https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset provides comprehensive information about various Data Science and Analytics master's programs offered in the United States. It includes details such as the program name, university name, annual tuition fees, program duration, location of the university, and additional information about the programs.
Column Descriptions:
Subject Name:
The name or field of study of the master's program, such as Data Science, Data Analytics, or Applied Biostatistics.
University Name:
The name of the university offering the master's program.
Per Year Fees:
The tuition fees for the program, usually given in euros per year. For some programs, the fees may be listed as "full" or "full-time," indicating a lump sum for the entire program or for full-time enrollment, respectively.
About Program:
A brief description or overview of the master's program, providing insights into its curriculum, focus areas, and any unique features.
Program Duration:
The duration of the master's program, typically expressed in years or months.
University Location:
The location of the university where the program is offered, including the city and state.
Program Name:
The official name of the master's program, often indicating its degree type (e.g., M.Sc. for Master of Science) and format (e.g., full-time, part-time, online).
In 2023, ** percent of prospective graduate business students in the United States were interested in hybrid programs, an increase from ** percent in 2019. However, the overall preference in 2023 was for in-person business school programs, at ** percent.
There are errors in this release due to a coding error. Please do not use figures reported in this publication for these countries:
We have correct data in the graduate outcomes (LEO): 2018 to 2019 publication and corrected the outcomes and earnings data for all previously reported tax years and graduating cohorts.
The longitudinal education outcomes (LEO) data includes:
This experimental release uses LEO data to look at employment and earnings outcomes of higher education graduates 1, 2, 5 and 10 years after graduation in the tax years 2014 to 2015 and 2015 to 2016.
The outcomes update previously published figures by including data for the 2015 to 2016 tax year. This publication also includes outcomes for EU and overseas students for the first time and extends the coverage to include those that studied first degrees in further education colleges.
Higher education statistics team (LEO)
Matthew Bridge
Department for Education
2 St. Paul's Place
125 Norfolk Street
Sheffield
S1 2FJ
Email mailto:he.leo@education.gov.uk">he.leo@education.gov.uk
Phone 07384 456648
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The data relates to the paper that analyses the determinants or factors that best explain student research skills and success in the honours research report module during the COVID-19 pandemic in 2021. The data used have been gathered through an online survey created on the Qualtrics software package. The research questions were developed from demographic factors and subject knowledge including assignments to supervisor influence and other factors in terms of experience or belonging that played a role (see anonymous link at https://unisa.qualtrics.com/jfe/form/SV_86OZZOdyA5sBurY. An SMS was sent to all students of the 2021 module group to make them aware of the survey. They were under no obligation to complete it and all information was regarded as anonymous. We received 39 responses. The raw data from the survey was processed through the SPSS statistical, software package. The data file contains the demographics, frequencies, descriptives, and open questions processed.The study reported in this paper employed the mixed methods approach comprising a quantitative and qualitative analysis. The quantitative and econometric analysis of the dependent variable, namely, the final marks for the research report and the independent variables that explain it. The results show significance in terms of the assignments and existing knowledge marks in terms of their bachelor's average mark. We extended the analysis to a qualitative and quantitative survey, which indicated that the mean statistical feedback was above average and therefore strongly agreed/agreed except for library use by the student. Students, therefore, need more guidance in terms of library use and the open questions showed a need for a research methods course in the future. Furthermore, supervision tends to be a significant determinant in all cases. It is also here where supervisors can use social media instruments such as WhatsApp and Facebook to inform students further. This study contributes as the first to investigate the preparation and research skills of students for master's and doctoral studies during the COVID-19 pandemic in an online environment.
According to a 2023 survey, ** percent of undergraduate students who were studying online in the United States were White, while ** percent were Black or African-American. In comparison, ** percent of graduate students studying online in the United States in that year were White, while ** percent were Black or African American.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This file set is the basis of a project in which Stephanie Pywell from The Open University Law School created and evaluated some online teaching materials – Fundamentals of Law (FoLs) – to fill a gap in the knowledge of graduate entrants to the Bachelor of Laws (LLB) programme. These students are granted exemption from the Level 1 law modules, from which they would normally acquire the basic knowledge of legal principles and methods that is essential to success in higher-level study. The materials consisted of 12 sessions of learning, each covering one key topic from a Level 1 law module.The dataset includes a Word document that consists of the text of a five-question, multiple-choice Moodle poll, together with the coding for each response option.The rest of the dataset consists of spreadsheets and outputs from SPSS and Excel showing the analyses that were conducted on the cleaned and anonymised data to ascertain students' use of, and views on, the teaching materials, and to explore any statistical association between students' studying of the materials and their academic success on Level 2 law modules, W202 and W203.Students were asked to complete the Moodle poll at the end of every session of study, of which there were 1,013. Only one answer from each of the 240 respondents was retained for Questions 3, 4 and 5, to avoid skewing the data. Some data are presented as percentages of the number of sessions studied; some are presented as percentages of the number of respondents, and some are presented as percentage of the number of respondents who meet specific criteria.Student identifiers, which have been removed to ensure anonymity, are as follows: Open University Computer User code (OUCU) and Personal Identifier (PI). These were used to collate the output from the Moodle poll with students' Level 2 module results.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The COVID-19 data sets and associated Jupyter Hub notebooks are support for a manuscript describing how data science was shown to be effective in developing a transdisciplinary team and the production of novel outputs in part due to the common learning process of all team members being part of an online professional data science and analytics master’s degree program. This online curriculum helped the team members to find a common process that allowed them learn in common (Kläy, Zimmermann, & Schneider, 2015), transdisciplinary learning a key component of transdisciplinary teamwork (Yeung, 2015). Our team's Jupyter Hub files with complete coding and data set explanations are uploaded to document this teamwork and the outputs of the team.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This deidentified Excel qualitative data set contains graduate outcomes and graduates' views on the skills they acquired while completing the Women's Health Minor (WHM) at the University of Western Australia (UWA) between 2018 and 2023. Data showed that this self-selected sample of graduates (N=38) had acquired new and diverse skills while completing the WHM.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The International STEM Graduate Student Survey assesses why international students are coming to the United States for their graduate studies, the challenges they have faced while studying in the US, their future career plans, and whether they wish to stay or leave the US upon graduation. According to the Survey of Earned Doctorates by the National Science Foundation and the National Center for Science and Engineering Statistics, international students accounted for over 40% of all US doctoral graduates in STEM in 2013. The factors that influence international students' decisions to study in the US and whether they will stay or leave are important to US economic competitiveness. We contacted graduate students (both domestic and international) in STEM disciplines from the top 10 universities ranked by the total number of enrolled international students. We estimate that we contacted approximately 15,990 students. Individuals were asked to taken an online survey regarding their background, reasons for studying in the US, and whether they plan to stay or leave the US upon graduation. We received a total of 2,322 completed surveys, giving us a response rate of 14.5%. 1,535 of the completed were from domestic students and 787 of which were from international students. Raw survey data are presented here.Survey participants were contacted via Qualtrics to participate in this survey. The Universe of this survey data set pertains to all graduate students (Master's and PhD) in STEM disciplines from the following universities: Columbia University, University of Illinois-Urbana Champaign, Michigan State University, Northeastern University, Purdue University, University of Southern California, Arizona State University, University of California at Los Angeles, New York University, University of Washington at Seattle. Data are broken into 2 subsets: one for international STEM graduate students and one for domestic STEM graduate students, please see respective files.
Between 2015 and 2024, the number of bachelor's students who graduated from online universities in Italy steadily increased. In 2015, less than ***** people obtained their bachelor's from an online university. After nine years, the number of students more than doubled, reaching ****** graduates. In Italy, bachelor's students represented the largest group of e-learning university students, ******* people.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Flipped classroom models encourage student autonomy and reverse the order of traditional classroom content such as lectures and assignments. Virtual learning environments are ideal for executing flipped classroom models to improve critical thinking skills. This paper provides health professions faculty with guidance on developing a virtual flipped classroom in online graduate nutrition courses between September 2021 and January 2022 at the School of Health Professions, Rutgers The State University of New Jersey. Examples of pre-class, live virtual face-to-face, and post-class activities are provided. Active learning, immediate feedback, and enhanced student engagement in a flipped classroom may result in a more thorough synthesis of information, resulting in increased critical thinking skills. This article describes how a flipped classroom model design in graduate online courses that incorporate virtual face-to-face class sessions in a virtual learning environment can be utilized to promote critical thinking skills. Health professions faculty who teach online can apply the examples discussed to their online courses.
IntroductionThe assessment of student outcomes is essential for monitoring the quality of graduate programs in healthcare sciences. As such, this study focused on developing a self-employed questionnaire that allowed for the evaluation of elements focused on career impact and levels of satisfaction regarding graduate program education. Following, this instrument was utilized in a cross-sectional study design with alumni that had obtained their degree (MSc or PhD) over a 25-year span (1995–2020) from a graduate program in dentistry located in Brazil.MethodsThe employed instrument comprised a total of 43 questions presenting a mix of both close and open-ended questions coupled with 5-point Likert scales. The questionnaire was hosted online and a total of 528 alumni were invited to participate through e-mail and social media outreach.Results376 alumni answered the questionnaire (71.2% response rate). The majority were female (69.9%), and with a MSc (58.5%). Levels of satisfaction towards the program as well the impact in career and life were higher in alumni that had obtained a PhD degree compared to MSc. After obtaining the degree, an increase in involvement in teaching/research positions (3.4% vs 21.5%, p < 001) and a decrease in unemployment (21.9% vs 2.1%, p < 001) were observed. The highest levels of impact were observed regarding the achievement of the professional goals as nearly 90% of the population agreed with this statement.ConclusionsThis study highlighted the creation and employment of an assessment tool that can be utilized to monitor the perceptions of student outcomes. Among the findings, a decrease in unemployment and a high degree of career impact and satisfaction were observed in the population of this study. Moving forward, it is essential that monitoring educational outcomes remains a priority worldwide.
https://www.factmr.com/privacy-policyhttps://www.factmr.com/privacy-policy
The global massive open online course (MOOC) market size is calculated to advance at a CAGR of 32% through 2034, which is set to increase its market value from US$ 13.2 billion in 2024 to US$ 212.7 billion by the end of 2034.
Report Attribute | Detail |
---|---|
MOOC Market Size (2024E) | US$ 13.2 Billion |
Projected Market Value (2034F) | US$ 212.7 Billion |
Global Market Growth Rate (2024 to 2034) | 32% CAGR |
China Market Value (2034F) | US$ 23.3 Billion |
Japan Market Growth Rate (2024 to 2034) | 32.6% CAGR |
North America Market Share (2024E) | 23.9% |
East Asia Market Value (2034F) | US$ 49.1 Billion |
Key Companies Profiled |
Alison; Coursera Inc; edX Inc; Federica.EU; FutureLearn; Instructure; Intellipaat; iverity; Jigsaw Academy; Kadenze. |
Country Wise Insights
Attribute | United States |
---|---|
Market Value (2024E) | US$ 1.4 Billion |
Growth Rate (2024 to 2034) | 32.5% CAGR |
Projected Value (2034F) | US$ 23.6 Billion |
Attribute | China |
---|---|
Market Value (2024E) | US$ 1.5 Billion |
Growth Rate (2024 to 2034) | 32% CAGR |
Projected Value (2034F) | US$ 23.3 Billion |
Category-wise Insights
Attribute | xMOOC |
---|---|
Segment Value (2024E) | US$ 9.3 Billion |
Growth Rate (2024 to 2034) | 30.8% CAGR |
Projected Value (2034F) | US$ 136.1 Billion |
Attribute | Degree & Master Programs |
---|---|
Segment Value (2024E) | US$ 6.4 Billion |
Growth Rate (2024 to 2034) | 30.2% CAGR |
Projected Value (2034F) | US$ 89.3 Billion |
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This dataset provides Census 2021 estimates for National Statistics Socio-economic Classification (NS-SeC) by sex in Northern Ireland. The estimates are as at census day, 21 March 2021.
The census collected information on the usually resident population of Northern Ireland on census day (21 March 2021). Initial contact letters or questionnaire packs were delivered to every household and communal establishment, and residents were asked to complete online or return the questionnaire with information as correct on census day. Special arrangements were made to enumerate special groups such as students, members of the Travellers Community, HM Forces personnel etc. The Census Coverage Survey (an independent doorstep survey) followed between 12 May and 29 June 2021 and was used to adjust the census counts for under-enumeration.
The quality assurance report can be found here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In this article, we explore the use of two published datasets for teaching a wide range of students about regression models, with a particular focus on interaction terms. The two datasets come from recent psychology studies on beliefs about poverty and welfare, and about the dynamics of groups projects. Both datasets (and their original research papers) are accessible to students, and because of their context, students can learn about data collection, measurement, and the use of statistics when studying complex social topics, while using the data to learn about regression analysis. We have used these data for a range of in-class activities, journal paper discussions, exams, and extended projects, at the undergraduate, master’s, and doctoral levels. Supplementary materials for this article are available online.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This resource contains the survey questions, compiled results, and code for Fisher's exact test, as associated with the following manuscript:
"Faculty Perspectives on a Collaborative, Multi-Institutional Online Hydrology Graduate Student Training Program" by Anne J. Jefferson, Steven P. Loheide, and Deanna H. McCay. Submitted to Frontiers in Water, in the research topic: “Innovations in Remote and Online Education by Hydrologic Scientists", May 2022
Abstract: The CUAHSI Virtual University is an interinstitutional graduate training framework that was developed to increase access to specialized hydrology courses for graduate students from participating institutions. The program was designed to capitalize on the benefits of collaborative teaching, allowing students to differentiate their learning and access subject matter experts at multiple institutions, while enrolled in a single course at their home institution, through a framework of reciprocity. Although the CUAHSI Virtual University was developed prior to the covid-19 pandemic, the resilience of its online education model to such disruptions to classroom teaching increases the urgency of understanding how effective such an approach is at achieving its goals and what challenges multi-institutional graduate training faces for sustainability and expansion within the water sciences or in other disciplines. To gain faculty perspectives on the program, we surveyed water science faculty who had served as instructors in the program, as well as water science faculty who had not participated and departmental chairs of participating instructors. Our data show widespread agreement across respondent types that the program is positive for students, diversifying their educational opportunities and increasing access to subject matter experts. Concerns and factors limiting faculty participation revolved around faculty workload and administrative barriers, including low enrollment at individual institutions. If these barriers can be surmounted, the CUAHSI Virtual University has the potential for wider participation within hydrology and adoption in other STEM disciplines.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
https://en.wikipedia.org/wiki/Public_domainhttps://en.wikipedia.org/wiki/Public_domain
The Colleges and Universities feature class/shapefile is composed of all Post Secondary Education facilities as defined by the Integrated Post Secondary Education System (IPEDS, http://nces.ed.gov/ipeds/), National Center for Education Statistics (NCES, https://nces.ed.gov/), US Department of Education for the 2018-2019 school year. Included are Doctoral/Research Universities, Masters Colleges and Universities, Baccalaureate Colleges, Associates Colleges, Theological seminaries, Medical Schools and other health care professions, Schools of engineering and technology, business and management, art, music, design, Law schools, Teachers colleges, Tribal colleges, and other specialized institutions. Overall, this data layer covers all 50 states, as well as Puerto Rico and other assorted U.S. territories. This feature class contains all MEDS/MEDS+ as approved by the National Geospatial-Intelligence Agency (NGA) Homeland Security Infrastructure Program (HSIP) Team. Complete field and attribute information is available in the ”Entities and Attributes” metadata section. Geographical coverage is depicted in the thumbnail above and detailed in the "Place Keyword" section of the metadata. This feature class does not have a relationship class but is related to Supplemental Colleges. Colleges and Universities that are not included in the NCES IPEDS data are added to the Supplemental Colleges feature class when found. This release includes the addition of 175 new records, the removal of 468 no longer reported by NCES, and modifications to the spatial location and/or attribution of 6682 records.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This dataset provides Census 2021 estimates that classify usual residents in Northern Ireland by national identity (person based). This dataset is mutually exclusive; respondents are included in one group only (for example, this classification includes a 'British only' group, 'Irish only' group, and 'British and Irish only' group).
The census collected information on the usually resident population of Northern Ireland on census day (21 March 2021). Initial contact letters or questionnaire packs were delivered to every household and communal establishment, and residents were asked to complete online or return the questionnaire with information as correct on census day. Special arrangements were made to enumerate special groups such as students, members of the Travellers Community, HM Forces personnel etc. The Census Coverage Survey (an independent doorstep survey) followed between 12 May and 29 June 2021 and was used to adjust the census counts for under-enumeration.
This table reports the categories for which there are 10 or more usual residents. Where there are fewer than 10 usual residents for any category, these have been reported in a residual group which may or may not contain 10 or more usual residents in total.
Mixed' indicates a respondent has written-in more than one national identity, the combination of which could not be coded to the existing framework. 'EU' is the European Union and is as defined on Census day (21 March 2021).
Quality assurance report can be found here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data were collected through an online survey and processed to create 95% CI using the BCA bootstrap confidence interval algorithm in MS EXCEL. Construction of confidence interval in MS EXCEL using the BCA bootstrap confidence interval algorithm is earlier not presented in any studies. The macro capabilities of MS EXCEL was utilized for the purpose stated.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset provides comprehensive information about various Data Science and Analytics master's programs offered in the United States. It includes details such as the program name, university name, annual tuition fees, program duration, location of the university, and additional information about the programs.
Column Descriptions:
Subject Name:
The name or field of study of the master's program, such as Data Science, Data Analytics, or Applied Biostatistics.
University Name:
The name of the university offering the master's program.
Per Year Fees:
The tuition fees for the program, usually given in euros per year. For some programs, the fees may be listed as "full" or "full-time," indicating a lump sum for the entire program or for full-time enrollment, respectively.
About Program:
A brief description or overview of the master's program, providing insights into its curriculum, focus areas, and any unique features.
Program Duration:
The duration of the master's program, typically expressed in years or months.
University Location:
The location of the university where the program is offered, including the city and state.
Program Name:
The official name of the master's program, often indicating its degree type (e.g., M.Sc. for Master of Science) and format (e.g., full-time, part-time, online).