Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
The High Resolution Digital Elevation Model (HRDEM) product is derived from airborne LiDAR data (mainly in the south) and satellite images in the north. The complete coverage of the Canadian territory is gradually being established. It includes a Digital Terrain Model (DTM), a Digital Surface Model (DSM) and other derived data. For DTM datasets, derived data available are slope, aspect, shaded relief, color relief and color shaded relief maps and for DSM datasets, derived data available are shaded relief, color relief and color shaded relief maps. The productive forest line is used to separate the northern and the southern parts of the country. This line is approximate and may change based on requirements. In the southern part of the country (south of the productive forest line), DTM and DSM datasets are generated from airborne LiDAR data. They are offered at a 1 m or 2 m resolution and projected to the UTM NAD83 (CSRS) coordinate system and the corresponding zones. The datasets at a 1 m resolution cover an area of 10 km x 10 km while datasets at a 2 m resolution cover an area of 20 km by 20 km. In the northern part of the country (north of the productive forest line), due to the low density of vegetation and infrastructure, only DSM datasets are generally generated. Most of these datasets have optical digital images as their source data. They are generated at a 2 m resolution using the Polar Stereographic North coordinate system referenced to WGS84 horizontal datum or UTM NAD83 (CSRS) coordinate system. Each dataset covers an area of 50 km by 50 km. For some locations in the north, DSM and DTM datasets can also be generated from airborne LiDAR data. In this case, these products will be generated with the same specifications as those generated from airborne LiDAR in the southern part of the country. The HRDEM product is referenced to the Canadian Geodetic Vertical Datum of 2013 (CGVD2013), which is now the reference standard for heights across Canada. Source data for HRDEM datasets is acquired through multiple projects with different partners. Since data is being acquired by project, there is no integration or edgematching done between projects. The tiles are aligned within each project. The product High Resolution Digital Elevation Model (HRDEM) is part of the CanElevation Series created in support to the National Elevation Data Strategy implemented by NRCan. Collaboration is a key factor to the success of the National Elevation Data Strategy. Refer to the “Supporting Document” section to access the list of the different partners including links to their respective data.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Elevation data is the representation of the height of the ground at a location on earth. This data allows users to discover the extent of elevation products, and the metadata associated with it.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This collection is a legacy product that is no longer supported. It may not meet current government standards. The Canadian Digital Elevation Model (CDEM) is part of Natural Resources Canada's altimetry system designed to better meet the users' needs for elevation data and products. The CDEM stems from the existing Canadian Digital Elevation Data (CDED). In these data, elevations can be either ground or reflective surface elevations. A CDEM mosaic can be obtained for a pre-defined or user-defined extent. The coverage and resolution of a mosaic varies according to latitude and to the extent of the requested area. Derived products such as slope, shaded relief and colour shaded relief maps can also be generated on demand by using the Geospatial-Data Extraction tool. Data can then be saved in many formats. The pre-packaged GeoTiff datasets are based on the National Topographic System of Canada (NTS) at the 1:250 000 scale; the NTS index file is available in the Resources section in many formats.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
The Provincial Digital Elevation Model (PDEM) is a general purpose dataset designed to represent true ground elevation and is based on best-available data across the province. This dataset has not been conditioned for any specific application.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
The digital elevation models (DEM) are 2 m resolution raster elevation products that were generated from the Ontario Classified Point Cloud (Imagery-Derived) data. The point clouds were created via a pixel-autocorrelation process from the stereo aerial photography of the Geospatial Ontario (GEO) imagery program. The DEM does not represent a full ‘bare-earth’ elevation surface. There are areas where there are very few points classified as ground and interpolation has occurred across the resulting voids. Points classified as ground have not been assessed for accuracy to determine if they represent true ground features. Some features are still raised above ground surface, such as larger buildings, larger forest stands and other raised features. This data is for geospatial tech specialists, and is used by government, municipalities, conservation authorities and the private sector for land use planning and environmental analysis.
Elevation data is the representation of the height of the ground at a location on earth. This data allows users to discover the extent of elevation products, and the metadata associated with it.
In 2008, the U.S. Geological Survey (USGS), Woods Hole Coastal and Marine Science Center (WHCMSC), in cooperation with the U.S. Army Corps of Engineers conducted a geophysical and sampling survey of the riverbed of the Upper St. Clair River between Port Huron, MI, and Sarnia, Ontario, Canada. The objectives were to define the Quaternary geologic framework of the St. Clair River to evaluate the relationship between morphologic change of the riverbed and underlying stratigraphy. This report presents the geophysical and sample data collected from the St. Clair River, May 29-June 6, 2008 as part of the International Upper Great Lakes Study, a 5-year project funded by the International Joint Commission of the United States and Canada to examine whether physical changes in the St. Clair River are affecting water levels within the upper Great Lakes, to assess regulation plans for outflows from Lake Superior, and to examine the potential effect of climate change on the Great Lakes water levels ( http://www.iugls.org). This document makes available the data that were used in a separate report, U.S. Geological Survey Open-File Report 2009-1137, which detailed the interpretations of the Quaternary geologic framework of the region. This report includes a description of the suite of high-resolution acoustic and sediment-sampling systems that were used to map the morphology, surficial sediment distribution, and underlying geology of the Upper St. Clair River during USGS field activity 2008-016-FA . Video and photographs of the riverbed were also collected and are included in this data release. Future analyses will be focused on substrate erosion and its effects on river-channel morphology and geometry. Ultimately, the International Upper Great Lakes Study will attempt to determine where physical changes in the St. Clair River affect water flow and, subsequently, water levels in the Upper Great Lakes.will attempt to determine where physical changes in the St. Clair River affect water flow and, subsequently, water levels in the Upper Great Lakes.
The digital elevation models (DEM) are 2 m resolution raster elevation products that were generated from the Ontario Classified Point Cloud (Imagery-Derived) data. The point clouds were created via a pixel-autocorrelation process from the stereo aerial photography of the Land Information Ontario (LIO) imagery program. The DEM does not represent a full ‘bare-earth’ elevation surface. There are areas where there are very few points classified as ground and interpolation has occurred across the resulting voids. Points classified as ground have not been assessed for accuracy to determine if they represent true ground features. Some features are still raised above ground surface, such as larger buildings, larger forest stands and other raised features. This data is for geospatial tech specialists, and is used by government, municipalities, conservation authorities and the private sector for land use planning and environmental analysis.
The Canadian Digital Elevation Model (CDEM) is part of Natural Resources Canada's altimetry system designed to better meet the users' needs for elevation data and products.
The CDEM stems from the existing Canadian Digital Elevation Data (CDED). In these data, elevations can be either ground or reflective surface elevations.
A CDEM mosaic can be obtained for a pre-defined or user-defined extent. The coverage and resolution of a mosaic varies according to latitude and to the extent of the requested area.
Derived products such as slope, shaded relief and colour shaded relief maps can also be generated on demand by using the Geospatial-Data Extraction tool. Data can then be saved in many formats.
The pre-packaged GeoTif datasets are based on the National Topographic System of Canada (NTS) at the 1:250 000 scale; the NTS index file is available in the Resources section in many formats.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Canada3D is a digital elevation model (DEM) produced by the Canadian Forestry Service, Ontario region. The DEM consists of an ordered array of ground elevations providing coverage of the Canadian landmass. It has been derived from the cells of the Canadian Digital Elevation Data (CDED) at the 1:250 000 scale. Canada3D is available in two levels of detail: grids regularly spaced at 30 or 300 arcseconds. Canada3D 30 and 300 are recorded separately in ASCII format. The elevation values are expressed in metres with respect to mean sea level (MSL), in accordance with the North American Datum of 1983 (NAD83).
This data set represents the elevation contour lines for the Regional Municipality of York, Ontario Canada. The interval of the contours is 5 meter and is stated above mean sea level. The data set was compiled from the 2016 digital elevation model having a 15cm resolution using ArcGIS 10.3.1 in a geodatabase format. Each arc representing a contour carries with it the elevation in meters above mean sea level. In past years, elevated structures (ramps and bridges) have been factored out of the elevation dataset. This year however, rather than being removed, "ramp or bridge" sections were instead differentiated by classification. A "Descriptor" field was created and populated with applicable classifications. This way, elevated feature presence can be controlled through symbology.
A hydrologically conditioned Digital elevation Model has been developed for the Greater Toronto Area of southern Ontario and for Lake Ontario. The model has been developed from 1:50 000 NTDB data onshore and Canadian Hydrographic Service bathymetric point data for Lake Ontario. Terrain specific interpolation and drainage enforcement techniques within the ARC/INFO TOPOGRID software module were used to interpolate the data to a gred cell of 30m. Verification of the model demonstrates that elevations are correct to plus or minus 3m. This digital elevation model is suitable for the automatic delineation of watersheds. This report documents the development of the model included on this compact disc. The model was developed as part of the Geological Survey of Canada Oak Ridges Moraine National Mapping and Hydrogeology programs in conjunction with the Ontario Ministry of Natural Resources and the Canadian Hydrographic Service. ; 3 metre accuracy
Available on CD Rom at the Map and Data Library. CD #015.
In 2008, the U.S. Geological Survey (USGS), Woods Hole Coastal and Marine Science Center (WHCMSC), in cooperation with the U.S. Army Corps of Engineers conducted a geophysical and sampling survey of the riverbed of the Upper St. Clair River between Port Huron, MI, and Sarnia, Ontario, Canada. The objectives were to define the Quaternary geologic framework of the St. Clair River to evaluate the relationship between morphologic change of the riverbed and underlying stratigraphy. This report presents the geophysical and sample data collected from the St. Clair River, May 29-June 6, 2008 as part of the International Upper Great Lakes Study, a 5-year project funded by the International Joint Commission of the United States and Canada to examine whether physical changes in the St. Clair River are affecting water levels within the upper Great Lakes, to assess regulation plans for outflows from Lake Superior, and to examine the potential effect of climate change on the Great Lakes water levels ( http://www.iugls.org). This document makes available the data that were used in a separate report, U.S. Geological Survey Open-File Report 2009-1137, which detailed the interpretations of the Quaternary geologic framework of the region. This report includes a description of the suite of high-resolution acoustic and sediment-sampling systems that were used to map the morphology, surficial sediment distribution, and underlying geology of the Upper St. Clair River during USGS field activity 2008-016-FA . Video and photographs of the riverbed were also collected and are included in this data release. Future analyses will be focused on substrate erosion and its effects on river-channel morphology and geometry. Ultimately, the International Upper Great Lakes Study will attempt to determine where physical changes in the St. Clair River affect water flow and, subsequently, water levels in the Upper Great Lakes.
https://www.ontario.ca/page/open-government-licence-ontariohttps://www.ontario.ca/page/open-government-licence-ontario
Zoom in on the map above and click your area of interest or use the Tile Index linked below to determine which package(s) you require for download.The DTM data is available in the form of 1-km by 1-km non-overlapping tiles grouped into packages for download.This dataset is a compilation of lidar data from multiple acquisition projects, as such specifications, parameters and sensors may vary by project. See the detailed User Guide linked below for additional information.You can monitor the availability and status of lidar projects on the Ontario Lidar Coverage map on the Ontario Elevation Mapping Program hub page. Now also available through a web service which exposes the data for visualization, geoprocessing and limited download. The service is best accessed through the ArcGIS REST API, either directly or by setting up an ArcGIS server connection using the REST endpoint URL. The service draws using the Web Mercator projection. For more information on what functionality is available and how to work with the service, read the Ontario Web Raster Services User Guide. If you have questions about how to use the service, email Geospatial Ontario (GEO) at geospatial@ontario.ca.Service Endpointshttps://ws.geoservices.lrc.gov.on.ca/arcgis5/rest/services/Elevation/Ontario_DTM_LidarDerived/ImageServerhttps://intra.ws.geoservices.lrc.gov.on.ca/arcgis5/rest/services/Elevation/Ontario_DTM_LidarDerived/ImageServer (Government of Ontario Internal Users)Additional Documentation Ontario DTM (Lidar-Derived) - User Guide (DOCX) OMAFRA Lidar 2016-2018 - Cochrane - Additional Contractor Metadata (PDF)OMAFRA Lidar 2016-2018 - Peterborough - Additional Contractor Metadata (PDF)OMAFRA Lidar 2016-2018 - Lake Erie - Additional Contractor Metadata (PDF)CLOCA Lidar 2018 - Additional Contractor Metadata (PDF)South Nation Lidar 2018-19 - Additional Contractor Metadata (PDF)OMAFRA Lidar 2022 - Lake Huron - Additional Contractor Metadata (PDF)OMAFRA Lidar 2022 - Lake Simcoe - Additional Contractor Metadata (PDF)Huron-Georgian Lidar 2022-23 - Additional Contractor Metadata (Word)Kawartha Lakes Lidar 2023 - Additional Contractor Metadata (Word)Sault Ste Marie Lidar 2023-24 - Additional Contractor Metadata (Word)Thunder Bay Lidar 2023-24 - Additional Contractor Metadata (Word)Timmins Lidar 2024 - Additional Contractor Metadata (Word) Ontario DTM (Lidar-Derived) - Tile Index (SHP) Ontario Lidar Project Extents (SHP)OMAFRA Lidar DTM 2016-2018 - Cochrane - Breaklines (SHP)OMAFRA Lidar DTM 2016-2018 - Peterborough - Breaklines (SHP)OMAFRA Lidar DTM 2016-2018 - Lake Erie - Breaklines (SHP)CLOCA Lidar DTM 2018 - Breaklines (SHP)South Nation Lidar DTM 2018-19 - Breaklines (SHP)Ottawa-Gatineau Lidar DTM 2019-20 - Breaklines (SHP)OMAFRA Lidar DTM 2022 - Lake Huron - Breaklines (SHP)OMAFRA Lidar DTM 2022 - Lake Simcoe - Breaklines (SHP)Eastern Ontario Lidar DTM 2021-22 - Breaklines (SHP)Muskoka Lidar DTM 2018 - Breaklines CGVD2013 (SHP) / CGVD28 (SHP)Muskoka Lidar DTM 2021 - Breaklines CGVD2013 (SHP) / CGVD28 (SHP)Muskoka Lidar DTM 2023 - Breaklines CGVD2013 (SHP) / CGVD28 (SHP)DEDSFM Huron-Georgian Bay 2022-23 - Breaklines (SHP)DEDSFM Kawartha Lakes 2023 - Breaklines (SHP)DEDSFM Sault Ste Marie 2023-24- UTM16 - Breaklines (SHP)DEDSFM Sault Ste Marie 2023-24- UTM17 - Breaklines (SHP)DEDSFM Sudbury 2023-24 - Breaklines (SHP)DEDSFM Thunder Bay 2023-24 - Breaklines (SHP)DEDSFM Timmins 2024 - Breaklines (SHP)Product PackagesDownload links for the Ontario DTM (Lidar-Derived) (Word)Projects:LEAP 2009GTA 2014-18OMAFRA 2016-18CLOCA 2018South Nation CA 2018-19Muskoka 2018-23York-Lake Simcoe 2019Ottawa River 2019-20Ottawa-Gatineau 2019-20Lake Nipissing 2020Hamilton-Niagara 2021Huron Shores 2021Eastern Ontario 2021-22OMAFRA Lake Huron 2022OMAFRA Lake Simcoe 2022Belleville 2022Digital Elevation Data to Support Flood Mapping 2022-26Huron-Georgian Bay 2022-23Kawartha Lakes 2023Sault Ste Marie 2023-24Sudbury 2023-24Thunder Bay 2023-24Timmins 2024Cataraqui 2024Chapleau 2024Dryden 2024Ignace 2024Northeastern Ontario 2024Sioux Lookout 2024Greater Toronto Area Lidar 2023StatusOn going: Data is continually being updatedMaintenance and Update FrequencyAs needed: Data is updated as deemed necessaryContactOntario Ministry of Natural Resources - Geospatial Ontario, geospatial@ontario.ca
NASADEM is a modernization of the Digital Elevation Model (DEM) and associated products generated from the Shuttle Radar Topography Mission (SRTM) data. Interferometric SAR data from SRTM were reprocessed with an optimized hybrid processing technique in producing the data products. The data rely on multiple radar images to create interferograms with 2-dimensional phase arrays that result in greater elevation accuracy. Because of inherent characteristics of interferometric data, it needs to be wrapped and unwrapped so the data are quantifiable. NASADEM relied on the latest unwrapping techniques and auxiliary data that were not available during the original processing of SRTM data. The optimized technique minimized data voids and extended spatial coverage of the SRTM. Additional voids were filled with a variety of sources including ASTER GDEM, Advanced Land Observing Satellite (ALOS) Panchromatic Remote sensing Instrument for Stereo Mapping (PRISM), USGS National Elevation Dataset (NED), and Canada and Alaska DEMs Global DEM Specifications. Vertical and tilt adjustments were applied based on ground control points and laser profiles from the Ice, Cloud and Land Elevation Satellite (ICESat) mission. This application improved the vertical accuracy, swath consistency, and uniformity within the swath mosaic. The NASADEM products are freely available through the Land Processes Distributed Active Archive Center (LP DAAC) at one arcsecond spacing. For more information about this dataset, visit the Land Processes Distributed Active Archive Center (LP DAAC)
https://www.ontario.ca/page/open-government-licence-ontariohttps://www.ontario.ca/page/open-government-licence-ontario
Many Ontario lidar point cloud datasets have been made available for direct download by the Government of Canada through the federal Open Government Portal under the LiDAR Point Clouds – CanElevation Series record. Instructions for bulk data download are available in the Download Instructions document linked from that page. To download individual tiles, zoom in on the map in GeoHub and click a tile for a pop-up containing a download link. See the LIO Support - Large Data Ordering Instructions to obtain a copy of data for projects that are not yet available for direct download. Data can be requested by project area or a set of tiles. To determine which project contains your area of interest or to view single tiles, zoom in on the map above and click. For bulk tile orders follow the link in the Additional Documentation section below to download the tile index in shapefile format. Data sizes by project area are listed below. The Ontario Point Cloud (Lidar-Derived) consists of points containing elevation and intensity information derived from returns collected by an airborne topographic lidar sensor. The minimum point cloud classes are Unclassified, Ground, Water, High and Low Noise. The data is structured into non-overlapping 1-km by 1-km tiles in LAZ format. This dataset is a compilation of lidar data from multiple acquisition projects, as such specifications, parameters, accuracy and sensors vary by project. Some projects have additional classes, such as vegetation and buildings. See the detailed User Guide and contractor metadata reports linked below for additional information, including information about interpreting the index for placement of data orders. Raster derivatives have been created from the point clouds. These products may meet your needs and are available for direct download. For a representation of bare earth, see the Ontario Digital Terrain Model (Lidar-Derived). For a model representing all surface features, see the Ontario Digital Surface Model (Lidar-Derived). You can monitor the availability and status of lidar projects on the Ontario Lidar Coverage map on the Ontario Elevation Mapping Program hub page. Additional Documentation Ontario Classified Point Cloud (Lidar-Derived) - User Guide (DOCX) OMAFRA Lidar 2016-18 - Cochrane - Additional Metadata (PDF)OMAFRA Lidar 2016-18 - Peterborough - Additional Metadata (PDF)OMAFRA Lidar 2016-18 - Lake Erie - Additional Metadata (PDF)CLOCA Lidar 2018 - Additional Contractor Metadata (PDF)South Nation Lidar 2018-19 - Additional Contractor Metadata (PDF)OMAFRA Lidar 2022 - Lake Huron - Additional Metadata (PDF)OMAFRA Lidar 2022 - Lake Simcoe - Additional Metadata (PDF)Huron-Georgian Bay Lidar 2022-23 - Additional Metadata (Word)Kawartha Lakes Lidar 2023 - Additional Metadata (Word)Sault Ste Marie Lidar 2023-24 - Additional Metadata (Word)Thunder Bay Lidar 2023-24 - Additional Metadata (Word)Timmins Lidar 2024 - Additional Metadata (Word) OMAFRA Lidar Point Cloud 2016-18 - Cochrane - Lift Metadata (SHP)OMAFRA Lidar Point Cloud 2016-18- Peterborough - Lift Metadata (SHP)OMAFRA Lidar Point Cloud 2016-18 - Lake Erie - Lift Metadata (SHP)CLOCA Lidar Point Cloud 2018 - Lift Metadata (SHP)South Nation Lidar Point Cloud 2018-19 - Lift Metadata (SHP)York-Lake Simcoe Lidar Point Cloud 2019 - Lift Metadata (SHP)Ottawa River Lidar Point Cloud 2019-20 - Lift Metadata (SHP)OMAFRA Lidar Point Cloud 2022 - Lake Huron - Lift Metadata (SHP)OMAFRA Lidar Point Cloud 2022 - Lake Simcoe - Lift Metadata (SHP)Eastern Ontario Lidar Point Cloud 2021-22 - Lift Medatadata (SHP)DEDSFM Huron-Georgian Bay Lidar Point Cloud 2022-23 - Lift Metadata (SHP)DEDSFM Kawartha Lakes Lidar Point Cloud 2023 - Lift Metadata (SHP)DEDSFM Sault Ste Marie Lidar Point Cloud 2023-24 - Lift Metadata (SHP)DEDSFM Sudbury Lidar Point Cloud 2023-24 - Lift Metadata (SHP)DEDSFM Thunder Bay Lidar Point Cloud 2023-24 - Lift Metadata (SHP)DEDSFM Timmins Lidar Point Cloud 2024 - Lift Metadata (SHP)GTA 2023 - Lift Metadata (SHP) Ontario Classified Point Cloud (Lidar-Derived) - Tile Index (SHP)Ontario Lidar Project Extents (SHP)Data Package SizesLEAP 2009 - 22.9 GBOMAFRA Lidar 2016-18 - Cochrane - 442 GBOMAFRA Lidar 2016-18 - Lake Erie - 1.22 TBOMAFRA Lidar 2016-18 - Peterborough - 443 GBGTA 2014 - 57.6 GBGTA 2015 - 63.4 GBBrampton 2015 - 5.9 GBPeel 2016 - 49.2 GBMilton 2017 - 15.3 GBHalton 2018 - 73 GBCLOCA 2018 - 36.2 GBSouth Nation 2018-19 - 72.4 GBYork Region-Lake Simcoe Watershed 2019 - 75 GBOttawa River 2019-20 - 836 GBLake Nipissing 2020 - 700 GBOttawa-Gatineau 2019-20 - 551 GBHamilton-Niagara 2021 - 660 GBOMAFRA Lidar 2022 - Lake Huron - 204 GBOMAFRA Lidar 2022 - Lake Simcoe - 154 GBBelleville 2022 - 1.09 TBEastern Ontario 2021-22 - 1.5 TBHuron Shores 2021 - 35.5 GBMuskoka 2018 - 72.1 GBMuskoka 2021 - 74.2 GBMuskoka 2023 - 532 GBDigital Elevation Data to Support Flood Mapping 2022-26:Huron-Georgian Bay 2022 - 1.37 TBHuron-Georgian Bay 2023 - 257 GBHuron-Georgian Bay 2023 Bruce - 95.2 GBKawartha Lakes 2023 - 385 GBSault Ste Marie 2023-24 - 1.15 TBSudbury 2023-24 - 741 GBThunder Bay 2023-24 - 654 GBTimmins 2024 - 318 GBCataraqui 2024 - 50.5 GBChapleau 2024GTA 2023 - 985 GBStatusOn going: Data is continually being updated Maintenance and Update FrequencyAs needed: Data is updated as deemed necessary ContactOntario Ministry of Natural Resources - Geospatial Ontario, geospatial@ontario.ca
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
These maps are available for the Far North Land Use Planning Area at 2 scales (1:100,000 and 1:250,000). The maps were created as a resource for community-based Land Use Planning in the Far North of Ontario.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Canada's relief is shown by a colour ramp to show elevation ranges. The highest values appear in Western Canada where the Rocky Mountains are located and also in Canada's North (on parts of Ellesmere and Baffin Islands). The lowest elevation values exist along all the coastlines and the areas of least topography exists in the prairies of Central Canada. The map also depicts four photographic images of Canadian terrain as well as tabular data on the highest elevations in Canada by Province and Territory.
description: Investigations of coastal change and coastal resources often require continuous elevation profiles from the seafloor to coastal terrestrial landscapes. Differences in elevation data collection in the terrestrial and marine environments result in separate elevation products that may not share a vertical datum. This data release contains the compilation of multiple elevation products into a continuous digital elevation model at a resolution of 3-arcseconds (approximately 90 meters) from the terrestrial landscape to the seafloor for the contiguous U.S. and portions of Mexico and Canada, focused on the coastal interface. All datasets were converted to a consistent horizontal datum, the North American Datum of 1983, but the native vertical datum for each dataset was not adjusted. Artifacts in the source elevation products were identified visually and replaced with other available elevation products when possible, corrected using various spatial tools, or otherwise marked for future correction.; abstract: Investigations of coastal change and coastal resources often require continuous elevation profiles from the seafloor to coastal terrestrial landscapes. Differences in elevation data collection in the terrestrial and marine environments result in separate elevation products that may not share a vertical datum. This data release contains the compilation of multiple elevation products into a continuous digital elevation model at a resolution of 3-arcseconds (approximately 90 meters) from the terrestrial landscape to the seafloor for the contiguous U.S. and portions of Mexico and Canada, focused on the coastal interface. All datasets were converted to a consistent horizontal datum, the North American Datum of 1983, but the native vertical datum for each dataset was not adjusted. Artifacts in the source elevation products were identified visually and replaced with other available elevation products when possible, corrected using various spatial tools, or otherwise marked for future correction.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Designed to represent true ground and bathymetric elevation, this DEM covers two sections of the Greater Toronto Area (GTA) along the western shoreline of Lake Ontario: * Hamilton in the west to Niagara-on-the-Lake in the east * Scarborough in the west to Port Hope in the east *[DEM]: digital elevation model
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
The High Resolution Digital Elevation Model (HRDEM) product is derived from airborne LiDAR data (mainly in the south) and satellite images in the north. The complete coverage of the Canadian territory is gradually being established. It includes a Digital Terrain Model (DTM), a Digital Surface Model (DSM) and other derived data. For DTM datasets, derived data available are slope, aspect, shaded relief, color relief and color shaded relief maps and for DSM datasets, derived data available are shaded relief, color relief and color shaded relief maps. The productive forest line is used to separate the northern and the southern parts of the country. This line is approximate and may change based on requirements. In the southern part of the country (south of the productive forest line), DTM and DSM datasets are generated from airborne LiDAR data. They are offered at a 1 m or 2 m resolution and projected to the UTM NAD83 (CSRS) coordinate system and the corresponding zones. The datasets at a 1 m resolution cover an area of 10 km x 10 km while datasets at a 2 m resolution cover an area of 20 km by 20 km. In the northern part of the country (north of the productive forest line), due to the low density of vegetation and infrastructure, only DSM datasets are generally generated. Most of these datasets have optical digital images as their source data. They are generated at a 2 m resolution using the Polar Stereographic North coordinate system referenced to WGS84 horizontal datum or UTM NAD83 (CSRS) coordinate system. Each dataset covers an area of 50 km by 50 km. For some locations in the north, DSM and DTM datasets can also be generated from airborne LiDAR data. In this case, these products will be generated with the same specifications as those generated from airborne LiDAR in the southern part of the country. The HRDEM product is referenced to the Canadian Geodetic Vertical Datum of 2013 (CGVD2013), which is now the reference standard for heights across Canada. Source data for HRDEM datasets is acquired through multiple projects with different partners. Since data is being acquired by project, there is no integration or edgematching done between projects. The tiles are aligned within each project. The product High Resolution Digital Elevation Model (HRDEM) is part of the CanElevation Series created in support to the National Elevation Data Strategy implemented by NRCan. Collaboration is a key factor to the success of the National Elevation Data Strategy. Refer to the “Supporting Document” section to access the list of the different partners including links to their respective data.