The United States Geological Survey (USGS) - Science Analytics and Synthesis (SAS) - Gap Analysis Project (GAP) manages the Protected Areas Database of the United States (PAD-US), an Arc10x geodatabase, that includes a full inventory of areas dedicated to the preservation of biological diversity and to other natural, recreation, historic, and cultural uses, managed for these purposes through legal or other effective means (www.usgs.gov/core-science-systems/science-analytics-and-synthesis/gap/science/protected-areas). The PAD-US is developed in partnership with many organizations, including coordination groups at the [U.S.] Federal level, lead organizations for each State, and a number of national and other non-governmental organizations whose work is closely related to the PAD-US. Learn more about the USGS PAD-US partners program here: www.usgs.gov/core-science-systems/science-analytics-and-synthesis/gap/science/pad-us-data-stewards. The United Nations Environmental Program - World Conservation Monitoring Centre (UNEP-WCMC) tracks global progress toward biodiversity protection targets enacted by the Convention on Biological Diversity (CBD) through the World Database on Protected Areas (WDPA) and World Database on Other Effective Area-based Conservation Measures (WD-OECM) available at: www.protectedplanet.net. See the Aichi Target 11 dashboard (www.protectedplanet.net/en/thematic-areas/global-partnership-on-aichi-target-11) for official protection statistics recognized globally and developed for the CBD, or here for more information and statistics on the United States of America's protected areas: www.protectedplanet.net/country/USA. It is important to note statistics published by the National Oceanic and Atmospheric Administration (NOAA) Marine Protected Areas (MPA) Center (www.marineprotectedareas.noaa.gov/dataanalysis/mpainventory/) and the USGS-GAP (www.usgs.gov/core-science-systems/science-analytics-and-synthesis/gap/science/pad-us-statistics-and-reports) differ from statistics published by the UNEP-WCMC as methods to remove overlapping designations differ slightly and U.S. Territories are reported separately by the UNEP-WCMC (e.g. The largest MPA, "Pacific Remote Islands Marine Monument" is attributed to the United States Minor Outlying Islands statistics). At the time of PAD-US 2.1 publication (USGS-GAP, 2020), NOAA reported 26% of U.S. marine waters (including the Great Lakes) as protected in an MPA that meets the International Union for Conservation of Nature (IUCN) definition of biodiversity protection (www.iucn.org/theme/protected-areas/about). USGS-GAP released PAD-US 3.0 Statistics and Reports in the summer of 2022. The relationship between the USGS, the NOAA, and the UNEP-WCMC is as follows: - USGS manages and publishes the full inventory of U.S. marine and terrestrial protected areas data in the PAD-US representing many values, developed in collaboration with a partnership network in the U.S. and; - USGS is the primary source of U.S. marine and terrestrial protected areas data for the WDPA, developed from a subset of the PAD-US in collaboration with the NOAA, other agencies and non-governmental organizations in the U.S., and the UNEP-WCMC and; - UNEP-WCMC is the authoritative source of global protected area statistics from the WDPA and WD-OECM and; - NOAA is the authoritative source of MPA data in the PAD-US and MPA statistics in the U.S. and; - USGS is the authoritative source of PAD-US statistics (including areas primarily managed for biodiversity, multiple uses including natural resource extraction, and public access). The PAD-US 3.0 Combined Marine, Fee, Designation, Easement feature class (GAP Status Code 1 and 2 only) is the source of protected areas data in this WDPA update. Tribal areas and military lands represented in the PAD-US Proclamation feature class as GAP Status Code 4 (no known mandate for biodiversity protection) are not included as spatial data to represent internal protected areas are not available at this time. The USGS submitted more than 51,000 protected areas from PAD-US 3.0, including all 50 U.S. States and 6 U.S. Territories, to the UNEP-WCMC for inclusion in the WDPA, available at www.protectedplanet.net. The NOAA is the sole source of MPAs in PAD-US and the National Conservation Easement Database (NCED, www.conservationeasement.us/) is the source of conservation easements. The USGS aggregates authoritative federal lands data directly from managing agencies for PAD-US (https://ngda-gov-units-geoplatform.hub.arcgis.com/pages/federal-lands-workgroup), while a network of State data-stewards provide state, local government lands, and some land trust preserves. National nongovernmental organizations contribute spatial data directly (www.usgs.gov/core-science-systems/science-analytics-and-synthesis/gap/science/pad-us-data-stewards). The USGS translates the biodiversity focused subset of PAD-US into the WDPA schema (UNEP-WCMC, 2019) for efficient aggregation by the UNEP-WCMC. The USGS maintains WDPA Site Identifiers (WDPAID, WDPA_PID), a persistent identifier for each protected area, provided by UNEP-WCMC. Agency partners are encouraged to track WDPA Site Identifier values in source datasets to improve the efficiency and accuracy of PAD-US and WDPA updates. The IUCN protected areas in the U.S. are managed by thousands of agencies and organizations across the country and include over 51,000 designated sites such as National Parks, National Wildlife Refuges, National Monuments, Wilderness Areas, some State Parks, State Wildlife Management Areas, Local Nature Preserves, City Natural Areas, The Nature Conservancy and other Land Trust Preserves, and Conservation Easements. The boundaries of these protected places (some overlap) are represented as polygons in the PAD-US, along with informative descriptions such as Unit Name, Manager Name, and Designation Type. As the WDPA is a global dataset, their data standards (UNEP-WCMC 2019) require simplification to reduce the number of records included, focusing on the protected area site name and management authority as described in the Supplemental Information section in this metadata record. Given the numerous organizations involved, sites may be added or removed from the WDPA between PAD-US updates. These differences may reflect actual change in protected area status; however, they also reflect the dynamic nature of spatial data or Geographic Information Systems (GIS). Many agencies and non-governmental organizations are working to improve the accuracy of protected area boundaries, the consistency of attributes, and inventory completeness between PAD-US updates. In addition, USGS continually seeks partners to review and refine the assignment of conservation measures in the PAD-US.
Around *** million families in the United States had three or more children under 18 living in the household in 2023. In that same year, about ***** million households had no children under 18 living in the household.
https://www.icpsr.umich.edu/web/ICPSR/studies/36848/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/36848/terms
The Current Population Survey Tobacco Use Supplement data collection from May 2015 is comprised of responses from two sets of survey questionnaires, the basic Current Population Survey (CPS) and a Tobacco Use Supplement (TUS) survey. The TUS 2014-2015 Wave consists of three collections: July 2014, January 2015, and May 2015. The CPS, administered monthly, is the source of the official government statistics on employment and unemployment. From time to time, additional questions are included on health, education, and previous work experience. The Tobacco Use Supplement to the CPS is a National Cancer Institute sponsored survey of tobacco use that has been administered as part of the US Census Bureau's CPS approximately every 3-4 years since 1992-1993. Similar to other CPS supplements, the Tobacco Use Supplement was designed for both proxy and self-respondents. All CPS household members age 18 and older who had completed CPS core items were eligible for the supplement items. A new feature for the 2014-2015 cycle included random selection of self-interviewed respondents in larger households to reduce respondent burden. If the household had only 1 supplement eligible member then that person was selected for self-interview. If the household had only 2 supplement eligible members, then both of them were selected for self-interview. If the household had 3 or 4 supplement eligible members, then 2 of them were randomly selected for self-interview and the remaining were interviewed by proxy. If the household had more than 4 supplement eligible members, then 3 of them were randomly selected for self-interview and the rest of the eligible respondents were interviewed by proxy. Those selected for self-interview were eligible for the entire supplement, whereas proxy respondents were only eligible for an abbreviated interview. Occasionally, those persons to be interviewed by proxy, if available for self- interview, were interviewed directly but asked the abbreviated proxy path questions. Both proxy and self-respondents were asked about their smoking status and the use of other tobacco products. For self-respondents only, different questions were asked depending on their tobacco use status: for former/current smokers, questions were asked about type of cigarettes smoked, measures of addiction, attempts to quit smoking, methods and treatments used to quit smoking, and if they were planning to quit in the future. All self-respondents were asked about smoking policy at their work place and their attitudes towards smoking in different locations. Demographic information within this collection includes age, sex, race, Hispanic origin, marital status, veteran status, immigration status, educational background, employment status, occupation, and income.
In the academic year 2023/24, there were 331,602 international students from India studying in the United States. International students The majority of international students studying in the United States are originally from India and China, totaling 331,602 students and 277,398 students respectively in the 2023/24 school year. In 2022/23, there were 467,027 international graduate students , which accounted for over one third of the international students in the country. Typically, engineering and math & computer science programs were among the most common fields of study for these students. The United States is home to many world-renowned schools, most notably, the Ivy League Colleges which provide education that is sought after by both foreign and local students. International students and college Foreign students in the United States pay some of the highest fees in the United States, with an average of 24,914 U.S. dollars. American students attending a college in New England paid an average of 14,900 U.S. dollars for tuition alone and there were about 79,751 international students in Massachusetts . Among high-income families, U.S. students paid an average of 34,700 U.S. dollars for college, whereas the average for all U.S. families reached only 28,026 U.S. dollars. Typically, 40 percent of families paid for college tuition through parent income and savings, while 29 percent relied on grants and scholarships.
Which county has the most Facebook users?
There are more than 378 million Facebook users in India alone, making it the leading country in terms of Facebook audience size. To put this into context, if India’s Facebook audience were a country then it would be ranked third in terms of largest population worldwide. Apart from India, there are several other markets with more than 100 million Facebook users each: The United States, Indonesia, and Brazil with 193.8 million, 119.05 million, and 112.55 million Facebook users respectively.
Facebook – the most used social media
Meta, the company that was previously called Facebook, owns four of the most popular social media platforms worldwide, WhatsApp, Facebook Messenger, Facebook, and Instagram. As of the third quarter of 2021, there were around 3,5 billion cumulative monthly users of the company’s products worldwide. With around 2.9 billion monthly active users, Facebook is the most popular social media worldwide. With an audience of this scale, it is no surprise that the vast majority of Facebook’s revenue is generated through advertising.
Facebook usage by device
As of July 2021, it was found that 98.5 percent of active users accessed their Facebook account from mobile devices. In fact, almost 81.8 percent of Facebook audiences worldwide access the platform only via mobile phone. Facebook is not only available through mobile browser as the company has published several mobile apps for users to access their products and services. As of the third quarter 2021, the four core Meta products were leading the ranking of most downloaded mobile apps worldwide, with WhatsApp amassing approximately six billion downloads.
The Health Inequality Project uses big data to measure differences in life expectancy by income across areas and identify strategies to improve health outcomes for low-income Americans.
This table reports life expectancy point estimates and standard errors for men and women at age 40 for each percentile of the national income distribution. Both race-adjusted and unadjusted estimates are reported.
This table reports life expectancy point estimates and standard errors for men and women at age 40 for each percentile of the national income distribution separately by year. Both race-adjusted and unadjusted estimates are reported.
This dataset was created on 2020-01-10 18:53:00.508
by merging multiple datasets together. The source datasets for this version were:
Commuting Zone Life Expectancy Estimates by year: CZ-level by-year life expectancy estimates for men and women, by income quartile
Commuting Zone Life Expectancy: Commuting zone (CZ)-level life expectancy estimates for men and women, by income quartile
Commuting Zone Life Expectancy Trends: CZ-level estimates of trends in life expectancy for men and women, by income quartile
Commuting Zone Characteristics: CZ-level characteristics
Commuting Zone Life Expectancy for larger populations: CZ-level life expectancy estimates for men and women, by income ventile
This table reports life expectancy point estimates and standard errors for men and women at age 40 for each quartile of the national income distribution by state of residence and year. Both race-adjusted and unadjusted estimates are reported.
This table reports US mortality rates by gender, age, year and household income percentile. Household incomes are measured two years prior to the mortality rate for mortality rates at ages 40-63, and at age 61 for mortality rates at ages 64-76. The “lag” variable indicates the number of years between measurement of income and mortality.
Observations with 1 or 2 deaths have been masked: all mortality rates that reflect only 1 or 2 deaths have been recoded to reflect 3 deaths
This table reports coefficients and standard errors from regressions of life expectancy estimates for men and women at age 40 for each quartile of the national income distribution on calendar year by commuting zone of residence. Only the slope coefficient, representing the average increase or decrease in life expectancy per year, is reported. Trend estimates for both race-adjusted and unadjusted life expectancies are reported. Estimates are reported for the 100 largest CZs (populations greater than 590,000) only.
This table reports life expectancy estimates at age 40 for Males and Females for all countries. Source: World Health Organization, accessed at: http://apps.who.int/gho/athena/
This table reports life expectancy point estimates and standard errors for men and women at age 40 for each quartile of the national income distribution by county of residence. Both race-adjusted and unadjusted estimates are reported. Estimates are reported for counties with populations larger than 25,000 only
This table reports life expectancy point estimates and standard errors for men and women at age 40 for each quartile of the national income distribution by commuting zone of residence and year. Both race-adjusted and unadjusted estimates are reported. Estimates are reported for the 100 largest CZs (populations greater than 590,000) only.
This table reports US population and death counts by age, year, and sex from various sources. Counts labelled “dm1” are derived from the Social Security Administration Data Master 1 file. Counts labelled “irs” are derived from tax data. Counts labelled “cdc” are derived from NCHS life tables.
This table reports numerous county characteristics, compiled from various sources. These characteristics are described in the county life expectancy table.
Two variables constructed by the Cen
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median household incomes for various household sizes in Mount Vernon, OR, as reported by the U.S. Census Bureau. The dataset highlights the variation in median household income with the size of the family unit, offering valuable insights into economic trends and disparities within different household sizes, aiding in data analysis and decision-making.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Household Sizes:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Mount Vernon median household income. You can refer the same here
In 2023, just over 50 percent of Americans had an annual household income that was less than 75,000 U.S. dollars. The median household income was 80,610 U.S. dollars in 2023. Income and wealth in the United States After the economic recession in 2009, income inequality in the U.S. is more prominent across many metropolitan areas. The Northeast region is regarded as one of the wealthiest in the country. Maryland, New Jersey, and Massachusetts were among the states with the highest median household income in 2020. In terms of income by race and ethnicity, the average income of Asian households was 94,903 U.S. dollars in 2020, while the median income for Black households was around half of that figure. What is the U.S. poverty threshold? The U.S. Census Bureau annually updates its list of poverty levels. Preliminary estimates show that the average poverty threshold for a family of four people was 26,500 U.S. dollars in 2021, which is around 100 U.S. dollars less than the previous year. There were an estimated 37.9 million people in poverty across the United States in 2021, which was around 11.6 percent of the population. Approximately 19.5 percent of those in poverty were Black, while 8.2 percent were white.
https://www.enterpriseappstoday.com/privacy-policyhttps://www.enterpriseappstoday.com/privacy-policy
Diversity in Tech Statistics: In today's tech-driven world, discussions about diversity in the technology sector have gained significant traction. Recent statistics shed light on the disparities and opportunities within this industry. According to data from various sources, including reports from leading tech companies and diversity advocacy groups, the lack of diversity remains a prominent issue. For example, studies reveal that only 25% of computing jobs in the United States are held by women, while Black and Hispanic individuals make up just 9% of the tech workforce combined. Additionally, research indicates that LGBTQ+ individuals are underrepresented in tech, with only 2.3% of tech workers identifying as LGBTQ+. Despite these challenges, there are promising signs of progress. Companies are increasingly recognizing the importance of diversity and inclusion initiatives, with some allocating significant resources to address these issues. For instance, tech giants like Google and Microsoft have committed millions of USD to diversity programs aimed at recruiting and retaining underrepresented talent. As discussions surrounding diversity in tech continue to evolve, understanding the statistical landscape is crucial in fostering meaningful change and creating a more inclusive industry for all. Editor’s Choice In 2021, 7.9% of the US labor force was employed in technology. Women hold only 26.7% of tech employment, while men hold 73.3% of these positions. White Americans hold 62.5% of the positions in the US tech sector. Asian Americans account for 20% of jobs, Latinx Americans 8%, and Black Americans 7%. 83.3% of tech executives in the US are white. Black Americans comprised 14% of the population in 2019 but held only 7% of tech employment. For the same position, at the same business, and with the same experience, women in tech are typically paid 3% less than men. The high-tech sector employs more men (64% against 52%), Asian Americans (14% compared to 5.8%), and white people (68.5% versus 63.5%) compared to other industries. The tech industry is urged to prioritize inclusion when hiring, mentoring, and retaining employees to bridge the digital skills gap. Black professionals only account for 4% of all tech workers despite being 13% of the US workforce. Hispanic professionals hold just 8% of all STEM jobs despite being 17% of the national workforce. Only 22% of workers in tech are ethnic minorities. Gender diversity in tech is low, with just 26% of jobs in computer-related sectors occupied by women. Companies with diverse teams have higher profitability, with those in the top quartile for gender diversity being 25% more likely to have above-average profitability. Every month, the tech industry adds about 9,600 jobs to the U.S. economy. Between May 2009 and May 2015, over 800,000 net STEM jobs were added to the U.S. economy. STEM jobs are expected to grow by another 8.9% between 2015 and 2024. The percentage of black and Hispanic employees at major tech companies is very low, making up just one to three percent of the tech workforce. Tech hiring relies heavily on poaching and incentives, creating an unsustainable ecosystem ripe for disruption. Recruiters have a significant role in disrupting the hiring process to support diversity and inclusion. You May Also Like To Read Outsourcing Statistics Digital Transformation Statistics Internet of Things Statistics Computer Vision Statistics
Summary Since 2017, GEO shares have fallen sharply from $30 to ~$8.50 per share, at one point below even the book value of $8.19 per share. President Biden recently signed an executive order that banned the renewal of Department of Justice contracts with private prisons, but the effect on GEO is way way less than the market thinks. The border crisis renders ICE dependent on GEO for capacity, making it near impossible for ICE to cut ties in the near future. With a market cap of just $1.02 Billion, GEO has the potential to increase 2-3x in the next 6-12 months. cropped image of african american prisoner reading book LightFieldStudios/iStock via Getty Images Thesis GEO Group (GEO) is a deeply mispriced provider of privately-owned prisons, falling from a price of $30+ in early 2017 to the current price of $8.50 per share. GEO has fallen primarily as a result of concerns about legislation regarding private prisons, a canceled dividend, the likely shift away from a REIT structure, and high levels of debt. These overblown concerns have created a pretty solid structural opportunity. kmosby1992@gmail.com password kmosby1992@gmail.com Subscribe Company overview GEO operates in several segments, such as GEO care, International services, and U.S. Secure Services. Source: Annual report 1 - U.S. Secure Services U.S. Secure services account for the majority of their revenue, 67%, and includes their correctional facilities and processing centers. Secure services manage 74,000 beds across 58 facilities as of the 2020 annual report. GEO transport is included in U.S. secure services, but we felt it warranted its own paragraph. GEO transport provides secure transportation services to government agencies. With 400 customized, U.S. Department of Transportation compliant vehicles, GEO transport drove more than 14 million miles in 2020. 2 - GEO Care GEO care is a series of programs designed to reintegrate inmates and troubled youth into society. They operate through reentry centers, non-residential reentry programs, and youth treatment programs. GEO care operates approximately 4-dozen reentry centers, which provide housing, employment assistance, rehabilitation, substance abuse counseling, and vocational and education programs to current and former inmates. Through their reentry segment, they operate more than 70 non-residential reentry programs that provide behavioral assessments, treatment, supervision, and education. GEO care made up 23% of total 2020 revenue. Geo monitoring is included in GEO care. Through a wholly-owned subsidiary, BI Inc., GEO offers monitoring technology for parolees, probationers, pretrial defendants, and individuals involved in the immigration process. As of the 2020 annual report, BI helps monitor ~155,000 individuals across all 50 states. 3 - International operations International operations made up only 10% of revenue in 2020, but it is showing signs of growth. GEO recently landed a 10-year contract with the United kingdom, which they expect to total $760 million in revenue over the course of the contract. They also landed an 8-year contract with the Scottish Prison Service, which grants an annualized revenue of $39 million and has a 4-year renewal period. Why is GEO Mispriced? While there are several reasons for the dramatic reduction in share price over the last 4 years, the main reason was the looming fear of legislation destroying privately owned prisons. To a degree, this fear materialized on January 26th, 2021, when President Biden signed an Executive Order ordering the Attorney General not to renew any Department of Justice contracts with "privately operated criminal detention facilities." At face value, this order seems as though it would have a devastating impact on GEO. However, only ~25% of total revenue is impacted in any form by this order. The executive order only concerns branches of the Department of Justice. Only 2 DOJ branches have business connections with GEO, the US Marshals (USMS), and the Bureau of Prisons (BOP). Source: Annual report It is imperative to note that Immigration and Customs Enforcement (ICE), is not a branch of the DOJ and is therefore unaffected by this order. Individual states, as well as other countries, are unaffected by this order Bureau of Prisons GEO currently holds several agreements with the BOP relating to operations of prisons across the country. As of year-end 2020, agreements involving the BOP accounted for 14% of total revenue. All revenue from the BOP will not disappear, as the executive order does not impact reentry facilities. In 2Q21, after the executive order was made, GEO renewed 5 BOP reentry contracts. GEO even scored a new contract with the BOP, regarding the construction and operation of a new facility in Tampa. United States Marshal Service The United States Marshal Service does not own o... Visit https://dataone.org/datasets/sha256%3A900514e651e0d2c774ad90f358c9db90884c2baf98c068f470b290b3c4b3103a for complete metadata about this dataset.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘US non-voters poll data’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/yamqwe/us-non-voters-poll-datae on 28 January 2022.
--- Dataset description provided by original source is as follows ---
This dataset contains the data behind Why Many Americans Don't Vote.
Data presented here comes from polling done by Ipsos for FiveThirtyEight, using Ipsos’s KnowledgePanel, a probability-based online panel that is recruited to be representative of the U.S. population. The poll was conducted from Sept. 15 to Sept. 25 among a sample of U.S. citizens that oversampled young, Black and Hispanic respondents, with 8,327 respondents, and was weighted according to general population benchmarks for U.S. citizens from the U.S. Census Bureau’s Current Population Survey March 2019 Supplement. The voter file company Aristotle then matched respondents to a voter file to more accurately understand their voting history using the panelist’s first name, last name, zip code, and eight characters of their address, using the National Change of Address program if applicable. Sixty-four percent of the sample (5,355 respondents) matched, although we also included respondents who did not match the voter file but described themselves as voting “rarely” or “never” in our survey, so as to avoid underrepresenting nonvoters, who are less likely to be included in the voter file to begin with. We dropped respondents who were only eligible to vote in three elections or fewer. We defined those who almost always vote as those who voted in all (or all but one) of the national elections (presidential and midterm) they were eligible to vote in since 2000; those who vote sometimes as those who voted in at least two elections, but fewer than all the elections they were eligible to vote in (or all but one); and those who rarely or never vote as those who voted in no elections, or just one.
The data included here is the final sample we used: 5,239 respondents who matched to the voter file and whose verified vote history we have, and 597 respondents who did not match to the voter file and described themselves as voting "rarely" or "never," all of whom have been eligible for at least 4 elections.
If you find this information useful, please let us know.
License: Creative Commons Attribution 4.0 International License
Source: https://github.com/fivethirtyeight/data/tree/master/non-voters
This dataset was created by data.world's Admin and contains around 6000 samples along with Race, Q27 6, technical information and other features such as: - Q4 6 - Q8 3 - and more.
- Analyze Q10 3 in relation to Q8 6
- Study the influence of Q6 on Q10 4
- More datasets
If you use this dataset in your research, please credit data.world's Admin
--- Original source retains full ownership of the source dataset ---
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median household incomes for various household sizes in Pollock, LA, as reported by the U.S. Census Bureau. The dataset highlights the variation in median household income with the size of the family unit, offering valuable insights into economic trends and disparities within different household sizes, aiding in data analysis and decision-making.
Key observations
https://i.neilsberg.com/ch/pollock-la-median-household-income-by-household-size.jpeg" alt="Pollock, LA median household income, by household size (in 2022 inflation-adjusted dollars)">
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Household Sizes:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Pollock median household income. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Unemployment Rate in the United States increased to 4.20 percent in July from 4.10 percent in June of 2025. This dataset provides the latest reported value for - United States Unemployment Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Version 11.1 Release Date: August 22, 2022
The Office of the Geographer and Global Issues at the U.S. Department of State produces the Large Scale International Boundaries (LSIB) dataset. These data and their derivatives are the only international boundary lines approved for U.S. Government use. They reflect U.S. Government policy, and not necessarily de facto limits of control. This dataset is a National Geospatial Data Asset.
Sources for these data include treaties, relevant maps, and data from boundary commissions and national mapping agencies. Where available, the dataset incorporates information from courts, tribunals, and international arbitrations. The research and recovery of the data involves analysis of satellite imagery and elevation data. Due to the limitations of source materials and processing techniques, most lines are within 100 meters of their true position on the ground.
The dataset uses the following attributes: Attribute Name Explanation Country Code Country-level codes are from the Geopolitical Entities, Names, and Codes Standard (GENC). The Q2 code denotes a line representing a boundary associated with an area not in GENC. Country Names Names approved by the U.S. Board on Geographic Names (BGN). Names for lines associated with a Q2 code are descriptive and are not necessarily BGN-approved. Label Required text label for the line segment where scale permits Rank/Status Rank 1: International Boundary Rank 2: Other Line of International Separation Rank 3: Special Line Notes Explanation of any applicable special circumstances Cartographic Usage Depiction of the LSIB requires a visual differentiation between the three categories of boundaries: International Boundaries (Rank 1), Other Lines of International Separation (Rank 2), and Special Lines (Rank 3). Rank 1 lines must be the most visually prominent. Rank 2 lines must be less visually prominent than Rank 1 lines. Rank 3 lines must be shown in a manner visually subordinate to Ranks 1 and 2. Where scale permits, Rank 2 and 3 lines must be labeled in accordance with the “Label” field. Data marked with a Rank 2 or 3 designation does not necessarily correspond to a disputed boundary. Additional cartographic information can be found in Guidance Bulletins (https://hiu.state.gov/data/cartographic_guidance_bulletins/) published by the Office of the Geographer and Global Issues. Please direct inquiries to internationalboundaries@state.gov.
The lines in the LSIB dataset are the product of decades of collaboration between geographers at the Department of State and the National Geospatial-Intelligence Agency with contributions from the Central Intelligence Agency and the UK Defence Geographic Centre. Attribution is welcome: U.S. Department of State, Office of the Geographer and Global Issues.
This version of the LSIB contains changes and accuracy refinements for the following line segments. These changes reflect improvements in spatial accuracy derived from newly available source materials, an ongoing review process, or the publication of new treaties or agreements. Changes to lines include: • Akrotiri (UK) / Cyprus • Albania / Montenegro • Albania / Greece • Albania / North Macedonia • Armenia / Turkey • Austria / Czechia • Austria / Slovakia • Austria / Hungary • Austria / Slovenia • Austria / Germany • Austria / Italy • Austria / Switzerland • Azerbaijan / Turkey • Azerbaijan / Iran • Belarus / Latvia • Belarus / Russia • Belarus / Ukraine • Belarus / Poland • Bhutan / India • Bhutan / China • Bulgaria / Turkey • Bulgaria / Romania • Bulgaria / Serbia • Bulgaria / Romania • China / Tajikistan • China / India • Croatia / Slovenia • Croatia / Hungary • Croatia / Serbia • Croatia / Montenegro • Czechia / Slovakia • Czechia / Poland • Czechia / Germany • Finland / Russia • Finland / Norway • Finland / Sweden • France / Italy • Georgia / Turkey • Germany / Poland • Germany / Switzerland • Greece / North Macedonia • Guyana / Suriname • Hungary / Slovenia • Hungary / Serbia • Hungary / Romania • Hungary / Ukraine • Iran / Turkey • Iraq / Turkey • Italy / Slovenia • Italy / Switzerland • Italy / Vatican City • Italy / San Marino • Kazakhstan / Russia • Kazakhstan / Uzbekistan • Kosovo / north Macedonia • Kosovo / Serbia • Kyrgyzstan / Tajikistan • Kyrgyzstan / Uzbekistan • Latvia / Russia • Latvia / Lithuania • Lithuania / Poland • Lithuania / Russia • Moldova / Ukraine • Moldova / Romania • Norway / Russia • Norway / Sweden • Poland / Russia • Poland / Ukraine • Poland / Slovakia • Romania / Ukraine • Romania / Serbia • Russia / Ukraine • Syria / Turkey • Tajikistan / Uzbekistan
This release also contains topology fixes, land boundary terminus refinements, and tripoint adjustments.
While U.S. Government works prepared by employees of the U.S. Government as part of their official duties are not subject to Federal copyright protection (see 17 U.S.C. § 105), copyrighted material incorporated in U.S. Government works retains its copyright protection. The works on or made available through download from the U.S. Department of State’s website may not be used in any manner that infringes any intellectual property rights or other proprietary rights held by any third party. Use of any copyrighted material beyond what is allowed by fair use or other exemptions may require appropriate permission from the relevant rightsholder. With respect to works on or made available through download from the U.S. Department of State’s website, neither the U.S. Government nor any of its agencies, employees, agents, or contractors make any representations or warranties—express, implied, or statutory—as to the validity, accuracy, completeness, or fitness for a particular purpose; nor represent that use of such works would not infringe privately owned rights; nor assume any liability resulting from use of such works; and shall in no way be liable for any costs, expenses, claims, or demands arising out of use of such works.
This is a tile of the National Elevation Dataset (NED) is 1/3 arc-second resolution. The National Elevation Dataset (NED) serves the elevation layer of The National Map, and provides basic elevation information for earth science studies and mapping applications in the United States. Scientists and resource managers use NED data for global change research, hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. The NED is an elevation dataset that consists of seamless layers and a high resolution layer. Each of these layers are composed of the best available raster elevation data of the conterminous United States, Alaska, Hawaii, territorial islands, Mexico and Canada. The NED is updated continually as new data become available. All NED data are in the public domain. The NED are derived from diverse source data that are processed to a common coordinate system and unit of vertical measure. These data are distributed in geographic coordinates in units of decimal degrees, and in conformance with the North American Datum of 1983 (NAD 83). All elevation values are in meters and, over the continental United States, are referenced to the North American Vertical Datum of 1988 (NAVD 88). The vertical reference will vary in other areas. NED data are available nationally (except for Alaska) at resolutions of 1 arc-second (approx. 30 meters) and 1/3 arc-second (approx. 10 meters), and in limited areas at 1/9 arc-second (approx. 3 meters). In most of Alaska, only lower resolution source data are available. As a result, most NED data for Alaska are at 2-arc-second (approx. 60 meters) grid spacing. Part of Alaska is available at the 1- and 1/3-arc-second resolution from IFSAR collections starting in 2010. Plans are in place for collection of statewide IFSAR in Alaska through 2016.
This is a tile of the National Elevation Dataset (NED) is 1/3 arc-second resolution. The National Elevation Dataset (NED) serves the elevation layer of The National Map, and provides basic elevation information for earth science studies and mapping applications in the United States. Scientists and resource managers use NED data for global change research, hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. The NED is an elevation dataset that consists of seamless layers and a high resolution layer. Each of these layers are composed of the best available raster elevation data of the conterminous United States, Alaska, Hawaii, territorial islands, Mexico and Canada. The NED is updated continually as new data become available. All NED data are in the public domain. The NED are derived from diverse source data that are processed to a common coordinate system and unit of vertical measure. These data are distributed in geographic coordinates in units of decimal degrees, and in conformance with the North American Datum of 1983 (NAD 83). All elevation values are in meters and, over the continental United States, are referenced to the North American Vertical Datum of 1988 (NAVD 88). The vertical reference will vary in other areas. NED data are available nationally (except for Alaska) at resolutions of 1 arc-second (approx. 30 meters) and 1/3 arc-second (approx. 10 meters), and in limited areas at 1/9 arc-second (approx. 3 meters). In most of Alaska, only lower resolution source data are available. As a result, most NED data for Alaska are at 2-arc-second (approx. 60 meters) grid spacing. Part of Alaska is available at the 1- and 1/3-arc-second resolution from IFSAR collections starting in 2010. Plans are in place for collection of statewide IFSAR in Alaska through 2016.
As of October 2024, there were 133.89 million full-time employees in the United States. This is a slight decrease from the previous month, when there were 134.15 million full-time employees. The impact COVID-19 on employment In December 2019, the COVID-19 virus began its spread across the globe. Since being classified as a pandemic, the virus caused a global health crisis that has taken the lives of millions of people worldwide. The COVID-19 pandemic changed many facets of society, most significantly, the economy. In the first years, many businesses across all industries were forced to shut down, with large numbers of employees being laid off. The economy continued its recovery in 2022 with the nationwide unemployment rate returning to a more normal 3.4 percent as of April 2023. Unemployment benefits Because so many people in the United States lost their jobs, record numbers of individuals applied for unemployment insurance for the first time. As an early response to this nation-wide upheaval, the government issued relief checks and extended the benefits paid by unemployment insurance. In May 2020, the amount of unemployment insurance benefits paid rose to 23.73 billion U.S. dollars. As of December 2022, this value had declined to 2.24 billion U.S. dollars.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median household incomes for various household sizes in Good Hope, GA, as reported by the U.S. Census Bureau. The dataset highlights the variation in median household income with the size of the family unit, offering valuable insights into economic trends and disparities within different household sizes, aiding in data analysis and decision-making.
Key observations
https://i.neilsberg.com/ch/good-hope-ga-median-household-income-by-household-size.jpeg" alt="Good Hope, GA median household income, by household size (in 2022 inflation-adjusted dollars)">
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Household Sizes:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Good Hope median household income. You can refer the same here
Specific areas of critical habitat for the Indo-Pacific coral species Isopora crateriformis proposed for designation include marine area around 3 island units in American Samoa (Tutuila, Ofu & Olosega, and Ta'u) with suitable hard-bottom habitat within the depth range 0-20 m, as described below.Specific areas of critical habitat were delineated in four steps: (1) General information was used to delineate soft vs. hard substrates, leaving only hard substrate areas; (2) for the hard substrate areas identified in Step 1, specific substrate information was used to delineate unsuitable vs. suitable hard substrates, leaving only the latter; (3) for the suitable hard substrate areas identified in Step 2, we used water quality information to further delineate suitable vs. unsuitable areas; and (4) from the suitable areas identified in Steps 1-3, we removed any overlapping artificial substrates and managed areas. The four steps were implemented for each of the 18 units as follows:For Step 1, we used comprehensive hard-soft substrate maps developed by PIFSC (PIFSC 2021) to delineate soft vs. hard substrates, leaving only hard substrate areas within the combined depth ranges of all listed species in each unit for 16 of the 18 units. For Wake Atoll, we used the substrate map from PIBHMC (2021). For French Frigate Shoals, we used the geomorphological structure component of the maps developed by NCCOS (2003).For Step 2, we started with the hard substrate areas identified in Step 1, then distinguished unsuitable vs. suitable hard substrates. Many hard substrates are unsuitable because: (1) highly-fluctuating physical conditions cause extreme changes in water quality (e.g., shallow pavement and rubble, especially on reef flats); (2) water motion continuously mobilizes sediment (e.g., pavement with sand channels) or unstable substrate (e.g., rubble); or (3) flat, low-relief areas provide poor settlement and growth habitat (e.g., pavement). Removal of these areas left suitable hard substrates, including spur-and-groove, individual patch reef, aggregate reef, aggregated patch reef, scattered coral/rock, and rock/boulder. For this step, primary information sources were Brainard at al. (2008, 2012, 2019), NCCOS (2003, 2005, 2010), PIBHMC (2021), PIFSC (2021), the detailed public comment letters from the Territories (AS DMWR 2021, CNMI DLNR 2021, Guam DOAG 2021), and the American Samoa, Guam, CNMI, PRIA, and NWHI chapters in Waddell and Clarke (2008). Additional sources for individual units are cited in the unit sections below.For Step 3, starting with the suitable hard substrate areas identified in Step 2, we used water quality information to further delineate suitable vs. unsuitable areas. Some of the areas identified in Step 2 are chronically subject to pollution such as excessive nutrients, excessive sediment, contaminants, or other water quality problems, making them unsuitable. Generally, such areas occur in enclosed lagoons and inner harbors where there is high runoff and limited water circulation. Outside of such areas, point and non-point sources of pollution generally do not overlap with suitable hard substrates because wastewater outfalls are located on soft substrates beyond the reef slopes, and stormwater and freshwater discharge occurs primarily on soft substrates (sand or mud) or unsuitable ard substrates (pavement or rubble) along or near shorelines. For this step, primary information sources were Brainard at al. (2008, 2012, 2019), EPA (2021a-f), the detailed public comment letters from the Territories (AS DMWR 2021, CNMI DLNR 2021, Guam DOAG 2021), Territory water quality assessments (AS EPA 2020, CNMI BECQ 2018), and sources for individual units cited in the unit sections below.For Step 4, from the suitable areas identified via the above three steps, we removed any artificial substrates and managed areas, because they do not provide the essential feature, as explained in section 3.2.3 above. This only applies to existing artificial substrates and managed areas, not proposed or planned artificial substrates and managed areas.For more details and complete citations see the Critical Habitat Information Report: https://www.fisheries.noaa.gov/s3/2023-11/03-coral-critical-habitat-report-20231114-final.pdfLinks to the full text of the proposed rule in the Federal Register and other supporting materials can be found here: https://www.fisheries.noaa.gov/action/proposed-rule-designate-critical-habitat-indo-pacific-coralsLink to NOAA Fisheries proposed rule pageLink to InPortLink to NOAA Fisheries Critical Habitat WebpageShapefile DownloadPDF Map
In terms of population size, the sex ratio in the United States favors females, although the gender gap is remaining stable. In 2010, there were around 5.17 million more women, with the difference projected to decrease to around 3 million by 2027.
Gender ratios by U.S. state In the United States, the resident population was estimated to be around 331.89 million in 2021. The gender distribution of the nation has remained steady for several years, with women accounting for approximately 51.1 percent of the population since 2013. Females outnumbered males in the majority of states across the country in 2020, and there were eleven states where the gender ratio favored men.
Metro areas by population National differences between male and female populations can also be analyzed by metropolitan areas. In general, a metropolitan area is a region with a main city at its center and adjacent communities that are all connected by social and economic factors. The largest metro areas in the U.S. are New York, Los Angeles, and Chicago. In 2019, there were more women than men in all three of those areas, but Jackson, Missouri was the metro area with the highest share of female population.
The United States Geological Survey (USGS) - Science Analytics and Synthesis (SAS) - Gap Analysis Project (GAP) manages the Protected Areas Database of the United States (PAD-US), an Arc10x geodatabase, that includes a full inventory of areas dedicated to the preservation of biological diversity and to other natural, recreation, historic, and cultural uses, managed for these purposes through legal or other effective means (www.usgs.gov/core-science-systems/science-analytics-and-synthesis/gap/science/protected-areas). The PAD-US is developed in partnership with many organizations, including coordination groups at the [U.S.] Federal level, lead organizations for each State, and a number of national and other non-governmental organizations whose work is closely related to the PAD-US. Learn more about the USGS PAD-US partners program here: www.usgs.gov/core-science-systems/science-analytics-and-synthesis/gap/science/pad-us-data-stewards. The United Nations Environmental Program - World Conservation Monitoring Centre (UNEP-WCMC) tracks global progress toward biodiversity protection targets enacted by the Convention on Biological Diversity (CBD) through the World Database on Protected Areas (WDPA) and World Database on Other Effective Area-based Conservation Measures (WD-OECM) available at: www.protectedplanet.net. See the Aichi Target 11 dashboard (www.protectedplanet.net/en/thematic-areas/global-partnership-on-aichi-target-11) for official protection statistics recognized globally and developed for the CBD, or here for more information and statistics on the United States of America's protected areas: www.protectedplanet.net/country/USA. It is important to note statistics published by the National Oceanic and Atmospheric Administration (NOAA) Marine Protected Areas (MPA) Center (www.marineprotectedareas.noaa.gov/dataanalysis/mpainventory/) and the USGS-GAP (www.usgs.gov/core-science-systems/science-analytics-and-synthesis/gap/science/pad-us-statistics-and-reports) differ from statistics published by the UNEP-WCMC as methods to remove overlapping designations differ slightly and U.S. Territories are reported separately by the UNEP-WCMC (e.g. The largest MPA, "Pacific Remote Islands Marine Monument" is attributed to the United States Minor Outlying Islands statistics). At the time of PAD-US 2.1 publication (USGS-GAP, 2020), NOAA reported 26% of U.S. marine waters (including the Great Lakes) as protected in an MPA that meets the International Union for Conservation of Nature (IUCN) definition of biodiversity protection (www.iucn.org/theme/protected-areas/about). USGS-GAP released PAD-US 3.0 Statistics and Reports in the summer of 2022. The relationship between the USGS, the NOAA, and the UNEP-WCMC is as follows: - USGS manages and publishes the full inventory of U.S. marine and terrestrial protected areas data in the PAD-US representing many values, developed in collaboration with a partnership network in the U.S. and; - USGS is the primary source of U.S. marine and terrestrial protected areas data for the WDPA, developed from a subset of the PAD-US in collaboration with the NOAA, other agencies and non-governmental organizations in the U.S., and the UNEP-WCMC and; - UNEP-WCMC is the authoritative source of global protected area statistics from the WDPA and WD-OECM and; - NOAA is the authoritative source of MPA data in the PAD-US and MPA statistics in the U.S. and; - USGS is the authoritative source of PAD-US statistics (including areas primarily managed for biodiversity, multiple uses including natural resource extraction, and public access). The PAD-US 3.0 Combined Marine, Fee, Designation, Easement feature class (GAP Status Code 1 and 2 only) is the source of protected areas data in this WDPA update. Tribal areas and military lands represented in the PAD-US Proclamation feature class as GAP Status Code 4 (no known mandate for biodiversity protection) are not included as spatial data to represent internal protected areas are not available at this time. The USGS submitted more than 51,000 protected areas from PAD-US 3.0, including all 50 U.S. States and 6 U.S. Territories, to the UNEP-WCMC for inclusion in the WDPA, available at www.protectedplanet.net. The NOAA is the sole source of MPAs in PAD-US and the National Conservation Easement Database (NCED, www.conservationeasement.us/) is the source of conservation easements. The USGS aggregates authoritative federal lands data directly from managing agencies for PAD-US (https://ngda-gov-units-geoplatform.hub.arcgis.com/pages/federal-lands-workgroup), while a network of State data-stewards provide state, local government lands, and some land trust preserves. National nongovernmental organizations contribute spatial data directly (www.usgs.gov/core-science-systems/science-analytics-and-synthesis/gap/science/pad-us-data-stewards). The USGS translates the biodiversity focused subset of PAD-US into the WDPA schema (UNEP-WCMC, 2019) for efficient aggregation by the UNEP-WCMC. The USGS maintains WDPA Site Identifiers (WDPAID, WDPA_PID), a persistent identifier for each protected area, provided by UNEP-WCMC. Agency partners are encouraged to track WDPA Site Identifier values in source datasets to improve the efficiency and accuracy of PAD-US and WDPA updates. The IUCN protected areas in the U.S. are managed by thousands of agencies and organizations across the country and include over 51,000 designated sites such as National Parks, National Wildlife Refuges, National Monuments, Wilderness Areas, some State Parks, State Wildlife Management Areas, Local Nature Preserves, City Natural Areas, The Nature Conservancy and other Land Trust Preserves, and Conservation Easements. The boundaries of these protected places (some overlap) are represented as polygons in the PAD-US, along with informative descriptions such as Unit Name, Manager Name, and Designation Type. As the WDPA is a global dataset, their data standards (UNEP-WCMC 2019) require simplification to reduce the number of records included, focusing on the protected area site name and management authority as described in the Supplemental Information section in this metadata record. Given the numerous organizations involved, sites may be added or removed from the WDPA between PAD-US updates. These differences may reflect actual change in protected area status; however, they also reflect the dynamic nature of spatial data or Geographic Information Systems (GIS). Many agencies and non-governmental organizations are working to improve the accuracy of protected area boundaries, the consistency of attributes, and inventory completeness between PAD-US updates. In addition, USGS continually seeks partners to review and refine the assignment of conservation measures in the PAD-US.