data has been processed and converted into Esri File Geodatabase format and then uploaded to Esri’s ArcGIS Online platform for sharing and reference purpose. The objectives are to facilitate our Hong Kong ArcGIS Online users to use the data in a spatial ready format and save their data conversion effort.For details about the data, source format and terms of conditions of usage, please refer to the website of CSDI Portal at https://portal.csdi.gov.hk.
Geographic Extent: SANDY_Restoration_DE_MD_QL2 Area of Interest covers approximately 3.096 square miles. Lot #5 contains the full project area Dataset Description: The SANDY_Restoration_DE_MD_QL2 project called for the Planning, Acquisition, processing and derivative products of LIDAR data to be collected at a nominal pulse spacing (NPS) of 0.7 meters. Project specifications are based on the U.S. Geological Survey National Geospatial Program Base LIDAR Specification, Version 1. The data was developed based on a horizontal projection/datum of State Plane Zone Maryland (1900), NAD83, feet and vertical datum of NAVD1988 (GEOID12A), feet. LiDAR data was delivered in RAW flight line swath format, processed to create Classified LAS 1.2 Files formatted to 3842 individual 1500m x 1500m tiles, and corresponding Intensity Images and Bare Earth DEMs tiled to the same 1500m x 1500m schema, and Breaklines in ESRI shapefile format. Ground Conditions: LiDAR was collected in Winter 2013 / Spring 2014, while no snow was on the ground and rivers were at or below normal levels. In order to post process the LiDAR data to meet task order specifications, Quantum Spatial established a total of 78 QA control points and 99 Land Cover control points that were used to calibrate the LIDAR to known ground locations established throughout the SANDY_Restoration_DE_MD_QL2 project area.This is a MD iMAP hosted service. Find more information at https://imap.maryland.gov.Image Service Link: https://mdgeodata.md.gov/lidar/rest/services/Caroline/MD_caroline_dem_ft/ImageServer
MD/PA Sandy Supplemental Lidar Data Acquisition and Processing Production Task USGS Contract No. G10PC00057 Task Order No. G14PD00397 Woolpert Order No. 74333 CONTRACTOR: Woolpert, Inc. This task is for a high resolution data set of lidar covering approximately 1,845 square miles. The lidar data was acquired and processed under the requirements identified in this task order. Lidar data is a remotely sensed high resolution elevation data collected by an airborne platform. The lidar sensor uses a combination of laser range finding, GPS positioning, and inertial measurement technologies. The lidar systems collect data point clouds that are used to produce highly detailed Digital Elevation Models (DEMs) of the earth's terrain, man-made structures, and vegetation. The task required the LiDAR data to be collected at a nominal pulse spacing (NPS) of 0.7 meters. The final products include classified LAS, one (1) meter pixel raster DEMs of the bare-earth surface in ERDAS IMG Format, and 8-bit intensity images. Each LAS file contains lidar point information, which has been calibrated, controlled, and classified. Additional deliverables include hydrologic breakline data, control data, tile index, lidar processing and survey reports in PDF format, FGDC metadata files for each data deliverable in .xml format, and LAS swath data. Ground conditions: Water at normal levels; no unusual inundation; no snow; leaf off. Coastal tiles 18SVH065720 and 8SVH095690 contain no lidar points as they exist completely in water. A DEM IMG was generated for these two tiles as the digitized hydro breakline assumed the data extent in the area. As such only 2568 LAS and Intensity files will be delivered along with 2570 DEM IMG's.This is a MD iMAP hosted service. Find more information at https://imap.maryland.gov.Image Service Link: https://mdgeodata.md.gov/lidar/rest/services/Talbot/MD_talbot_slope_m/ImageServer
This layer shows the Digital Terrain Model of Hong Kong from 2020 LiDAR Survey. It is a set of data made available by the Civil Engineering and Development Department under the Government of Hong Kong Special Administrative Region (the "Government") at https://GEODATA.GOV.HK/ ("Hong Kong Geodata Store"). The source data is in GML format and has been processed and converted into Esri File Geodatabase format and uploaded to Esri's ArcGIS Online platform for sharing and reference purpose. The objectives are to facilitate our Hong Kong ArcGIS Online users to use the data in a spatial ready format and save their data conversion effort.For details about the data, source format and terms of conditions of usage, please refer to the website of Hong Kong Geodata Store at https://geodata.gov.hk/.
Web map displaying Wisconsin DNR-produced Digital Elevation Model (DEM) and Hillshade image services, along with their index layer, in formats that are clickable and can be symbolized and filtered. This map can also be used as a starting point to create a new map. To open the web map from DNR's GIS Open Data Portal, click the View Metadata: link to the right of the description, then click Open in Map Viewer.