54 datasets found
  1. Indian Geospatial Dataset

    • kaggle.com
    Updated Jun 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    RITIK SHARMA (2024). Indian Geospatial Dataset [Dataset]. https://www.kaggle.com/datasets/ritiksharma07/indian-gis
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 8, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    RITIK SHARMA
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    This dataset contains comprehensive geospatial data detailing the geographical features and boundaries of India. It includes information on various geographic elements such as terrain, water bodies, administrative boundaries, and infrastructure, providing valuable insights for spatial analysis and mapping projects.

  2. Geospatial data for the Vegetation Mapping Inventory Project of Knife River...

    • catalog.data.gov
    • data.amerigeoss.org
    Updated Jun 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Geospatial data for the Vegetation Mapping Inventory Project of Knife River Indian Villages National Historic Site [Dataset]. https://catalog.data.gov/dataset/geospatial-data-for-the-vegetation-mapping-inventory-project-of-knife-river-indian-village
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Description

    The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. Vegetation map development for KNRI has somewhat different protocols than for other Parks. Normally photointerpretation is preceded by extensive field work which includes plot selection and vegetation sampling using detailed descriptions which are subsequently analyzed using ordination and other statistical techniques. The data are then summarized and association descriptions are assigned to each plot or, if the association is previously unrecognized, then a new association name is assigned. Subsequently, the plots locations are compared to its photographic signature and a photointerpretive key is developed. Given the very small size of KNRI and the extensive historical impact and alteration of the vegetation a simplified technique was used. NatureServe developed a list of potential vegetation types prior to any field work. This list was referenced during the field visit and modified after comparison of site characteristics and vegetation descriptions. Aerial photographs were viewed prior to the field visit and areas of like signature were differentiated. All vegetation and land-use information was then transferred to a GIS database using the latest grayscale USGS digital orthophoto quarter-quads as the base map and using a combination of on-screen digitizing and scanning techniques. Overall thematic map accuracy for the Park is considered 100% as all interpreted polygons received a filed visit for verification.

  3. Geospatial dataset for hydrologic analyses within the Indian subcontinent...

    • zenodo.org
    • data.niaid.nih.gov
    txt, zip
    Updated Sep 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gopi Goteti; Gopi Goteti (2024). Geospatial dataset for hydrologic analyses within the Indian subcontinent (GHI): Version 2 [Dataset]. http://doi.org/10.5281/zenodo.13852439
    Explore at:
    zip, txtAvailable download formats
    Dataset updated
    Sep 28, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Gopi Goteti; Gopi Goteti
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Indian subcontinent
    Description

    The following files are included:
    [Item 1 'stations_ghi.txt'] : complete station metadata, all 1677 stations, pipe(|) delimited
    [Item 2 'hydromet_annual.txt'] : hydrometeorological time series for stations in Groups 1, 2 and 3, annual, pipe(|) delimited
    [Item 3 'hydromet_monthly.txt'] : hydrometeorological time series for stations in Groups 1, 2 and 3, monthly, pipe(|) delimited
    [Item 4 'basins_ghi'] : one shapefile of ghi composite basins
    [Item 5 folder 'by_station'] : shapefiles of delineated catchment boundaries for stations in Groups 1, 2 and 3
    [Item 6 folder 'pdfs'] : PDF files of station summary, annual time series charts and monthly time series charts for stations in Groups 1, 2 and 3 (one PDF per composite basin

  4. Data from: India Village-Level Geospatial Socio-Economic Data Set: 1991,...

    • data.nasa.gov
    • data.staging.idas-ds1.appdat.jsc.nasa.gov
    • +1more
    Updated Apr 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.nasa.gov (2025). India Village-Level Geospatial Socio-Economic Data Set: 1991, 2001 [Dataset]. https://data.nasa.gov/dataset/india-village-level-geospatial-socio-economic-data-set-1991-2001
    Explore at:
    Dataset updated
    Apr 23, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Area covered
    India
    Description

    The India Village-Level Geospatial Socio-Economic Data Set: 1991, 2001 is a compilation of the finest level of administrative boundaries in India (village/town-level) and over 200 socio-economic variables collected during the Indian Census in 1991 and 2001. This data set was developed by digitizing village/town level boundaries from the official analog maps published by the Survey of India for 2001. This data set also utilized tabular data for 1991 and 2001 from the Primary Census Abstract (PCA) and Village Directory (VD) data series of the Indian census. The data are in UTM 44N projection and are distributed primarily as shapefiles. Separate files are provided for each of the 28 states (number of states during 1991 and 2001 census) and combined Union Territories for 1991 and 2001.

  5. d

    Asia POI Data | Geospatial Data | 44M+ POIs in Asia: India Turkey (...) |...

    • datarade.ai
    Updated Feb 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    InfobelPRO (2025). Asia POI Data | Geospatial Data | 44M+ POIs in Asia: India Turkey (...) | API Dataset [Dataset]. https://datarade.ai/data-products/asia-poi-data-geospatial-data-44m-pois-in-asia-india-t-infobelpro
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset updated
    Feb 12, 2025
    Dataset authored and provided by
    InfobelPRO
    Area covered
    Türkiye, India
    Description

    Our Asia Point of Interest (POI) data supports various location intelligence projects and facilitates the development of precise mapping and navigation tools, location analysis, address validation, and much more. Gain access to highly accurate, clean, and Asia scaled POI data featuring over 44 million verified locations across 13 countries. We have been providing this data to companies worldwide for 30 years.

    • Develop mapping and navigation tools and software.
    • Identify new areas and locations suitable for business development.
    • Analyse the presence of competitors and nearby populations.
    • Optimize routes to enhance delivery efficiency.
    • Evaluate property values based on nearby infrastructure.
    • Support disaster management by identifying high-risk areas.
    • Promote your products and services using geotargeting strategies.

    Our use cases demonstrate how our data has been beneficial and helped our customers in several key areas: 1. Gaining a Competitive Edge: Utilize point of interest (POI) data to analyse competitors, identify high-opportunity areas, and attract more customers. 2. Enhancing Customer Journeys: Leverage location intelligence to provide personalized, real-time recommendations that boost customer engagement. 3. Optimizing Store Expansion: Select the most profitable locations by analysing foot traffic, demographics, and competitor insights. 4. Streamlining Deliveries: Improve fulfilment accuracy through address validation, reducing failed shipments and increasing customer satisfaction. 5. Driving Smarter Campaigns: Use geospatial insights to effectively target the right audiences, enhance outreach, and maximize campaign impact.

  6. a

    India: Land Cover 1992-2019

    • hub.arcgis.com
    • up-state-observatory-esriindia1.hub.arcgis.com
    Updated Mar 21, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GIS Online (2022). India: Land Cover 1992-2019 [Dataset]. https://hub.arcgis.com/maps/9aeb44fb438645e8ae8387231f5c2815
    Explore at:
    Dataset updated
    Mar 21, 2022
    Dataset authored and provided by
    GIS Online
    Area covered
    Description

    This layer is a time series of the annual ESA CCI (Climate Change Initiative) land cover maps of the world. ESA has produced land cover maps for the years since 1992. These are available at the European Space Agency Climate Change Initiative website.Time Extent: 1992-2019Cell Size: 300 meterSource Type: ThematicPixel Type: 8 Bit UnsignedData Projection: GCS WGS84Mosaic Projection: Web Mercator Auxiliary SphereExtent: GlobalSource: ESA Climate Change InitiativeUpdate Cycle: AnnualWhat can you do with this layer?This layer may be added to ArcGIS Online maps and applications and shown in a time series to watch a "time lapse" view of land cover change since 1992 for any part of the world. The same behavior exists when the layer is added to ArcGIS Pro.In addition to displaying all layers in a series, this layer may be queried so that only one year is displayed in a map. This layer can be used in analysis. For example, the layer may be added to ArcGIS Pro with a query set to display just one year. Then, an area count of land cover types may be produced for a feature dataset using the zonal statistics tool. Statistics may be compared with the statistics from other years to show a trend.To sum up area by land cover using this service, or any other analysis, be sure to use an equal area projection, such as Albers or Equal Earth.Different Classifications Available to MapFive processing templates are included in this layer. The processing templates may be used to display a smaller set of land cover classes.Cartographic Renderer (Default Template)Displays all ESA CCI land cover classes.*Forested lands TemplateThe forested lands template shows only forested lands (classes 50-90).Urban Lands TemplateThe urban lands template shows only urban areas (class 190).Converted Lands TemplateThe converted lands template shows only urban lands and lands converted to agriculture (classes 10-40 and 190).Simplified RendererDisplays the map in ten simple classes which match the ten simplified classes used in 2050 Land Cover projections from Clark University.Any of these variables can be displayed or analyzed by selecting their processing template. In ArcGIS Online, select the Image Display Options on the layer. Then pull down the list of variables from the Renderer options. Click Apply and Close. In ArcGIS Pro, go into the Layer Properties. Select Processing Templates from the left hand menu. From the Processing Template pull down menu, select the variable to display.Using TimeBy default, the map will display as a time series animation, one year per frame. A time slider will appear when you add this layer to your map. To see the most current data, move the time slider until you see the most current year.In addition to displaying the past quarter century of land cover maps as an animation, this time series can also display just one year of data by use of a definition query. For a step by step example using ArcGIS Pro on how to display just one year of this layer, as well as to compare one year to another, see the blog called Calculating Impervious Surface Change.Hierarchical ClassificationLand cover types are defined using the land cover classification (LCCS) developed by the United Nations, FAO. It is designed to be as compatible as possible with other products, namely GLCC2000, GlobCover 2005 and 2009.This is a heirarchical classification system. For example, class 60 means "closed to open" canopy broadleaved deciduous tree cover. But in some places a more specific type of broadleaved deciduous tree cover may be available. In that case, a more specific code 61 or 62 may be used which specifies "open" (61) or "closed" (62) cover.Land Cover ProcessingTo provide consistency over time, these maps are produced from baseline land cover maps, and are revised for changes each year depending on the best available satellite data from each period in time. These revisions were made from AVHRR 1km time series from 1992 to 1999, SPOT-VGT time series between 1999 and 2013, and PROBA-V data for years 2013, 2014 and 2015. When MERIS FR or PROBA-V time series are available, changes detected at 1 km are re-mapped at 300 m. The last step consists in back- and up-dating the 10-year baseline LC map to produce the 24 annual LC maps from 1992 to 2015.Source dataThe datasets behind this layer were extracted from NetCDF files and TIFF files produced by ESA. Years 1992-2015 were acquired from ESA CCI LC version 2.0.7 in TIFF format, and years 2016-2018 were acquired from version 2.1.1 in NetCDF format. These are downloadable from ESA with an account, after agreeing to their terms of use. https://maps.elie.ucl.ac.be/CCI/viewer/download.phpCitationESA. Land Cover CCI Product User Guide Version 2. Tech. Rep. (2017). Available at: maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdfMore technical documentation on the source datasets is available here:https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=doc*Index of all classes in this layer:10 Cropland, rainfed11 Herbaceous cover12 Tree or shrub cover20 Cropland, irrigated or post-flooding30 Mosaic cropland (>50%) / natural vegetation (tree, shrub, herbaceous cover) (<50%)40 Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%) / cropland (<50%)50 Tree cover, broadleaved, evergreen, closed to open (>15%)60 Tree cover, broadleaved, deciduous, closed to open (>15%)61 Tree cover, broadleaved, deciduous, closed (>40%)62 Tree cover, broadleaved, deciduous, open (15-40%)70 Tree cover, needleleaved, evergreen, closed to open (>15%)71 Tree cover, needleleaved, evergreen, closed (>40%)72 Tree cover, needleleaved, evergreen, open (15-40%)80 Tree cover, needleleaved, deciduous, closed to open (>15%)81 Tree cover, needleleaved, deciduous, closed (>40%)82 Tree cover, needleleaved, deciduous, open (15-40%)90 Tree cover, mixed leaf type (broadleaved and needleleaved)100 Mosaic tree and shrub (>50%) / herbaceous cover (<50%)110 Mosaic herbaceous cover (>50%) / tree and shrub (<50%)120 Shrubland121 Shrubland evergreen122 Shrubland deciduous130 Grassland140 Lichens and mosses150 Sparse vegetation (tree, shrub, herbaceous cover) (<15%)151 Sparse tree (<15%)152 Sparse shrub (<15%)153 Sparse herbaceous cover (<15%)160 Tree cover, flooded, fresh or brakish water170 Tree cover, flooded, saline water180 Shrub or herbaceous cover, flooded, fresh/saline/brakish water190 Urban areas200 Bare areas201 Consolidated bare areas202 Unconsolidated bare areas210 Water bodies

  7. India: Road Surface Data

    • data.humdata.org
    geojson, geopackage
    Updated Feb 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    HeiGIT (Heidelberg Institute for Geoinformation Technology) (2025). India: Road Surface Data [Dataset]. https://data.humdata.org/dataset/india-road-surface-data
    Explore at:
    geojson, geopackageAvailable download formats
    Dataset updated
    Feb 7, 2025
    Dataset provided by
    HeiGIThttps://heigit.org/
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Description

    This dataset provides detailed information on road surfaces from OpenStreetMap (OSM) data, distinguishing between paved and unpaved surfaces across the region. This information is based on road surface prediction derived from hybrid deep learning approach. For more information on Methods, refer to the paper

    Roughly 4.8023 million km of roads are mapped in OSM in this region. Based on AI-mapped estimates the share of paved and unpaved roads is approximately 0.5281 and 0.2874 (in million kms), corressponding to 10.9979% and 5.9838% respectively of the total road length in the dataset region. 3.9868 million km or 83.0183% of road surface information is missing in OSM. In order to fill this gap, Mapillary derived road surface dataset provides an additional 0.0218 million km of information (corressponding to 0.5461% of total missing information on road surface)

    It is intended for use in transportation planning, infrastructure analysis, climate emissions and geographic information system (GIS) applications.

    This dataset provides comprehensive information on road and urban area features, including location, surface quality, and classification metadata. This dataset includes attributes from OpenStreetMap (OSM) data, AI predictions for road surface, and urban classifications.

    AI features:

    • pred_class: Model-predicted class for the road surface, with values "paved" or "unpaved."

    • pred_label: Binary label associated with pred_class (0 = paved, 1 = unpaved).

    • osm_surface_class: Classification of the surface type from OSM, categorized as "paved" or "unpaved."

    • combined_surface_osm_priority: Surface classification combining pred_label and surface(OSM) while prioritizing the OSM surface tag, classified as "paved" or "unpaved."

    • combined_surface_DL_priority: Surface classification combining pred_label and surface(OSM) while prioritizing DL prediction pred_label, classified as "paved" or "unpaved."

    • n_of_predictions_used: Number of predictions used for the feature length estimation.

    • predicted_length: Predicted length based on the DL model’s estimations, in meters.

    • DL_mean_timestamp: Mean timestamp of the predictions used, for comparison.

    OSM features may have these attributes(Learn what tags mean here):

    • name: Name of the feature, if available in OSM.

    • name:en: Name of the feature in English, if available in OSM.

    • name:* (in local language): Name of the feature in the local official language, where available.

    • highway: Road classification based on OSM tags (e.g., residential, motorway, footway).

    • surface: Description of the surface material of the road (e.g., asphalt, gravel, dirt).

    • smoothness: Assessment of surface smoothness (e.g., excellent, good, intermediate, bad).

    • width: Width of the road, where available.

    • lanes: Number of lanes on the road.

    • oneway: Indicates if the road is one-way (yes or no).

    • bridge: Specifies if the feature is a bridge (yes or no).

    • layer: Indicates the layer of the feature in cases where multiple features are stacked (e.g., bridges, tunnels).

    • source: Source of the data, indicating the origin or authority of specific attributes.

    Urban classification features may have these attributes:

    • continent: The continent where the data point is located (e.g., Europe, Asia).

    • country_iso_a2: The ISO Alpha-2 code representing the country (e.g., "US" for the United States).

    • urban: Binary indicator for urban areas based on the GHSU Urban Layer 2019. (0 = rural, 1 = urban)

    • urban_area: Name of the urban area or city where the data point is located.

    • osm_id: Unique identifier assigned by OpenStreetMap (OSM) to each feature.

    • osm_type: Type of OSM element (e.g., node, way, relation).

    The data originates from OpenStreetMap (OSM) and is augmented with model predictions using images downloaded from Mapillary in combination with the GHSU Global Human Settlement Urban Layer 2019 and AFRICAPOLIS2020 urban layer.

    This dataset is one of many HeiGIT exports on HDX. See the HeiGIT website for more information.

    We are looking forward to hearing about your use-case! Feel free to reach out to us and tell us about your research at communications@heigit.org – we would be happy to amplify your work.

  8. Geospatial Nightlight Dataset for Sub-districts of India

    • figshare.com
    7z
    Updated Oct 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Athisii Kayina (2024). Geospatial Nightlight Dataset for Sub-districts of India [Dataset]. http://doi.org/10.6084/m9.figshare.26095537.v2
    Explore at:
    7zAvailable download formats
    Dataset updated
    Oct 21, 2024
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Athisii Kayina
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    India
    Description

    Geospatial data have become a valuable asset in the 21st century with its applications in almost everyday life and an overriding scope in the field of research. One such growing spatial data is the remotely sensed nighttime lights (NTL) imagery, which simply is a depiction of human activities around the globe at night. It may be a stunning visual to many yet the valuable insights it provides in measuring a number of parameters like population, poverty, electrification, migration, disaster, health, fishing, fires, GDP, pollution, urbanization, settlement, etc. have made researchers and scientists look up to this data to validate and evaluate socio-economic and other indicators independently and concurrently. Apart from using as a proxy in many researches, NTL allows to track statistics of region where data is often not collected or is not reliable. It has potential applications for policy makers and government in the decision making processes. Nighttime lights were in used since the mid 1990's and are publicly made available from 1992 onwards through the Defense Meteorological Satellite Program (DMSP) provided by National Ocean and Atmospheric Administration (NOAA). A more advance system called Visible Infrared Imaging Radiometer Suite (VIIRS) Day Night band (DNB) replaces DMSP system. The extraction provided uses VIIRS monthly aggregates with spatial polygon units of India at sub-districts level. The monthly raw dataset is available from April 2012 onwards. This extraction cover 141 months till December 2023. The primary intent is to disseminate the dataset to a larger audience, be it researcher or policy analyst and planners. The broader objective is to keep on updating the data continuously.

  9. d

    Compilation of Geospatial Data (GIS) for the Mineral Industries and Related...

    • catalog.data.gov
    • data.usgs.gov
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Compilation of Geospatial Data (GIS) for the Mineral Industries and Related Infrastructure of Select Countries in Southwest Asia [Dataset]. https://catalog.data.gov/dataset/compilation-of-geospatial-data-gis-for-the-mineral-industries-and-related-infrastructure-o-6058f
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    The U.S. Geological Survey (USGS) has compiled a geodatabase containing mineral-related geospatial data for 10 countries of interest in Southwest Asia (area of study): Afghanistan, Cambodia, Laos, India, Indonesia, Iran, Nepal, North Korea, Pakistan, and Thailand. The data can be used in analyses of the extractive fuel and nonfuel mineral industries and related economic and physical infrastructure integral for the successful operation of the mineral industries within the area of study as well as the movement of mineral products across domestic and global markets. This geodatabase reflects the USGS ongoing commitment to its mission of understanding the nature and distribution of global mineral commodity supply chains by updating and publishing the georeferenced locations of mineral commodity production and processing facilities, mineral exploration and development sites, and mineral commodity exporting ports for the countries in the area of study. The geodatabase contains data feature classes from USGS, foreign governmental, and open-source sources as follows: (1) mineral production and processing facilities, (2) mineral exploration and development sites, (3) mineral occurrence sites and deposits, (4) undiscovered mineral resource tracts for copper, phosphate, and potash, (5) coal occurrence areas, (6) electric power generating facilities, (7) electric power transmission lines, (8) liquefied natural gas terminals, (9) undiscovered, technically recoverable conventional and continuous hydrocarbon resources (by USGS geologic province), (10) cumulative production and recoverable conventional resources (by oil- and gas-producing nation), and (11) major mineral exporting maritime ports.

  10. India - Wind Speed and Wind Power Potential Maps

    • data.amerigeoss.org
    • energydata.info
    Updated Apr 5, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank (2023). India - Wind Speed and Wind Power Potential Maps [Dataset]. https://data.amerigeoss.org/dataset/india-wind-speed-and-wind-power-potential-maps
    Explore at:
    Dataset updated
    Apr 5, 2023
    Dataset provided by
    World Bankhttp://worldbank.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    India
    Description

    Maps with wind speed, wind rose and wind power density potential in India. The GIS data stems from the Global Wind Atlas (http://globalwindatlas.info/). GIS data is available as JSON and CSV. The second link provides poster size (.pdf) and midsize maps (.png).

  11. Data from: Literature based species occurrence data of birds of North-East...

    • gbif.org
    • bionomia.net
    Updated May 11, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sujit Narwade; Sujit Narwade (2022). Literature based species occurrence data of birds of North-East India [Dataset]. http://doi.org/10.15468/4e7jfl
    Explore at:
    Dataset updated
    May 11, 2022
    Dataset provided by
    Global Biodiversity Information Facilityhttps://www.gbif.org/
    Wildlife Institute of India
    Authors
    Sujit Narwade; Sujit Narwade
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1909 - Dec 31, 2007
    Area covered
    Description

    North-east region of India is one of the significant biodiversity hotspot. Being, one of the richest bird area, it is an important routes for migratory birds and home to many endemic birds. This paper describes the literature based dataset of species occurrences of birds of the north-eastern India. The occurrence records documented in the dataset are distributed across eleven provinces of India, viz. Arunachal Pradesh, Assam, Bihar, Manipur, Meghalaya, Mizoram, Nagaland, Sikkim, Tripura, Uttar Pradesh and West Bengal. The geospatial scope of the dataset represents 24 to 29 degree North latitude and 78 to 94 degree East longitude and comprises of over 2400 occurrence records. These records have been collated from scholarly literature published during 1915 – 2008, especially the Journal of the Bombay Natural History Society (JBNHS). The temporal scale of the dataset represents bird observations recorded during 1909 – 2007. The dataset has been developed by employing MS Excel. The key elements in the database are scientific name, taxonomic classification, temporal and geospatial details including geo-coordinate precision, data collector, basis of record, and primary source of the data record. The temporal and geospatial quality of more than 50% of the data records has been enhanced retrospectively. Where possible, data records are annotated with geospatial coordinate precision to the nearest minute. This dataset is being constantly updated with addition of new data records, and quality enhancement of documented occurrences. The dataset can be used in species distribution and niche modeling studies. It is planned to expand the scope of the dataset to collate bird species occurrences across Indian peninsular.

  12. Digital Geologic-GIS Map of the Pine Ridge Indian Reservation Area, South...

    • catalog.data.gov
    Updated Jun 4, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geologic-GIS Map of the Pine Ridge Indian Reservation Area, South Dakota (NPS, GRD, GRI, BADL, PRIR digital map) adapted from a U.S. Geological Survey Hydrologic Investigations Atlas map by Ellis and Adolphson (1971) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-the-pine-ridge-indian-reservation-area-south-dakota-nps-grd-gr
    Explore at:
    Dataset updated
    Jun 4, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Pine Ridge Reservation, South Dakota
    Description

    The Digital Geologic-GIS Map of the Pine Ridge Indian Reservation Area, South Dakota is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (prir_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (prir_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (prir_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (badl_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (badl_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (prir_geology_metadata_faq.pdf). Please read the badl_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (prir_geology_metadata.txt or prir_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:125,000 and United States National Map Accuracy Standards features are within (horizontally) 63.5 meters or 208.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  13. Survey Of India Open Series Map Toponyms

    • kaggle.com
    Updated Sep 27, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Arun Ganesh (2022). Survey Of India Open Series Map Toponyms [Dataset]. https://www.kaggle.com/datasets/planemad/soi-india-map-toponyms/data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 27, 2022
    Dataset provided by
    Kaggle
    Authors
    Arun Ganesh
    License

    Open Data Commons Attribution License (ODC-By) v1.0https://www.opendatacommons.org/licenses/by/1.0/
    License information was derived automatically

    Description

    Toponym dataset of 1.28 million location features in India from the Survey of India Open Series Maps. Every location feature has coordinates and attributes that includes feature class and names in 24 Indian languages.

    Source

    Data downloaded from Survey of India mapserver

    License

    The data is unrestricted for public use and viewable on the SOI web map app. Attribution to Survey of India is required on reuse.

    Material featured on this site may be reproduced free of charge in any format or media without requiring specific permission. This is subject to the material being reproduced accurately and not being used in a derogatory manner or in a misleading context. Where the material is being published or issued to others, the source must be prominently acknowledged. https://www.surveyofindia.gov.in/pages/copyright-policy

    All Geospatial Data produced using public funds, except the classified geospatial data collected by security/law enforcement agencies, shall be made easily accessible for scientific, economic and developmental purposes to all Indian Entities and without any restrictions on their use. Such access shall be given free of any charges to Government agencies and at fair and transparent pricing to others. For attributes in the negative lists, appropriate regulations will be laid down separately. The Government of India shall encourage crowd sourcing efforts to build Maps by allocating public funds towards these efforts as appropriate. https://onlinemaps.surveyofindia.gov.in/GeospatialGuidelines.aspx

  14. a

    India: Surface Water

    • hub.arcgis.com
    Updated Mar 22, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GIS Online (2022). India: Surface Water [Dataset]. https://hub.arcgis.com/maps/eb39a8e28df54968b1a1cdccbf92a55f
    Explore at:
    Dataset updated
    Mar 22, 2022
    Dataset authored and provided by
    GIS Online
    Area covered
    Description

    Water bodies are a key element in the landscape. This layer provides a global map of large water bodies for use in landscape-scale analysis.Dataset SummaryThis layer provides access to a 250m cell-sized raster of surface water created by extracting pixels coded as water in the Global Lithological Map and the Global Landcover Map. The layer was created by Esri in 2014.What can you do with this layer?This layer is suitable for both visualization and analysis. It can be used in ArcGIS Online in web maps and applications and can be used in ArcGIS Desktop.This layer has query, identify, and export image services available. This layer is restricted to a maximum area of 16,000 x 16,000 pixels - an area 4,000 kilometers on a side or an area approximately the size of Europe. This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.The Living Atlas of the World provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Geonet is a good resource for learning more about landscape layers and the Living Atlas of the World. To get started see the Living Atlas Discussion Group.The Esri Insider Blog provides an introduction to the Ecophysiographic Mapping project.

  15. Indian Census Data with Geospatial indexing

    • kaggle.com
    Updated Dec 20, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sumit Kumar (2017). Indian Census Data with Geospatial indexing [Dataset]. https://www.kaggle.com/datasets/sirpunch/indian-census-data-with-geospatial-indexing/discussion?sortBy=hot&group=owned
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 20, 2017
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Sumit Kumar
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    India
    Description

    Dataset Description:

    • This dataset has population data of each Indian district from 2001 and 2011 censuses.
    • The special thing about this data is that it has centroids for each district and state.
    • Centroids for a district are calculated by mapping border of each district as a polygon of latitude/longitude points in a 2D plane and then calculating their mean center.
    • Centroids for a state are calculated by calculating the weighted mean center of all districts that constitutes a state. The population count is the weight assigned to each district.

    Example Analysis:

    Output Screenshots: Indian districts mapped as polygons https://i.imgur.com/UK1DCGW.png" alt="Indian districts mapped as polygons">

    Mapping centroids for each district https://i.imgur.com/KCAh7Jj.png" alt="Mapping centroids for each district">

    Mean centers of population by state, 2001 vs. 2011 https://i.imgur.com/TLHPHjB.png" alt="Mean centers of population by state, 2001 vs. 2011">

    National center of population https://i.imgur.com/yYxE4Hc.png" alt="National center of population">

  16. E

    High-resolution (2 metre) digital elevation models of difference showing...

    • catalogue.ceh.ac.uk
    • data-search.nerc.ac.uk
    Updated Dec 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    M. Westoby (2023). High-resolution (2 metre) digital elevation models of difference showing surface change following the Chamoli ice-debris flow, India, February 2021 [Dataset]. http://doi.org/10.5285/f5394eaa-5ccb-4cf7-9ee4-c057c35b8517
    Explore at:
    Dataset updated
    Dec 15, 2023
    Dataset provided by
    NERC EDS Environmental Information Data Centre
    Authors
    M. Westoby
    Time period covered
    Feb 1, 2021 - Jan 1, 2022
    Area covered
    Dataset funded by
    Natural Environment Research Council
    Description

    These data are digital elevation models (DEMs) of difference (DoD). They are a geospatial dataset created in raster (.tif) format and quantify vertical (z) topographic change between two dates. The data were created to support analysis of landscape change following the 7th February 2021 avalanche-debris flow in Chamoli District, Uttarakhand, India. The data also supported numerical modelling using CAESAR-Lisflood (see related data collection). They are most commonly imported into GIS software, where they can be analysed or support other forms of geospatial analysis.

  17. Geographic Information System Analytics Market Analysis, Size, and Forecast...

    • technavio.com
    Updated Jul 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2024). Geographic Information System Analytics Market Analysis, Size, and Forecast 2024-2028: North America (US and Canada), Europe (France, Germany, UK), APAC (China, India, South Korea), Middle East and Africa , and South America [Dataset]. https://www.technavio.com/report/geographic-information-system-analytics-market-industry-analysis
    Explore at:
    Dataset updated
    Jul 15, 2024
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    France, United Kingdom, United States, Canada, Germany, Global
    Description

    Snapshot img

    Geographic Information System Analytics Market Size 2024-2028

    The geographic information system analytics market size is forecast to increase by USD 12 billion at a CAGR of 12.41% between 2023 and 2028.

    The GIS Analytics Market analysis is experiencing significant growth, driven by the increasing need for efficient land management and emerging methods in data collection and generation. The defense industry's reliance on geospatial technology for situational awareness and real-time location monitoring is a major factor fueling market expansion. Additionally, the oil and gas industry's adoption of GIS for resource exploration and management is a key trend. Building Information Modeling (BIM) and smart city initiatives are also contributing to market growth, as they require multiple layered maps for effective planning and implementation. The Internet of Things (IoT) and Software as a Service (SaaS) are transforming GIS analytics by enabling real-time data processing and analysis.
    Augmented reality is another emerging trend, as it enhances the user experience and provides valuable insights through visual overlays. Overall, heavy investments are required for setting up GIS stations and accessing data sources, making this a promising market for technology innovators and investors alike.
    

    What will be the Size of the GIS Analytics Market during the forecast period?

    Request Free Sample

    The geographic information system analytics market encompasses various industries, including government sectors, agriculture, and infrastructure development. Smart city projects, building information modeling, and infrastructure development are key areas driving market growth. Spatial data plays a crucial role in sectors such as transportation, mining, and oil and gas. Cloud technology is transforming GIS analytics by enabling real-time data access and analysis. Startups are disrupting traditional GIS markets with innovative location-based services and smart city planning solutions. Infrastructure development in sectors like construction and green buildings relies on modern GIS solutions for efficient planning and management. Smart utilities and telematics navigation are also leveraging GIS analytics for improved operational efficiency.
    GIS technology is essential for zoning and land use management, enabling data-driven decision-making. Smart public works and urban planning projects utilize mapping and geospatial technology for effective implementation. Surveying is another sector that benefits from advanced GIS solutions. Overall, the GIS analytics market is evolving, with a focus on providing actionable insights to businesses and organizations.
    

    How is this Geographic Information System Analytics Industry segmented?

    The geographic information system analytics industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2024-2028, as well as historical data from 2018-2022 for the following segments.

    End-user
    
      Retail and Real Estate
      Government
      Utilities
      Telecom
      Manufacturing and Automotive
      Agriculture
      Construction
      Mining
      Transportation
      Healthcare
      Defense and Intelligence
      Energy
      Education and Research
      BFSI
    
    
    Components
    
      Software
      Services
    
    
    Deployment Modes
    
      On-Premises
      Cloud-Based
    
    
    Applications
    
      Urban and Regional Planning
      Disaster Management
      Environmental Monitoring Asset Management
      Surveying and Mapping
      Location-Based Services
      Geospatial Business Intelligence
      Natural Resource Management
    
    
    Geography
    
      North America
    
        US
        Canada
    
    
      Europe
    
        France
        Germany
        UK
    
    
      APAC
    
        China
        India
        South Korea
    
    
      Middle East and Africa
    
        UAE
    
    
      South America
    
        Brazil
    
    
      Rest of World
    

    By End-user Insights

    The retail and real estate segment is estimated to witness significant growth during the forecast period.

    The GIS analytics market analysis is witnessing significant growth due to the increasing demand for advanced technologies in various industries. In the retail sector, for instance, retailers are utilizing GIS analytics to gain a competitive edge by analyzing customer demographics and buying patterns through real-time location monitoring and multiple layered maps. The retail industry's success relies heavily on these insights for effective marketing strategies. Moreover, the defense industries are integrating GIS analytics into their operations for infrastructure development, permitting, and public safety. Building Information Modeling (BIM) and 4D GIS software are increasingly being adopted for construction project workflows, while urban planning and designing require geospatial data for smart city planning and site selection.

    The oil and gas industry is leveraging satellite imaging and IoT devices for land acquisition and mining operations. In the public sector,

  18. E

    High-resolution (2 metre) digital elevation models of landscape affected by...

    • catalogue.ceh.ac.uk
    • data-search.nerc.ac.uk
    text/directory
    Updated Oct 25, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    M. Westoby; E. Berthier (2023). High-resolution (2 metre) digital elevation models of landscape affected by the Chamoli ice-debris flow, India, February 2021 [Dataset]. http://doi.org/10.5285/5a1eaef4-9211-4227-a017-d20b08be5784
    Explore at:
    text/directoryAvailable download formats
    Dataset updated
    Oct 25, 2023
    Dataset provided by
    NERC EDS Environmental Information Data Centre
    Authors
    M. Westoby; E. Berthier
    Time period covered
    Feb 10, 2021 - Apr 2, 2022
    Area covered
    Dataset funded by
    Natural Environment Research Council
    Description

    These data are digital elevation models which describe landscape topography. The data were created to support analysis of landscape change following the 7th February 2021 avalanche-debris flow in Chamoli District, Uttarakhand, India. The data were used as standalone datasets to support this analysis, but also supported numerical modelling using CAESAR-Lisflood (see data collection). The DEMs were created from CNES/Airbus Pléiades-HR stereo satellite imagery captured in along-track mode. They are a geospatial dataset created in raster (.tif) format. They are most commonly imported into GIS software, where they can be analysed or support other forms of geospatial analysis.

  19. Restaurant Dataset of India

    • kaggle.com
    Updated Nov 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kayab Khan (2024). Restaurant Dataset of India [Dataset]. https://www.kaggle.com/datasets/kayabkhan/restaurant-dataset/versions/1
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 18, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Kayab Khan
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    India
    Description

    process

    I created this data set using multiple restaurant dataset on kaggle, one of them is from swiggy, however i wanted to conduct geospatial analysis on the later so i used a python script to get the geocoding of addresses

  20. d

    Data from: India Direct Normal & Global Horizontal Irradiance Solar...

    • catalog.data.gov
    • data.openei.org
    • +2more
    Updated Jan 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Renewable Energy Laboratory (2025). India Direct Normal & Global Horizontal Irradiance Solar Resources [Dataset]. https://catalog.data.gov/dataset/india-direct-normal-global-horizontal-irradiance-solar-resources-249f3
    Explore at:
    Dataset updated
    Jan 20, 2025
    Dataset provided by
    National Renewable Energy Laboratory
    Area covered
    India
    Description

    GIS data for India's direct normal irradiance (DNI) and global horizontal irradiance. Provides 10-kilometer (km) solar resource maps and data for India. The 10-km hourly solar resource data were developed using weather satellite (METEOSAT) measurements incorporated into a site-time specific solar modeling approach developed at the U.S. State University of New York at Albany. The data is made publicly available in geographic information system (GIS) format (shape files etc). The new maps and data were released in June 2013. The new data expands the time period of analysis from 2002-2007 to 2002-2011 and incorporates enhanced aerosols information to improve direct normal irradiance (DNI). These products were developed by the U.S. National Renewable Energy Laboratory (NREL) in cooperation with India's Ministry of New and Renewable Energy, through funding from the U.S. Department of Energy and U.S. Department of State.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
RITIK SHARMA (2024). Indian Geospatial Dataset [Dataset]. https://www.kaggle.com/datasets/ritiksharma07/indian-gis
Organization logo

Indian Geospatial Dataset

Comprehensive geospatial data detailing the geographical features and boundaries

Explore at:
38 scholarly articles cite this dataset (View in Google Scholar)
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Jun 8, 2024
Dataset provided by
Kagglehttp://kaggle.com/
Authors
RITIK SHARMA
License

https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

Description

This dataset contains comprehensive geospatial data detailing the geographical features and boundaries of India. It includes information on various geographic elements such as terrain, water bodies, administrative boundaries, and infrastructure, providing valuable insights for spatial analysis and mapping projects.

Search
Clear search
Close search
Google apps
Main menu