Facebook
TwitterContext
In the field of e-commerce, the datasets are typically considered as proprietary, meaning they are owned and controlled by individual organizations and are not often made publicly available due to privacy and business considerations. In spite of this, The UCI Machine Learning Repository, known for its extensive collection of datasets beneficial for machine learning and data mining research, has curated and made accessible a unique dataset. This dataset comprises actual transactional data spanning from the year 2010 to 2011. For those interested, the dataset is maintained and readily available on the UCI Machine Learning Repository's site under the title "Online Retail".
Content
The dataset is a transnational one, capturing every transaction made from December 1, 2010, through December 9, 2011, by a UK-based non-store online retail company. As an online retail entity, the company doesn't have a physical store presence, and its operations and sales are conducted purely online. The company's primary product offering includes unique gifts for all occasions. While the company serves a diverse range of customers, a significant number of its clientele includes wholesalers.
Acknowledgements
In collaboration with the UCI Machine Learning Repository, the dataset was provided and made available by Dr. Daqing Chen. Dr. Chen is the Director of the Public Analytics group at London South Bank University, UK. Any correspondence regarding this dataset can be sent to Dr. Chen at 'chend' at 'lsbu.ac.uk'. We are grateful to him for providing such an invaluable resource for researchers and data science enthusiasts.
The image used has been sourced from Canva
Inspiration
The rich and extensive data within this dataset opens the door for a multitude of potential analyses. It lends itself well to various methods and techniques in data science, including but not limited to time series analysis, clustering, and classification. By exploring this dataset, one could derive key insights into customer behavior, transaction trends, and product performance, providing ample opportunities for deep and insightful explorations.
Facebook
TwitterOnline retail in the United Kingdom has been gaining ground in the past decade. With the onset of the coronavirus (COVID-19) crisis, the value of online retail sales in the United Kingdom peaked at around 129.5 billion British pounds in 2021. In 2022, the figure decreased to ***** billion British pounds. However, they then went through another recovery and achieved around ***** billion British pounds in 2024. What ranks high in UK e-commerce? In the United Kingdom, clothing and household goods were the most popular retail items consumers purchased through the internet in 2020. Data published by the Office for National Statistics (UK) showed that other leisure activities and services such as booking holiday accommodations, travel arrangements and event tickets were other areas consumers depended on the internet to buy. German e-commerce market The UK might have the highest share of online sales in retail trade, but other European countries such as Germany and France have had impressive track records over the years as well. According to the forecasts provided by German E-commerce and Distance Selling Trade Association (bevh), the market volume of Germany’s e-commerce sector was projected to see over ** billion euros in 2021.
Facebook
TwitterBy UCI [source]
Comprehensive Dataset on Online Retail Sales and Customer Data
Welcome to this comprehensive dataset offering a wide array of information related to online retail sales. This data set provides an in-depth look at transactions, product details, and customer information documented by an online retail company based in the UK. The scope of the data spans vastly, from granular details about each product sold to extensive customer data sets from different countries.
This transnational data set is a treasure trove of vital business insights as it meticulously catalogues all the transactions that happened during its span. It houses rich transactional records curated by a renowned non-store online retail company based in the UK known for selling unique all-occasion gifts. A considerable portion of its clientele includes wholesalers; ergo, this dataset can prove instrumental for companies looking for patterns or studying purchasing trends among such businesses.
The available attributes within this dataset offer valuable pieces of information:
InvoiceNo: This attribute refers to invoice numbers that are six-digit integral numbers uniquely assigned to every transaction logged in this system. Transactions marked with 'c' at the beginning signify cancellations - adding yet another dimension for purchase pattern analysis.
StockCode: Stock Code corresponds with specific items as they're represented within the inventory system via 5-digit integral numbers; these allow easy identification and distinction between products.
Description: This refers to product names, giving users qualitative knowledge about what kind of items are being bought and sold frequently.
Quantity: These figures ascertain the volume of each product per transaction – important figures that can help understand buying trends better.
InvoiceDate: Invoice Dates detail when each transaction was generated down to precise timestamps – invaluable when conducting time-based trend analysis or segmentation studies.
UnitPrice: Unit prices represent how much each unit retails at — crucial for revenue calculations or cost-related analyses.
Finally,
- Country: This locational attribute shows where each customer hails from, adding geographical segmentation to your data investigation toolkit.
This dataset was originally collated by Dr Daqing Chen, Director of the Public Analytics group based at the School of Engineering, London South Bank University. His research studies and business cases with this dataset have been published in various papers contributing to establishing a solid theoretical basis for direct, data and digital marketing strategies.
Access to such records can ensure enriching explorations or formulating insightful hypotheses about consumer behavior patterns among wholesalers. Whether it's managing inventory or studying transactional trends over time or spotting cancellation patterns - this dataset is apt for multiple forms of retail analysis
1. Sales Analysis:
Sales data forms the backbone of this dataset, and it allows users to delve into various aspects of sales performance. You can use the Quantity and UnitPrice fields to calculate metrics like revenue, and further combine it with InvoiceNo information to understand sales over individual transactions.
2. Product Analysis:
Each product in this dataset comes with its unique identifier (StockCode) and its name (Description). You could analyse which products are most popular based on Quantity sold or look at popularity per transaction by considering both Quantity and InvoiceNo.
3. Customer Segmentation:
If you associated specific business logic onto the transactions (such as calculating total amounts), then you could use standard machine learning methods or even RFM (Recency, Frequency, Monetary) segmentation techniques combining it with 'CustomerID' for your customer base to understand customer behavior better. Concatenating invoice numbers (which stand for separate transactions) per client will give insights about your clients as well.
4. Geographical Analysis:
The Country column enables analysts to study purchase patterns across different geographical locations.
Practical applications
Understand what products sell best where - It can help drive tailored marketing strategies. Anomalies detection – Identify unusual behaviors that might lead frau...
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Internet sales in Great Britain by store type, month and year.
Facebook
TwitterIn March 2025, the value of internet sales as a percentage of total retail sales in Great Britain amounted to 26.3 percent. This was a slight increase compared with the previous month, when online retail sales accounted for 25.9 percent of total retail sales.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
https://github.com/amanbitian/Market-Basket-Analysis/blob/e058d7c086eed9a6e5dab561597328de1c4fa35f/Dataset/online%20retailer.PNG" alt="Data Info">
This is a transnational data set that contains all the transactions occurring `between 01/12/2010 and 09/12/2011 for a UK-based and registered non-store online retail. The company mainly sells unique all-occasion gifts. *Most customers of the company are wholesalers*.
Facebook
TwitterIn 2021, the United Kingdom (UK) recorded an estimated *** billion British pounds in e-commerce retail sales. Of this value, over ** percent was first-party sales, and the other ** percent was third-party. Online sales in both business models were forecast to keep growing in the European country in the coming years.
Facebook
TwitterIn August 2025, internet sales accounted for 26.2 percent of all retail sales in Great Britain. Over the considered period, food online sales did not go over 10 percent of total retail sales.
Facebook
TwitterIn 2023, e-commerce sales in the United Kingdom had a growth of *** percent, much higher than the negative *** percent seen in the previous year. In 2028, e-commerce sales are expected to grow by *** percent.
Facebook
TwitterIn 2020, the e-commerce sales reached a share of **** percent of all retail sales in the Untied Kingdom (UK). For 2025, the forecasted retail e-commerce sales as a share of total retail sales in the UK might reach **** percent, up from the previous years.
Facebook
TwitterTypically e-commerce datasets are proprietary and consequently hard to find among publicly available data. However, The UCI Machine Learning Repository has made this dataset containing actual transactions from 2010 and 2011. The dataset is maintained on their site, where it can be found by the title "Online Retail".
"This is a transnational data set which contains all the transactions occurring between 01/12/2010 and 09/12/2011 for a UK-based and registered non-store online retail.The company mainly sells unique all-occasion gifts. Many customers of the company are wholesalers."
Per the UCI Machine Learning Repository, this data was made available by Dr Daqing Chen, Director: Public Analytics group. chend '@' lsbu.ac.uk, School of Engineering, London South Bank University, London SE1 0AA, UK.
Image from stocksnap.io.
Analyses for this dataset could include time series, clustering, classification and more.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains transaction records from an online retail store between December 2009 and December 2011. The transactions are primarily from customers in the United Kingdom and other European countries. The company mainly sells unique all-occasion gift-ware. Many customers of the company are wholesalers.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
E-commerce has become a new channel to support businesses development. Through e-commerce, businesses can get access and establish a wider market presence by providing cheaper and more efficient distribution channels for their products or services. E-commerce has also changed the way people shop and consume products and services. Many people are turning to their computers or smart devices to order goods, which can easily be delivered to their homes.
This is a sales transaction data set of UK-based e-commerce (online retail) for one year. This London-based shop has been selling gifts and homewares for adults and children through the website since 2007. Their customers come from all over the world and usually make direct purchases for themselves. There are also small businesses that buy in bulk and sell to other customers through retail outlet channels.
The data set contains 500K rows and 8 columns. The following is the description of each column. 1. TransactionNo (categorical): a six-digit unique number that defines each transaction. The letter “C” in the code indicates a cancellation. 2. Date (numeric): the date when each transaction was generated. 3. ProductNo (categorical): a five or six-digit unique character used to identify a specific product. 4. Product (categorical): product/item name. 5. Price (numeric): the price of each product per unit in pound sterling (£). 6. Quantity (numeric): the quantity of each product per transaction. Negative values related to cancelled transactions. 7. CustomerNo (categorical): a five-digit unique number that defines each customer. 8. Country (categorical): name of the country where the customer resides.
There is a small percentage of order cancellation in the data set. Most of these cancellations were due to out-of-stock conditions on some products. Under this situation, customers tend to cancel an order as they want all products delivered all at once.
Information is a main asset of businesses nowadays. The success of a business in a competitive environment depends on its ability to acquire, store, and utilize information. Data is one of the main sources of information. Therefore, data analysis is an important activity for acquiring new and useful information. Analyze this dataset and try to answer the following questions. 1. How was the sales trend over the months? 2. What are the most frequently purchased products? 3. How many products does the customer purchase in each transaction? 4. What are the most profitable segment customers? 5. Based on your findings, what strategy could you recommend to the business to gain more profit?
Facebook
TwitterThis data set is pulled from UCI Machine Learning Repository, titled "Online Retail II Data Set", donated in 2019. This data set includes an additional year 01/12/2009-09/12/2010 from the data set titled "Online Retail Data Set" donated in 2015.
This Online Retail II data set contains all the transactions occurring for a UK-based and registered, non-store online retail between 01/12/2009 and 09/12/2011. The company mainly sells unique all-occasion gift-ware. Many customers of the company are wholesalers.
Attributes Description: InvoiceNo: Invoice number. Nominal. A 6-digit integral number uniquely assigned to each transaction. If this code starts with the letter 'c', it indicates a cancellation. StockCode: Product (item) code. Nominal. A 5-digit integral number uniquely assigned to each distinct product. Description: Product (item) name. Nominal. Quantity: The quantities of each product (item) per transaction. Numeric. InvoiceDate: Invoice date and time. Numeric. The day and time when a transaction was generated. UnitPrice: Unit price. Numeric. Product price per unit in sterling (£). CustomerID: Customer number. Nominal. A 5-digit integral number uniquely assigned to each customer. Country: Country name. Nominal. The name of the country where a customer resides.
Extracted from http://archive.ics.uci.edu/ml/datasets/Online+Retail+II. Data set provided by Dr. Daqing Chen, Course Director: MSc Data Science. chend '@' lsbu.ac.uk, School of Engineering, London South Bank University, London SE1 0AA, UK. Converted the original .xlsx format to .csv for ease of use and efficient data loading.
Facebook
Twitterhttp://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
Overview:😊 The Online Retail dataset contains transactional data for a UK-based online retail company. The dataset includes details of orders made from various countries between 2010 and 2011. It is useful for exploring purchase behaviors, sales patterns, and customer segmentation.
Attributes: InvoiceNo, StockCode, Description, Quantity, InvoiceDate, UnitPrice, CustomerID, Country
Potential Uses:
Sales Analysis:✅ Analyzing sales trends over time, identifying best-selling products, and understanding sales performance across different regions.
Customer Segmentation:✅ Segmenting customers based on purchasing behavior, frequency, and monetary value to tailor marketing strategies.
Inventory Management:✅ Monitoring stock levels and predicting future inventory needs based on sales patterns.
Market Basket Analysis:✅ Identifying products that are frequently bought together to improve cross-selling strategies. 🎯
Please specify the appropriate license (e.g., Apache 2.0 or MIT) when uploading the dataset to ensure clear usage guidelines for other users.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Descriptions and categories of the Internet Sales Index and their percentage of all retailing for Great Britain.
Facebook
TwitterIn 2023, approximately ** percent of e-commerce retail sales in the United Kingdom were conducted through mobile devices. Projections for 2027 anticipate a further rise, with mobile commerce (m-commerce) expected to account for about **** percent of the total online shopping market in the UK.
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
E-Commerce Retail Market Size 2025-2029
The e-commerce retail market size is forecast to increase by USD 4,833.5 billion at a CAGR of 12% between 2024 and 2029.
The market is experiencing significant growth, driven by the advent of personalized shopping experiences. Consumers increasingly expect tailored recommendations and seamless interactions, leading retailers to integrate advanced technologies such as Artificial Intelligence (AI) to enhance the shopping journey. However, this market is not without challenges. Strict regulatory policies related to compliance and customer protection pose obstacles for retailers, requiring continuous investment in technology and resources to ensure adherence.
Retailers must navigate these challenges to effectively capitalize on the market's potential and deliver value to customers. By focusing on personalization and regulatory compliance, e-commerce retailers can differentiate themselves, build customer loyalty, and ultimately thrive in this dynamic market. Balancing the need for innovation with regulatory requirements is a delicate task, necessitating strategic planning and operational agility. Fraud prevention and customer retention are crucial aspects of e-commerce, with payment gateways ensuring secure transactions.
What will be the Size of the E-Commerce Retail Market during the forecast period?
Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
Request Free Sample
In the dynamic market, shopping carts and checkout processes streamline transactions, while sales forecasting and marketing automation help businesses anticipate consumer demand and optimize promotions. SMS marketing and targeted advertising reach customers effectively, driving sales growth. Warranty claims and customer support chatbots ensure post-purchase satisfaction, bolstering customer loyalty. Retail technology advances, including sustainable packaging, green logistics, and mobile optimization, cater to environmentally-conscious consumers. Legal compliance, data encryption, and fraud detection safeguard businesses and consumer trust. Product reviews, search functionality, and personalized recommendations enhance the shopping experience, fostering customer engagement.
Dynamic pricing and delivery networks adapt to market fluctuations and consumer preferences, respectively. E-commerce software integrates various functionalities, from circular economy initiatives and website accessibility to email automation and real-time order tracking. Overall, the e-commerce landscape continues to evolve, with businesses adopting innovative strategies to meet the needs of diverse customer segments and stay competitive.
How is this E-Commerce Retail Industry segmented?
The e-commerce retail industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Product
Apparel and accessories
Groceries
Footwear
Personal and beauty care
Others
Modality
Business to business (B2B)
Business to consumer (B2C)
Consumer to consumer (C2C)
Device
Mobile
Desktop
Geography
North America
US
Canada
Europe
France
Germany
Italy
UK
APAC
China
India
Japan
South Korea
Rest of World (ROW)
By Product Insights
The apparel and accessories segment is estimated to witness significant growth during the forecast period. The market for apparel and accessories is experiencing significant growth, fueled by several key trends. Increasing consumer affluence and a shift toward premiumization are driving this expansion, with the organized retail sector seeing particular growth. Influenced by social media trends, the Gen Z demographic is a major contributor to this rise in online shopping. This demographic is known for their preference for the latest fashion trends and their willingness to invest in premium products, making them a valuable market segment. Machine learning and artificial intelligence are increasingly being used for returns management and personalized recommendations, enhancing the customer experience.
Ethical sourcing and supply chain optimization are also essential, as consumers demand transparency and sustainability. Cybersecurity threats continue to pose challenges, requiring robust strategies and technologies. B2C and C2C e-commerce are thriving, with influencer marketing and e-commerce analytics playing significant roles. Customer reviews are essential for building trust and brand loyalty, while reputation management and affiliate marketing help expand reach. Sustainable e-commerce and b2b e-commerce are also gaining traction, with third-party logistics and social commerce offering new opportunities. Augment
Facebook
TwitterOnline sales account for an increasingly large share of all retail sales in Great Britain. The figure grew steadily each year to reach nearly ** percent in 2021, before declining to **** percent in 2022. In 2010, only *** percent of total retail sales were made online.
Facebook
TwitterIn Great Britain, internet sales accounted for 26.8 percent of all retailing sales, as data from March 2025 showed. In February 2021, the share of online sales as a proportion of total retail reached its peak at 37.5 percent.
Facebook
TwitterContext
In the field of e-commerce, the datasets are typically considered as proprietary, meaning they are owned and controlled by individual organizations and are not often made publicly available due to privacy and business considerations. In spite of this, The UCI Machine Learning Repository, known for its extensive collection of datasets beneficial for machine learning and data mining research, has curated and made accessible a unique dataset. This dataset comprises actual transactional data spanning from the year 2010 to 2011. For those interested, the dataset is maintained and readily available on the UCI Machine Learning Repository's site under the title "Online Retail".
Content
The dataset is a transnational one, capturing every transaction made from December 1, 2010, through December 9, 2011, by a UK-based non-store online retail company. As an online retail entity, the company doesn't have a physical store presence, and its operations and sales are conducted purely online. The company's primary product offering includes unique gifts for all occasions. While the company serves a diverse range of customers, a significant number of its clientele includes wholesalers.
Acknowledgements
In collaboration with the UCI Machine Learning Repository, the dataset was provided and made available by Dr. Daqing Chen. Dr. Chen is the Director of the Public Analytics group at London South Bank University, UK. Any correspondence regarding this dataset can be sent to Dr. Chen at 'chend' at 'lsbu.ac.uk'. We are grateful to him for providing such an invaluable resource for researchers and data science enthusiasts.
The image used has been sourced from Canva
Inspiration
The rich and extensive data within this dataset opens the door for a multitude of potential analyses. It lends itself well to various methods and techniques in data science, including but not limited to time series analysis, clustering, and classification. By exploring this dataset, one could derive key insights into customer behavior, transaction trends, and product performance, providing ample opportunities for deep and insightful explorations.