This dataset is a compilation of address point data for the City of Tempe. The dataset contains a point location, the official address (as defined by The Building Safety Division of Community Development) for all occupiable units and any other official addresses in the City. There are several additional attributes that may be populated for an address, but they may not be populated for every address. Contact: Lynn Flaaen-Hanna, Development Services Specialist Contact E-mail Link: Map that Lets You Explore and Export Address Data Data Source: The initial dataset was created by combining several datasets and then reviewing the information to remove duplicates and identify errors. This published dataset is the system of record for Tempe addresses going forward, with the address information being created and maintained by The Building Safety Division of Community Development.Data Source Type: ESRI ArcGIS Enterprise GeodatabasePreparation Method: N/APublish Frequency: WeeklyPublish Method: AutomaticData Dictionary
The Office of the Chief Technology Officer (OCTO), within the District of Columbia (DC) government, manages the District’s data program. This includes open data, data curation, data integration, data storage, data science, data application development and Geographic Information Systems (GIS). The open data handbook explains the process and steps OCTO undertakes when an agency submits an open dataset for publication. The handbook outlines dataset rules, documentation requirements, and policies to make data consistent and standardized. This applies to any dataset submitted for publication on the Open Data DC portal that is classified as Level 0: Open as defined in the District’s Data Policy. For previous versions of the handbook visit https://opendata.dc.gov/pages/handbook.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
DataSF seeks to transform the way that the City of San Francisco works -- through the use of data.
This dataset contains the following tables: ['311_service_requests', 'bikeshare_stations', 'bikeshare_status', 'bikeshare_trips', 'film_locations', 'sffd_service_calls', 'sfpd_incidents', 'street_trees']
This dataset is deprecated and not being updated.
Fork this kernel to get started with this dataset.
Dataset Source: SF OpenData. This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://sfgov.org/ - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
Banner Photo by @meric from Unplash.
Which neighborhoods have the highest proportion of offensive graffiti?
Which complaint is most likely to be made using Twitter and in which neighborhood?
What are the most complained about Muni stops in San Francisco?
What are the top 10 incident types that the San Francisco Fire Department responds to?
How many medical incidents and structure fires are there in each neighborhood?
What’s the average response time for each type of dispatched vehicle?
Which category of police incidents have historically been the most common in San Francisco?
What were the most common police incidents in the category of LARCENY/THEFT in 2016?
Which non-criminal incidents saw the biggest reporting change from 2015 to 2016?
What is the average tree diameter?
What is the highest number of a particular species of tree planted in a single year?
Which San Francisco locations feature the largest number of trees?
The Office of the Chief Technology Officer (OCTO), within the District of Columbia (DC) government, manages the District’s data program. This includes open data, business intelligence, data curation, and Geographic Information Systems (GIS). The open data handbook explains the process and steps the OCTO data program undertakes when an agency submits an open dataset. More importantly, the handbook documents dataset rules, metadata requirements, and policies to make data consistent and standardized. This applies to any dataset submitted for publication on DC’s open data portal.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Tempe Police Department prides itself in its continued efforts to reduce harm within the community and is providing this dataset on hate crime incidents that occur in Tempe.The Tempe Police Department documents the type of bias that motivated a hate crime according to those categories established by the FBI. These include crimes motivated by biases based on race and ethnicity, religion, sexual orientation, disability, gender and gender identity.The Bias Type categories provided in the data come from the Bias Motivation Categories as defined in the Federal Bureau of Investigation (FBI) National Incident-Based Reporting System (NIBRS) manual, version 2020.1 dated 4/15/2021. The FBI NIBRS manual can be found at https://www.fbi.gov/file-repository/ucr/ucr-2019-1-nibrs-user-manua-093020.pdf with the Bias Motivation Categories found on pages 78-79.Although data is updated monthly, there is a delay by one month to allow for data validation and submission.Information about Tempe Police Department's collection and reporting process for possible hate crimes is included in https://storymaps.arcgis.com/stories/a963e97ca3494bfc8cd66d593eebabaf.Additional InformationSource: Data are from the Law Enforcement Records Management System (RMS)Contact: Angelique BeltranContact E-Mail: angelique_beltran@tempe.govData Source Type: TabularPreparation Method: Data from the Law Enforcement Records Management System (RMS) are entered by the Tempe Police Department into a GIS mapping system, which automatically publishes to open data.Publish Frequency: MonthlyPublish Method: New data entries are automatically published to open data. Data Dictionary
The Federal Procurement Data System (FPDS) Next Generation has been re-engineered as a real-time federal enterprise information system. Web services based on SOAP and XML, implemented using Java technologies, are used in FPDS-NG to provide interoperability with various federal procurement systems
Mayor's Order 2017-115 establishes a comprehensive data policy for the District government. The data created and managed by the District government are valuable assets and are independent of the information systems in which the data reside. As such, the District government shall:Maintain an inventory of its enterprise datasets;Classify enterprise datasets by level of sensitivity;Regularly publish the inventory, including the classifications, as an open dataset; andStrategically plan and manage its investment in data.The greatest value from the District’s investment in data can only be realized when enterprise datasets are freely shared among District agencies, with federal and regional governments, and with the public to the fullest extent consistent with safety, privacy, and security. For more information, please visit https://opendata.dc.gov/pages/edi-overview. Previous years of EDI can be found on Open Data.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
California State Senate Bill 272 (SB 272) requires local governments to publish an inventory of their data systems that are both a system of record and that contain information about the public. This dataset is the SB 272 inventory for the County of San Mateo. More information on SB 272 can be found in the text of the law: https://leginfo.legislature.ca.gov/faces/billNavClient.xhtml?bill_id=201520160SB272
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A collection of 22 data set of 50+ requirements each, expressed as user stories.
The dataset has been created by gathering data from web sources and we are not aware of license agreements or intellectual property rights on the requirements / user stories. The curator took utmost diligence in minimizing the risks of copyright infringement by using non-recent data that is less likely to be critical, by sampling a subset of the original requirements collection, and by qualitatively analyzing the requirements. In case of copyright infringement, please contact the dataset curator (Fabiano Dalpiaz, f.dalpiaz@uu.nl) to discuss the possibility of removal of that dataset [see Zenodo's policies]
The data sets have been originally used to conduct experiments about ambiguity detection with the REVV-Light tool: https://github.com/RELabUU/revv-light
This collection has been originally published in Mendeley data: https://data.mendeley.com/datasets/7zbk8zsd8y/1
The following text provides a description of the datasets, including links to the systems and websites, when available. The datasets are organized by macro-category and then by identifier.
g02-federalspending.txt
(2018) originates from early data in the Federal Spending Transparency project, which pertain to the website that is used to share publicly the spending data for the U.S. government. The website was created because of the Digital Accountability and Transparency Act of 2014 (DATA Act). The specific dataset pertains a system called DAIMS or Data Broker, which stands for DATA Act Information Model Schema. The sample that was gathered refers to a sub-project related to allowing the government to act as a data broker, thereby providing data to third parties. The data for the Data Broker project is currently not available online, although the backend seems to be hosted in GitHub under a CC0 1.0 Universal license. Current and recent snapshots of federal spending related websites, including many more projects than the one described in the shared collection, can be found here.
g03-loudoun.txt
(2018) is a set of extracted requirements from a document, by the Loudoun County Virginia, that describes the to-be user stories and use cases about a system for land management readiness assessment called Loudoun County LandMARC. The source document can be found here and it is part of the Electronic Land Management System and EPlan Review Project - RFP RFQ issued in March 2018. More information about the overall LandMARC system and services can be found here.
g04-recycling.txt
(2017) concerns a web application where recycling and waste disposal facilities can be searched and located. The application operates through the visualization of a map that the user can interact with. The dataset has obtained from a GitHub website and it is at the basis of a students' project on web site design; the code is available (no license).
g05-openspending.txt
(2018) is about the OpenSpending project (www), a project of the Open Knowledge foundation which aims at transparency about how local governments spend money. At the time of the collection, the data was retrieved from a Trello board that is currently unavailable. The sample focuses on publishing, importing and editing datasets, and how the data should be presented. Currently, OpenSpending is managed via a GitHub repository which contains multiple sub-projects with unknown license.
g11-nsf.txt
(2018) refers to a collection of user stories referring to the NSF Site Redesign & Content Discovery project, which originates from a publicly accessible GitHub repository (GPL 2.0 license). In particular, the user stories refer to an early version of the NSF's website. The user stories can be found as closed Issues.
g08-frictionless.txt
(2016) regards the Frictionless Data project, which offers an open source dataset for building data infrastructures, to be used by researchers, data scientists, and data engineers. Links to the many projects within the Frictionless Data project are on GitHub (with a mix of Unlicense and MIT license) and web. The specific set of user stories has been collected in 2016 by GitHub user @danfowler and are stored in a Trello board.
g14-datahub.txt
(2013) concerns the open source project DataHub, which is currently developed via a GitHub repository (the code has Apache License 2.0). DataHub is a data discovery platform which has been developed over multiple years. The specific data set is an initial set of user stories, which we can date back to 2013 thanks to a comment therein.
g16-mis.txt
(2015) is a collection of user stories that pertains a repository for researchers and archivists. The source of the dataset is a public Trello repository. Although the user stories do not have explicit links to projects, it can be inferred that the stories originate from some project related to the library of Duke University.
g17-cask.txt
(2016) refers to the Cask Data Application Platform (CDAP). CDAP is an open source application platform (GitHub, under Apache License 2.0) that can be used to develop applications within the Apache Hadoop ecosystem, an open-source framework which can be used for distributed processing of large datasets. The user stories are extracted from a document that includes requirements regarding dataset management for Cask 4.0, which includes the scenarios, user stories and a design for the implementation of these user stories. The raw data is available in the following environment.
g18-neurohub.txt
(2012) is concerned with the NeuroHub platform, a neuroscience data management, analysis and collaboration platform for researchers in neuroscience to collect, store, and share data with colleagues or with the research community. The user stories were collected at a time NeuroHub was still a research project sponsored by the UK Joint Information Systems Committee (JISC). For information about the research project from which the requirements were collected, see the following record.
g22-rdadmp.txt
(2018) is a collection of user stories from the Research Data Alliance's working group on DMP Common Standards. Their GitHub repository contains a collection of user stories that were created by asking the community to suggest functionality that should part of a website that manages data management plans. Each user story is stored as an issue on the GitHub's page.
g23-archivesspace.txt
(2012-2013) refers to ArchivesSpace: an open source, web application for managing archives information. The application is designed to support core functions in archives administration such as accessioning; description and arrangement of processed materials including analog, hybrid, and
born digital content; management of authorities and rights; and reference service. The application supports collection management through collection management records, tracking of events, and a growing number of administrative reports. ArchivesSpace is open source and its
This dataset contains information about data systems used for collecting and managing clinical data, specifically focusing on anonymized participant outcomes, demographics, and venue information. It details methods of data storage, collection processes, software used, and the frequency of use, highlighting the challenges faced and ideal solutions for managing clinical data.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This document can be used to determine the access level of a dataset that is to be published. This document is the follow on output of both the Energy Data Taskforce and the Energy Data Best Practice work conducted by Energy Systems Catapult.
This resource area contains descriptions of actual electronic systems failure scenarios with an emphasis on the diversity of failure modes and effects that can befall dependable systems. Introductory pages begin here. The descriptions begin here. These pages are separated into sections. Each section starts with a List of failure scenarios. In between the List slides are slides that give more information on those scenarios which warrant more than a bullet or two of explanation. Some references are listed here. A list of acronyms and initialisms is here. If you would like to add a story to this list or add additional significant details to an existing story, please contact Kevin Driscoll at For a not-quite-working wiki subset of this Resource area, click on the Wiki link just to the left of this Summary or go to the URL https://c3.nasa.gov/dashlink/projects/79/wiki/test_stories_split. Also, those who log in can add comments to the Discussions at the bottom of this page.
Further to the original Enterprise Application request, the contract below has expired. Please provide the current status. Finance Capita CRM Trustmarque Solutions Ltd I'd like to apologise for the length of this request, and how tedious it may be to handle. That being said, please make an effort to provide all of this information. The information I'm requesting is regarding the software contracts that the organisation uses, for the following fields.Enterprise Resource Planning Software Solution (ERP): Primary Customer Relationship Management Solution (CRM): For example, Salesforce, Lagan CRM, Microsoft Dynamics; software of this nature. Primary Human Resources (HR) and Payroll Software Solution: For example, iTrent, ResourceLink, HealthRoster; software of this nature. The organisation’s primary corporate Finance Software Solution: For example, Agresso, Integra, Sapphire Systems; software of this nature. Name of Supplier: Can you please provide me with the software provider for each contract? The brand of the software: Can you please provide me with the actual name of the software. Please do not provide me with the supplier name again please provide me with the actual software name. Description of the contract: Can you please provide me with detailed information about this contract and please state if upgrade, maintenance and support is included. Please also list the software modules included in these contracts. Number of Users/Licenses: What is the total number of user/licenses for this contract? Annual Spend: What is the annual average spend for each contract? Contract Duration: What is the duration of the contract please include any available extensions within the contract. Contract Start Date: What is the start date of this contract? Please include month and year of the contract. DD-MM-YY or MM-YY. Contract Expiry: What is the expiry date of this contract? Please include month and year of the contract. DD-MM-YY or MM-YY.
Presentation given by SRI NRA winners on Verification and Validation for Complex Systems.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
A repo with all the datasets I've used for my research
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Unmanned Aircraft System (UAS) program is intended to provide an enhanced level of operational capability, safety, and situational awareness and reduce the risk of injury. The UAS program will be utilized in a responsible, legal, and transparent manner with monthly usage data available on the Open Data Portal.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The datasets contain the underlying Systematic Literature Review data of an article titled "Citizen Engagement with Open Government Data: Lessons learned from Indonesia’s Presidential Election" submitted to the Transforming Government: People, Process and Policy.
In a large network of computers, wireless sensors, or mobile devices, each of the components (hence, peers) has some data about the global status of the system. Many of the functions of the system, such as routing decisions, search strategies, data cleansing, and the assignment of mutual trust, depend on the global status. Therefore, it is essential that the system be able to detect, and react to, changes in its global status. Computing global predicates in such systems is usually very costly. Mainly because of their scale, and in some cases (e.g., sensor networks) also because of the high cost of communication. The cost further increases when the data changes rapidly (due to state changes, node failure, etc.) and computation has to follow these changes. In this paper we describe a two step approach for dealing with these costs. First, we describe a highly efficient local algorithm which detect when the L2 norm of the average data surpasses a threshold. Then, we use this algorithm as a feedback loop for the monitoring of complex predicates on the data – such as the data’s k-means clustering. The efficiency of the L2 algorithm guarantees that so long as the clustering results represent the data (i.e., the data is stationary) few resources are required. When the data undergoes an epoch change – a change in the underlying distribution – and the model no longer represents it, the feedback loop indicates this and the model is rebuilt. Furthermore, the existence of a feedback loop allows using approximate and “best-effort ” methods for constructing the model; if an ill-fit model is built the feedback loop would indicate so, and the model would be rebuilt.
Open Data Commons Attribution License (ODC-By) v1.0https://www.opendatacommons.org/licenses/by/1.0/
License information was derived automatically
In accordance with Senate Bill 272, the City of Santa Monica has released a catalog of its enterprise systems. Approved on October 11, 2015, SB 272 adds a section to the California Public Records Act requiring local agencies to create a catalog of Enterprise Systems by July 1, 2016 with annual updates. Enterprise System is defined as: A software application or computer system that collects, stores, exchanges and analyzes information that the agency uses that is both of the following: A multi-departmental system or a system that contains information collected about the public. A system that serves as an original source of data within an agency. An Enterprise System does not include any of the following: - Information Technology security systems, including firewalls and other cybersecurity systems. - Physical access control systems, employee identification management systems, video monitoring and other physical control systems. - Infrastructure and mechanical control systems, including those that control or manage street lights, electrical, natural gas or water or sewer functions. - Systems related to 911 dispatch and operation or emergency services. - Systems that would be restricted from disclosure by Section 6254.19. - The specific records that the information technology system collects, stores, exchanges or analyzes. Exception If the public interest served by not disclosing the information described clearly outweighs the public interest served by disclosure, the local agency may instead provide a system name, brief title or identifier of the system.
This feature contains the spatial representations of ports and major port areas used within the Marine Landing Data System (MLDS). The point may not represent the exact port location.
This dataset is a compilation of address point data for the City of Tempe. The dataset contains a point location, the official address (as defined by The Building Safety Division of Community Development) for all occupiable units and any other official addresses in the City. There are several additional attributes that may be populated for an address, but they may not be populated for every address. Contact: Lynn Flaaen-Hanna, Development Services Specialist Contact E-mail Link: Map that Lets You Explore and Export Address Data Data Source: The initial dataset was created by combining several datasets and then reviewing the information to remove duplicates and identify errors. This published dataset is the system of record for Tempe addresses going forward, with the address information being created and maintained by The Building Safety Division of Community Development.Data Source Type: ESRI ArcGIS Enterprise GeodatabasePreparation Method: N/APublish Frequency: WeeklyPublish Method: AutomaticData Dictionary