100+ datasets found
  1. Consumers that would shop mostly online vs. offline worldwide 2023, by...

    • statista.com
    Updated Jun 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Consumers that would shop mostly online vs. offline worldwide 2023, by country [Dataset]. https://www.statista.com/statistics/1384193/mostly-online-vs-offline-shopping-worldwide/
    Explore at:
    Dataset updated
    Jun 23, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 2023 - Mar 2023
    Area covered
    Worldwide
    Description

    As of early 2023, approximately ** percent of consumers in the United States said they would prefer to shop mostly online rather than in-store, making it the country with highest online shopping preference. In contrast, more shoppers preferred visiting physical stores in countries such as Austria, Finland, and New Zealand.

  2. Linear Regression E-commerce Dataset

    • kaggle.com
    zip
    Updated Sep 16, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Saurabh Kolawale (2019). Linear Regression E-commerce Dataset [Dataset]. https://www.kaggle.com/kolawale/focusing-on-mobile-app-or-website
    Explore at:
    zip(44169 bytes)Available download formats
    Dataset updated
    Sep 16, 2019
    Authors
    Saurabh Kolawale
    Description

    This dataset is having data of customers who buys clothes online. The store offers in-store style and clothing advice sessions. Customers come in to the store, have sessions/meetings with a personal stylist, then they can go home and order either on a mobile app or website for the clothes they want.

    The company is trying to decide whether to focus their efforts on their mobile app experience or their website.

  3. F

    E-Commerce Retail Sales

    • fred.stlouisfed.org
    json
    Updated Aug 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). E-Commerce Retail Sales [Dataset]. https://fred.stlouisfed.org/series/ECOMNSA
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Aug 19, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for E-Commerce Retail Sales (ECOMNSA) from Q4 1999 to Q2 2025 about e-commerce, retail trade, sales, retail, and USA.

  4. d

    Warehouse and Retail Sales

    • catalog.data.gov
    • data.montgomerycountymd.gov
    • +2more
    Updated Sep 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.montgomerycountymd.gov (2025). Warehouse and Retail Sales [Dataset]. https://catalog.data.gov/dataset/warehouse-and-retail-sales
    Explore at:
    Dataset updated
    Sep 7, 2025
    Dataset provided by
    data.montgomerycountymd.gov
    Description

    This dataset contains a list of sales and movement data by item and department appended monthly. Update Frequency : Monthly

  5. Online Retail Knowledge Graph Datasets

    • kaggle.com
    Updated May 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yunus Bilgiç (2025). Online Retail Knowledge Graph Datasets [Dataset]. https://www.kaggle.com/datasets/yunusbilgi/online-retail-knowledge-graph-datasets/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 9, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Yunus Bilgiç
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Dataset Description: Online Retail Transaction Data

    This dataset contains transactional data from an online retail store, including customer purchases, product details, invoice information, and country-specific data. The dataset is structured into four main files:

    Invoices.csv – Contains invoice-related details such as date and customer information.

    Products.csv – Includes product-specific data like stock codes, descriptions, and unit prices.

    Invoice_rel_product.csv – Represents the relationship between invoices and products, detailing quantities purchased.

    Customers.csv – Provides customer identifiers and their respective countries.

    Column Descriptions:

    InvoiceNo: Unique identifier for each order (invoices starting with "C" indicate refunds/cancellations).

    InvoiceDate: The date and time when the invoice was issued.

    StockCode: Unique code assigned to each product.

    Description: Name or description of the product.

    UnitPrice: Price per unit of the product (in GBP).

    Quantity: Number of units purchased per transaction.

    CustomerID: Unique identifier for each customer.

    Country: The country from which the order was placed.

    Preprocessing Notes:

    -Refund Flag: Invoices starting with "C" were marked with an additional feature {is_return: True/False} in the graph database to distinguish refunded transactions.

    -Data Cleaning: Rows with negative values in UnitPrice or Quantity were removed using Pandas DataFrame for consistency.

  6. Ecommerce Store Data | APAC E-commerce Sector | Verified Business Profiles...

    • datarade.ai
    Updated Jan 1, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Success.ai (2018). Ecommerce Store Data | APAC E-commerce Sector | Verified Business Profiles with Key Insights | Best Price Guarantee [Dataset]. https://datarade.ai/data-products/ecommerce-store-data-apac-e-commerce-sector-verified-busi-success-ai
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset updated
    Jan 1, 2018
    Dataset provided by
    Area covered
    Lao People's Democratic Republic, Korea (Democratic People's Republic of), Italy, Fiji, Northern Mariana Islands, Austria, Malta, Canada, Mexico, Andorra
    Description

    Success.ai’s Ecommerce Store Data for the APAC E-commerce Sector provides a reliable and accurate dataset tailored for businesses aiming to connect with e-commerce professionals and organizations across the Asia-Pacific region. Covering roles and businesses involved in online retail, marketplace management, logistics, and digital commerce, this dataset includes verified business profiles, decision-maker contact details, and actionable insights.

    With access to continuously updated, AI-validated data and over 700 million global profiles, Success.ai ensures your outreach, market analysis, and partnership strategies are effective and data-driven. Backed by our Best Price Guarantee, this solution helps you excel in one of the world’s fastest-growing e-commerce markets.

    Why Choose Success.ai’s Ecommerce Store Data?

    1. Verified Profiles for Precision Engagement

      • Access verified profiles, business locations, employee counts, and decision-maker details for e-commerce businesses across APAC.
      • AI-driven validation ensures 99% accuracy, improving engagement rates and reducing outreach inefficiencies.
    2. Comprehensive Coverage of the APAC E-commerce Sector

      • Includes businesses from major e-commerce hubs such as China, India, Japan, South Korea, Australia, and Southeast Asia.
      • Gain insights into regional e-commerce trends, digital transformation efforts, and logistics innovations.
    3. Continuously Updated Datasets

      • Real-time updates ensure that business profiles, employee roles, and operational insights remain accurate and relevant.
      • Stay aligned with dynamic market conditions and emerging opportunities in the APAC region.
    4. Ethical and Compliant

      • Fully adheres to GDPR, CCPA, and other global data privacy regulations, ensuring responsible and lawful data usage.

    Data Highlights:

    • 700M+ Verified Global Profiles: Access business profiles for e-commerce professionals and organizations across APAC.
    • Firmographic Insights: Gain detailed information, including business locations, employee counts, and operational details.
    • Decision-maker Profiles: Connect with key e-commerce leaders, managers, and strategists driving online retail innovation.
    • Industry Trends: Understand emerging e-commerce trends, consumer behavior, and market dynamics in the APAC region.

    Key Features of the Dataset:

    1. Comprehensive E-commerce Business Profiles

      • Identify and connect with businesses specializing in online retail, marketplace management, and digital commerce logistics.
      • Target decision-makers involved in supply chain optimization, digital marketing, and platform development.
    2. Advanced Filters for Precision Campaigns

      • Filter businesses and professionals by industry focus (fashion, electronics, grocery), geographic location, or employee size.
      • Tailor campaigns to address specific goals, such as promoting technology adoption, enhancing customer engagement, or expanding supply chains.
    3. Regional and Sector-specific Insights

      • Leverage data on APAC’s fast-growing e-commerce markets, consumer purchasing trends, and regional challenges.
      • Refine your marketing strategies and outreach efforts to align with market priorities.
    4. AI-Driven Enrichment

      • Profiles enriched with actionable data allow for personalized messaging, highlight unique value propositions, and improve engagement outcomes.

    Strategic Use Cases:

    1. Marketing Campaigns and Outreach

      • Promote e-commerce solutions, logistics services, or digital commerce tools to businesses and professionals in the APAC region.
      • Use verified contact data for multi-channel outreach, including email, phone, and social media campaigns.
    2. Partnership Development and Vendor Collaboration

      • Build relationships with e-commerce marketplaces, logistics providers, and payment solution companies seeking strategic partnerships.
      • Foster collaborations that drive operational efficiency, enhance customer experiences, or expand market reach.
    3. Market Research and Competitive Analysis

      • Analyze regional e-commerce trends, consumer preferences, and logistics challenges to refine product offerings and business strategies.
      • Benchmark against competitors to identify growth opportunities and high-demand solutions.
    4. Recruitment and Talent Acquisition

      • Target HR professionals and hiring managers in the e-commerce industry recruiting for roles in operations, logistics, and digital marketing.
      • Provide workforce optimization platforms or training solutions tailored to the digital commerce sector.

    Why Choose Success.ai?

    1. Best Price Guarantee

      • Access premium-quality e-commerce store data at competitive prices, ensuring strong ROI for your marketing, sales, and strategic initiatives.
    2. Seamless Integration

      • Integrate verified e-commerce data into CRM systems, analytics platforms, or market...
  7. Global retail e-commerce sales 2022-2028

    • statista.com
    • abripper.com
    • +3more
    Updated Jun 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Global retail e-commerce sales 2022-2028 [Dataset]. https://www.statista.com/statistics/379046/worldwide-retail-e-commerce-sales/
    Explore at:
    Dataset updated
    Jun 24, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Feb 2025
    Area covered
    Worldwide
    Description

    In 2024, global retail e-commerce sales reached an estimated ************ U.S. dollars. Projections indicate a ** percent growth in this figure over the coming years, with expectations to come close to ************** dollars by 2028. World players Among the key players on the world stage, the American marketplace giant Amazon holds the title of the largest e-commerce player globally, with a gross merchandise value of nearly *********** U.S. dollars in 2024. Amazon was also the most valuable retail brand globally, followed by mostly American competitors such as Walmart and the Home Depot. Leading e-tailing regions E-commerce is a dormant channel globally, but nowhere has it been as successful as in Asia. In 2024, the e-commerce revenue in that continent alone was measured at nearly ************ U.S. dollars, outperforming the Americas and Europe. That year, the up-and-coming e-commerce markets also centered around Asia. The Philippines and India stood out as the swiftest-growing e-commerce markets based on online sales, anticipating a growth rate surpassing ** percent.

  8. c

    Clickstream for Online Shopping Dataset

    • cubig.ai
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CUBIG, Clickstream for Online Shopping Dataset [Dataset]. https://cubig.ai/store/products/376/clickstream-for-online-shopping-dataset
    Explore at:
    Dataset authored and provided by
    CUBIG
    License

    https://cubig.ai/store/terms-of-servicehttps://cubig.ai/store/terms-of-service

    Measurement technique
    Synthetic data generation using AI techniques for model training, Privacy-preserving data transformation via differential privacy
    Description

    1) Data Introduction • The Clickstream Data for Online Shopping is an e-commerce analysis dataset that summarizes user clickstream, product information, country, price, and other session-specific behavior data from April to August 2008 at an online shopping mall specializing in maternity clothing.

    2) Data Utilization (1) Clickstream Data for Online Shopping has characteristics that: • Each row contains 14 key variables: year, month, day, click order, country (by access IP), session ID, main category, product code, color, photo location, model photo type, price, category average price, page number, etc. • Data is configured to enable analysis of various consumer behaviors such as click flows for each session, product attributes, and country-specific access patterns. (2) Clickstream Data for Online Shopping can be used to: • Online Shopping Mall User Behavior Analysis: Using clickstream, session, and product information, you can analyze purchase conversion routes, popular products, and behavioral patterns by country and category. • Improve marketing strategies and UI/UX: analyze the relationship between product photo location, color, price, etc. and click behavior and apply to establish effective marketing strategies and improvement of shopping mall UI/UX.

  9. Online Retail Transaction Data

    • kaggle.com
    Updated Dec 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). Online Retail Transaction Data [Dataset]. https://www.kaggle.com/datasets/thedevastator/online-retail-transaction-data/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 21, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    The Devastator
    Description

    Online Retail Transaction Data

    UK Online Retail Sales and Customer Transaction Data

    By UCI [source]

    About this dataset

    Comprehensive Dataset on Online Retail Sales and Customer Data

    Welcome to this comprehensive dataset offering a wide array of information related to online retail sales. This data set provides an in-depth look at transactions, product details, and customer information documented by an online retail company based in the UK. The scope of the data spans vastly, from granular details about each product sold to extensive customer data sets from different countries.

    This transnational data set is a treasure trove of vital business insights as it meticulously catalogues all the transactions that happened during its span. It houses rich transactional records curated by a renowned non-store online retail company based in the UK known for selling unique all-occasion gifts. A considerable portion of its clientele includes wholesalers; ergo, this dataset can prove instrumental for companies looking for patterns or studying purchasing trends among such businesses.

    The available attributes within this dataset offer valuable pieces of information:

    • InvoiceNo: This attribute refers to invoice numbers that are six-digit integral numbers uniquely assigned to every transaction logged in this system. Transactions marked with 'c' at the beginning signify cancellations - adding yet another dimension for purchase pattern analysis.

    • StockCode: Stock Code corresponds with specific items as they're represented within the inventory system via 5-digit integral numbers; these allow easy identification and distinction between products.

    • Description: This refers to product names, giving users qualitative knowledge about what kind of items are being bought and sold frequently.

    • Quantity: These figures ascertain the volume of each product per transaction – important figures that can help understand buying trends better.

    • InvoiceDate: Invoice Dates detail when each transaction was generated down to precise timestamps – invaluable when conducting time-based trend analysis or segmentation studies.

    • UnitPrice: Unit prices represent how much each unit retails at — crucial for revenue calculations or cost-related analyses.

    Finally,

    • Country: This locational attribute shows where each customer hails from, adding geographical segmentation to your data investigation toolkit.

    This dataset was originally collated by Dr Daqing Chen, Director of the Public Analytics group based at the School of Engineering, London South Bank University. His research studies and business cases with this dataset have been published in various papers contributing to establishing a solid theoretical basis for direct, data and digital marketing strategies.

    Access to such records can ensure enriching explorations or formulating insightful hypotheses about consumer behavior patterns among wholesalers. Whether it's managing inventory or studying transactional trends over time or spotting cancellation patterns - this dataset is apt for multiple forms of retail analysis

    How to use the dataset

    1. Sales Analysis:

    Sales data forms the backbone of this dataset, and it allows users to delve into various aspects of sales performance. You can use the Quantity and UnitPrice fields to calculate metrics like revenue, and further combine it with InvoiceNo information to understand sales over individual transactions.

    2. Product Analysis:

    Each product in this dataset comes with its unique identifier (StockCode) and its name (Description). You could analyse which products are most popular based on Quantity sold or look at popularity per transaction by considering both Quantity and InvoiceNo.

    3. Customer Segmentation:

    If you associated specific business logic onto the transactions (such as calculating total amounts), then you could use standard machine learning methods or even RFM (Recency, Frequency, Monetary) segmentation techniques combining it with 'CustomerID' for your customer base to understand customer behavior better. Concatenating invoice numbers (which stand for separate transactions) per client will give insights about your clients as well.

    4. Geographical Analysis:

    The Country column enables analysts to study purchase patterns across different geographical locations.

    Practical applications

    Understand what products sell best where - It can help drive tailored marketing strategies. Anomalies detection – Identify unusual behaviors that might lead frau...

  10. d

    Retail Store Data | Retail & E-commerce Sector in Asia | Verified Business...

    • datarade.ai
    Updated Feb 12, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Success.ai (2018). Retail Store Data | Retail & E-commerce Sector in Asia | Verified Business Profiles & eCommerce Professionals | Best Price Guaranteed [Dataset]. https://datarade.ai/data-products/retail-store-data-retail-e-commerce-sector-in-asia-veri-success-ai
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset updated
    Feb 12, 2018
    Dataset provided by
    Success.ai
    Area covered
    Cyprus, Georgia, Hong Kong, Kuwait, Bangladesh, Malaysia, Singapore, Turkmenistan, Lebanon, Jordan
    Description

    Success.ai delivers unparalleled access to Retail Store Data for Asia’s retail and e-commerce sectors, encompassing subcategories such as ecommerce data, ecommerce merchant data, ecommerce market data, and company data. Whether you’re targeting emerging markets or established players, our solutions provide the tools to connect with decision-makers, analyze market trends, and drive strategic growth. With continuously updated datasets and AI-validated accuracy, Success.ai ensures your data is always relevant and reliable.

    Key Features of Success.ai's Retail Store Data for Retail & E-commerce in Asia:

    Extensive Business Profiles: Access detailed profiles for 70M+ companies across Asia’s retail and e-commerce sectors. Profiles include firmographic data, revenue insights, employee counts, and operational scope.

    Ecommerce Data: Gain insights into online marketplaces, customer demographics, and digital transaction patterns to refine your strategies.

    Ecommerce Merchant Data: Understand vendor performance, supply chain metrics, and operational details to optimize partnerships.

    Ecommerce Market Data: Analyze purchasing trends, regional preferences, and market demands to identify growth opportunities.

    Contact Data for Decision-Makers: Reach key stakeholders, such as CEOs, marketing executives, and procurement managers. Verified contact details include work emails, phone numbers, and business addresses.

    Real-Time Accuracy: AI-powered validation ensures a 99% accuracy rate, keeping your outreach efforts efficient and impactful.

    Compliance and Ethics: All data is ethically sourced and fully compliant with GDPR and other regional data protection regulations.

    Why Choose Success.ai for Retail Store Data?

    Best Price Guarantee: We deliver industry-leading value with the most competitive pricing for comprehensive retail store data.

    Customizable Solutions: Tailor your data to meet specific needs, such as targeting particular regions, industries, or company sizes.

    Scalable Access: Our data solutions are built to grow with your business, supporting small startups to large-scale enterprises.

    Seamless Integration: Effortlessly incorporate our data into your existing CRM, marketing, or analytics platforms.

    Comprehensive Use Cases for Retail Store Data:

    1. Market Entry and Expansion:

    Identify potential partners, distributors, and clients to expand your footprint in Asia’s dynamic retail and e-commerce markets. Use detailed profiles to assess market opportunities and risks.

    1. Personalized Marketing Campaigns:

    Leverage ecommerce data and consumer insights to craft highly targeted campaigns. Connect directly with decision-makers for precise and effective communication.

    1. Competitive Benchmarking:

    Analyze competitors’ operations, market positioning, and consumer strategies to refine your business plans and gain a competitive edge.

    1. Supplier and Vendor Selection:

    Evaluate potential suppliers or vendors using ecommerce merchant data, including financial health, operational details, and contact data.

    1. Customer Engagement and Retention:

    Enhance customer loyalty programs and retention strategies by leveraging ecommerce market data and purchasing trends.

    APIs to Amplify Your Results:

    Enrichment API: Keep your CRM and analytics platforms up-to-date with real-time data enrichment, ensuring accurate and actionable company profiles.

    Lead Generation API: Maximize your outreach with verified contact data for retail and e-commerce decision-makers. Ideal for driving targeted marketing and sales efforts.

    Tailored Solutions for Industry Professionals:

    Retailers: Expand your supply chain, identify new markets, and connect with key partners in the e-commerce ecosystem.

    E-commerce Platforms: Optimize your vendor and partner selection with verified profiles and operational insights.

    Marketing Agencies: Deliver highly personalized campaigns by leveraging detailed consumer data and decision-maker contacts.

    Consultants: Provide data-driven recommendations to clients with access to comprehensive company data and market trends.

    What Sets Success.ai Apart?

    70M+ Business Profiles: Access an extensive and detailed database of companies across Asia’s retail and e-commerce sectors.

    Global Compliance: All data is sourced ethically and adheres to international data privacy standards, including GDPR.

    Real-Time Updates: Ensure your data remains accurate and relevant with our continuously updated datasets.

    Dedicated Support: Our team of experts is available to help you maximize the value of our data solutions.

    Empower Your Business with Success.ai:

    Success.ai’s Retail Store Data for the retail and e-commerce sectors in Asia provides the insights and connections needed to thrive in this competitive market. Whether you’re entering a new region, launching a targeted campaign, or analyzing market trends, our data solutions ensure measurable success.

    ...

  11. Retail trade; turnover changes internet sales, index 2015=100

    • data.overheid.nl
    • ckan.mobidatalab.eu
    • +2more
    atom, json
    Updated Sep 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centraal Bureau voor de Statistiek (Rijk) (2025). Retail trade; turnover changes internet sales, index 2015=100 [Dataset]. https://data.overheid.nl/en/dataset/f8967771-7dae-497d-9a93-ecc043f41bdb
    Explore at:
    json(KB), atom(KB)Available download formats
    Dataset updated
    Sep 1, 2025
    Dataset provided by
    Statistics Netherlands
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This table presents information about developments in retail turnover (SIC 2008 code 47). The data is broken down in two ways. The first breakdown refers to the sales channel: shops that predominantly sell goods online and those that predominantly sell goods through other sales channels (physical shops, markets, etc.). The second breakdown refers to the main economic activity: shops that predominantly sell food and drugstore items, consumer electronics, clothes and fashion items or other non-food. Developments are presented as percentage changes compared to a previous year and by means of indices. In this table, the base year is updated to 2015, in previous publications the base year was 2013. The survey used to measure turnover change for online sales covers retail trade companies with 10 or more employees; these represent 65-70 percent of total online sales. Small businesses are not covered.

    Data available from January 2014.

    Status of the figures Figures of 2025 are provisional, the preceding periods are definite. The figures of a calendar year will become definite no later than five months after the end of that calendar year. Until then, the figures in this table will be 'provisional' and can still be adjusted as a result of delayed response.

    Changes as of September 1, 2025: Figures of July 2025 have been added. Figures of preceding periods in 2025 may have been adjusted.

    When will new figures be published? As a rule, monthly statistics are published six to eight weeks after the end of the reporting month. Quarterly statistics are published on the last working day of the second month after the quarter. Once definite figures have been published, Statistics Netherlands will only revise the results if significant adjustments and/or corrections are necessary.

  12. The Artificial Intelligence in Retail Market size was USD 4951.2 Million in...

    • cognitivemarketresearch.com
    pdf,excel,csv,ppt
    Updated Aug 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cognitive Market Research (2025). The Artificial Intelligence in Retail Market size was USD 4951.2 Million in 2023 [Dataset]. https://www.cognitivemarketresearch.com/artificial-intelligence-in-retail-market-report
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Aug 26, 2025
    Dataset authored and provided by
    Cognitive Market Research
    License

    https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy

    Time period covered
    2021 - 2033
    Area covered
    Global
    Description

    According to Cognitive Market Research, the global Artificial Intelligence in Retail market size is USD 4951.2 million in 2023and will expand at a compound annual growth rate (CAGR) of 39.50% from 2023 to 2030.

    Enhanced customer personalization to provide viable market output
    Demand for online remains higher in Artificial Intelligence in the Retail market.
    The machine learning and deep learning category held the highest Artificial Intelligence in Retail market revenue share in 2023.
    North American Artificial Intelligence In Retail will continue to lead, whereas the Asia-Pacific Artificial Intelligence In Retail market will experience the most substantial growth until 2030.
    

    Market Dynamics of the Artificial Intelligence in the Retail Market

    Key Drivers for Artificial Intelligence in Retail Market

    Enhanced Customer Personalization to Provide Viable Market Output
    

    A primary driver of Artificial Intelligence in the Retail market is the pursuit of enhanced customer personalization. A.I. algorithms analyze vast datasets of customer behaviors, preferences, and purchase history to deliver highly personalized shopping experiences. Retailers leverage this insight to offer tailored product recommendations, targeted marketing campaigns, and personalized promotions. The drive for superior customer personalization not only enhances customer satisfaction but also increases engagement and boosts sales. This focus on individualized interactions through A.I. applications is a key driver shaping the dynamic landscape of A.I. in the retail market.

    January 2023 - Microsoft and digital start-up AiFi worked together to offer Smart Store Analytics. It is a cloud-based tracking solution that helps merchants with operational and shopper insights for intelligent, cashierless stores.

    Source-techcrunch.com/2023/01/10/aifi-microsoft-smart-store-analytics/

    Improved Operational Efficiency to Propel Market Growth
    

    Another pivotal driver is the quest for improved operational efficiency within the retail sector. A.I. technologies streamline various aspects of retail operations, from inventory management and demand forecasting to supply chain optimization and cashier-less checkout systems. By automating routine tasks and leveraging predictive analytics, retailers can enhance efficiency, reduce costs, and minimize errors. The pursuit of improved operational efficiency is a key motivator for retailers to invest in AI solutions, enabling them to stay competitive, adapt to dynamic market conditions, and meet the evolving demands of modern consumers in the highly competitive artificial intelligence (AI) retail market.

    January 2023 - The EY Retail Intelligence solution, which is based on Microsoft Cloud, was introduced by the Fintech business EY to give customers a safe and efficient shopping experience. In order to deliver insightful information, this solution makes use of Microsoft Cloud for Retail and its technologies, which include image recognition, analytics, and artificial intelligence (A.I.).

    Source-www.ey.com/en_gl/news/2023/01/ey-announces-launch-of-retail-solution-that-builds-on-the-microsoft-cloud-to-help-achieve-seamless-consumer-shopping-experiences

    Key Restraints for Artificial Intelligence in Retail Market

    Data Security Concerns to Restrict Market Growth
    

    A prominent restraint in Artificial Intelligence in the Retail market is the pervasive concern over data security. As retailers increasingly rely on A.I. to process vast amounts of customer data for personalized experiences, there is a growing apprehension regarding the protection of sensitive information. The potential for data breaches and cyberattacks poses a significant challenge, as retailers must navigate the delicate balance between utilizing customer data for AI-driven initiatives and safeguarding it against potential security threats. Addressing these concerns is crucial to building and maintaining consumer trust in A.I. applications within the retail sector.

    Key Trends for Artificial Intelligence in Retail Market

    Surge in Voice-Enabled Shopping Interfaces Reshaping Retail Experiences
    

    Voice-enabled A.I. assistants such as Amazon Alexa and Google Assistant are revolutionizing the way consumers engage with retail platforms. Shoppers can now utilize voice commands to search, compare, and purchase products, thereby streamlining and accelerating the buying process. Retailers...

  13. Online Sales Dataset - Popular Marketplace Data

    • kaggle.com
    Updated May 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ShreyanshVerma27 (2024). Online Sales Dataset - Popular Marketplace Data [Dataset]. https://www.kaggle.com/datasets/shreyanshverma27/online-sales-dataset-popular-marketplace-data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 25, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    ShreyanshVerma27
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    This dataset provides a comprehensive overview of online sales transactions across different product categories. Each row represents a single transaction with detailed information such as the order ID, date, category, product name, quantity sold, unit price, total price, region, and payment method.

    Columns:

    • Order ID: Unique identifier for each sales order.
    • Date:Date of the sales transaction.
    • Category:Broad category of the product sold (e.g., Electronics, Home Appliances, Clothing, Books, Beauty Products, Sports).
    • Product Name:Specific name or model of the product sold.
    • Quantity:Number of units of the product sold in the transaction.
    • Unit Price:Price of one unit of the product.
    • Total Price: Total revenue generated from the sales transaction (Quantity * Unit Price).
    • Region:Geographic region where the transaction occurred (e.g., North America, Europe, Asia).
    • Payment Method: Method used for payment (e.g., Credit Card, PayPal, Debit Card).

    Insights:

    • 1. Analyze sales trends over time to identify seasonal patterns or growth opportunities.
    • 2. Explore the popularity of different product categories across regions.
    • 3. Investigate the impact of payment methods on sales volume or revenue.
    • 4. Identify top-selling products within each category to optimize inventory and marketing strategies.
    • 5. Evaluate the performance of specific products or categories in different regions to tailor marketing campaigns accordingly.
  14. Z

    Dataset - Enhancing Brick-and-Mortar Shopping Experience Through Explainable...

    • data.niaid.nih.gov
    • zenodo.org
    • +1more
    Updated Apr 28, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mora, Daniel (2021). Dataset - Enhancing Brick-and-Mortar Shopping Experience Through Explainable Artificial Intelligence in a Smartphone-based Augmented Reality Shopping Assistant Application [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_4723467
    Explore at:
    Dataset updated
    Apr 28, 2021
    Dataset provided by
    Cirqueira, Douglas
    Zimmermann, Robert
    Mora, Daniel
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This is a dataset obtained from an online survey conducted in August 2020.

    In the survey, participants were introduced to the concept of a smartphone-based shopping assistant application with the help of pictures and videos when shopping with and without the application. Participants were presented with three different shopping scenarios. In each scenario, we showed products on a shelf (groceries, luxury chocolate, shoes, books). The first shopping scenario was a regular shopping scenario (RSS), the second was an augmented reality shopping scenario (ARSS), and the third was an augmented reality shopping scenario with explainable AI features (XARSS). For each scenario participants had to answer questions about how they perceived the scenario and how it influenced their overall purchase intention.

    The present work was conducted within the Innovative Training Network project PERFORM funded by the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No. 765395. The EU Research Executive Agency is not responsible for any use that may be made of the information it contains.

  15. Retail ecommerce sales in India 2019-2025

    • statista.com
    Updated Jun 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Retail ecommerce sales in India 2019-2025 [Dataset]. https://www.statista.com/statistics/255359/online-retail-sales-in-india/
    Explore at:
    Dataset updated
    Jun 23, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    India
    Description

    Online shopping sales across India amounted to around ** billion U.S. dollars in 2021. The e-commerce market is likely to grow to over *** billion U.S. dollars by 2025. The e-commerce market in India is the fastest-growing market in the world. Online retail segments In fiscal year 2017, the retail market was led by electronics with a penetration rate of about ** percent. However, in terms of groceries, local offline vendors or kiranas continued to be the preferred choice for daily groceries due the ease of bargaining and benefitting from the ‘old-customer’ designation with extra rations as a gesture from the vendor. Nevertheless, the number of online shoppers in the country was estimated to increase to over *** million in 2025, up from around ** million in 2017. Impact of COVID-19 on the marketThe coronavirus outbreak in March 2020 caused a surge in prices across e-commerce platforms. Panic purchasing resulted in the shortage of sanitary and food items online as well as in physical stores across the country. As the online consumption continued to increase, unscrupulous sellers jacked up the prices on certain items. Amazon and Flipkart, the two e-commerce market leaders in India urged sellers and even blocked certain products to exercise responsible pricing. Manufacturers increased production in order to keep up with the supply of fast-moving items. With the uncertainty surrounding the impact of COVID-19, manufacturers and retailers will presumably have to work in unison to keep track of an unprecedented demand and supply scenario.

  16. Retail Sales Index internet sales

    • ons.gov.uk
    • cy.ons.gov.uk
    xlsx
    Updated Sep 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2025). Retail Sales Index internet sales [Dataset]. https://www.ons.gov.uk/businessindustryandtrade/retailindustry/datasets/retailsalesindexinternetsales
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Sep 19, 2025
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Internet sales in Great Britain by store type, month and year.

  17. c

    E Commerce Dataset

    • cubig.ai
    Updated May 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CUBIG (2025). E Commerce Dataset [Dataset]. https://cubig.ai/store/products/277/e-commerce-dataset
    Explore at:
    Dataset updated
    May 20, 2025
    Dataset authored and provided by
    CUBIG
    License

    https://cubig.ai/store/terms-of-servicehttps://cubig.ai/store/terms-of-service

    Measurement technique
    Synthetic data generation using AI techniques for model training, Privacy-preserving data transformation via differential privacy
    Description

    1) Data Introduction • The E-Commerce Data Dataset contains actual transaction records from an online retail company based in the UK. It includes various transaction-related attributes such as customer ID, product information, transaction date, quantity, and country.

    2) Data Utilization (1) Characteristics of the E-Commerce Data Dataset: • This dataset is structured as time-series consumer behavior data at the transaction level. It includes attributes such as product category, quantity, unit price, and country, making it suitable for analyzing country-specific consumption patterns and developing region-based classification models.

    (2) Applications of the E-Commerce Data Dataset: • Developing country-specific marketing strategies: By analyzing purchasing trends, frequently bought product categories, and transaction frequency by country, the dataset can be used to design regionally tailored marketing strategies.

  18. d

    SKU-Level Transaction Data | Point-of-Sale (POS) Data | 1M+ Grocery,...

    • datarade.ai
    Updated Jan 29, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MealMe (2025). SKU-Level Transaction Data | Point-of-Sale (POS) Data | 1M+ Grocery, Restaurant, and Retail stores stores with SKU level transactions [Dataset]. https://datarade.ai/data-products/sku-level-transaction-data-point-of-sale-pos-data-1m-g-mealme
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset updated
    Jan 29, 2025
    Dataset authored and provided by
    MealMe
    Area covered
    Ecuador, Kosovo, Moldova (Republic of), Ghana, Indonesia, Japan, Åland Islands, Slovenia, New Zealand, Swaziland
    Description

    MealMe provides comprehensive grocery and retail SKU-level product data, including real-time pricing, from the top 100 retailers in the USA and Canada. Our proprietary technology ensures accurate and up-to-date insights, empowering businesses to excel in competitive intelligence, pricing strategies, and market analysis.

    Retailers Covered: MealMe’s database includes detailed SKU-level data and pricing from leading grocery and retail chains such as Walmart, Target, Costco, Kroger, Safeway, Publix, Whole Foods, Aldi, ShopRite, BJ’s Wholesale Club, Sprouts Farmers Market, Albertsons, Ralphs, Pavilions, Gelson’s, Vons, Shaw’s, Metro, and many more. Our coverage spans the most influential retailers across North America, ensuring businesses have the insights needed to stay competitive in dynamic markets.

    Key Features: SKU-Level Granularity: Access detailed product-level data, including product descriptions, categories, brands, and variations. Real-Time Pricing: Monitor current pricing trends across major retailers for comprehensive market comparisons. Regional Insights: Analyze geographic price variations and inventory availability to identify trends and opportunities. Customizable Solutions: Tailored data delivery options to meet the specific needs of your business or industry. Use Cases: Competitive Intelligence: Gain visibility into pricing, product availability, and assortment strategies of top retailers like Walmart, Costco, and Target. Pricing Optimization: Use real-time data to create dynamic pricing models that respond to market conditions. Market Research: Identify trends, gaps, and consumer preferences by analyzing SKU-level data across leading retailers. Inventory Management: Streamline operations with accurate, real-time inventory availability. Retail Execution: Ensure on-shelf product availability and compliance with merchandising strategies. Industries Benefiting from Our Data CPG (Consumer Packaged Goods): Optimize product positioning, pricing, and distribution strategies. E-commerce Platforms: Enhance online catalogs with precise pricing and inventory information. Market Research Firms: Conduct detailed analyses to uncover industry trends and opportunities. Retailers: Benchmark against competitors like Kroger and Aldi to refine assortments and pricing. AI & Analytics Companies: Fuel predictive models and business intelligence with reliable SKU-level data. Data Delivery and Integration MealMe offers flexible integration options, including APIs and custom data exports, for seamless access to real-time data. Whether you need large-scale analysis or continuous updates, our solutions scale with your business needs.

    Why Choose MealMe? Comprehensive Coverage: Data from the top 100 grocery and retail chains in North America, including Walmart, Target, and Costco. Real-Time Accuracy: Up-to-date pricing and product information ensures competitive edge. Customizable Insights: Tailored datasets align with your specific business objectives. Proven Expertise: Trusted by diverse industries for delivering actionable insights. MealMe empowers businesses to unlock their full potential with real-time, high-quality grocery and retail data. For more information or to schedule a demo, contact us today!

  19. Wildberries Dataset

    • brightdata.com
    .json, .csv, .xlsx
    Updated May 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data (2024). Wildberries Dataset [Dataset]. https://brightdata.com/products/datasets/ecommerce/wildberries
    Explore at:
    .json, .csv, .xlsxAvailable download formats
    Dataset updated
    May 24, 2024
    Dataset authored and provided by
    Bright Datahttps://brightdata.com/
    License

    https://brightdata.com/licensehttps://brightdata.com/license

    Area covered
    Worldwide
    Description

    We'll customize a Wildberries dataset to align with your unique requirements, incorporating data on product categories, customer reviews, pricing trends, popular items, demographic insights, sales figures, and other relevant metrics. Leverage our Wildberries datasets for various applications to strengthen strategic planning and market analysis. Examining these datasets enables organizations to understand consumer preferences and online shopping trends, facilitating refined product offerings and marketing campaigns. Tailor your access to the complete dataset or specific subsets according to your business needs. Popular use cases include conducting competitor analysis to understand market positioning, monitoring brand reputation through consumer feedback, and performing consumer market analysis to identify and predict emerging trends in e-commerce and online retail.

  20. Data from: Online Retail Dataset

    • kaggle.com
    Updated Dec 1, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nirmal Nk (2020). Online Retail Dataset [Dataset]. https://www.kaggle.com/nirmalnk/online-retail-dataset/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 1, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Nirmal Nk
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    This dataset holds one of leading retail shopping company data

    Content

    Provides shop details and product details.

    Sources

    Provided by team for test purpose

    Inspiration

    Dataset providers

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Consumers that would shop mostly online vs. offline worldwide 2023, by country [Dataset]. https://www.statista.com/statistics/1384193/mostly-online-vs-offline-shopping-worldwide/
Organization logo

Consumers that would shop mostly online vs. offline worldwide 2023, by country

Explore at:
4 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jun 23, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
Jan 2023 - Mar 2023
Area covered
Worldwide
Description

As of early 2023, approximately ** percent of consumers in the United States said they would prefer to shop mostly online rather than in-store, making it the country with highest online shopping preference. In contrast, more shoppers preferred visiting physical stores in countries such as Austria, Finland, and New Zealand.

Search
Clear search
Close search
Google apps
Main menu