CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
United States agricultural researchers have many options for making their data available online. This dataset aggregates the primary sources of ag-related data and determines where researchers are likely to deposit their agricultural data. These data serve as both a current landscape analysis and also as a baseline for future studies of ag research data. Purpose As sources of agricultural data become more numerous and disparate, and collaboration and open data become more expected if not required, this research provides a landscape inventory of online sources of open agricultural data. An inventory of current agricultural data sharing options will help assess how the Ag Data Commons, a platform for USDA-funded data cataloging and publication, can best support data-intensive and multi-disciplinary research. It will also help agricultural librarians assist their researchers in data management and publication. The goals of this study were to
establish where agricultural researchers in the United States-- land grant and USDA researchers, primarily ARS, NRCS, USFS and other agencies -- currently publish their data, including general research data repositories, domain-specific databases, and the top journals compare how much data is in institutional vs. domain-specific vs. federal platforms determine which repositories are recommended by top journals that require or recommend the publication of supporting data ascertain where researchers not affiliated with funding or initiatives possessing a designated open data repository can publish data
Approach
The National Agricultural Library team focused on Agricultural Research Service (ARS), Natural Resources Conservation Service (NRCS), and United States Forest Service (USFS) style research data, rather than ag economics, statistics, and social sciences data. To find domain-specific, general, institutional, and federal agency repositories and databases that are open to US research submissions and have some amount of ag data, resources including re3data, libguides, and ARS lists were analysed. Primarily environmental or public health databases were not included, but places where ag grantees would publish data were considered.
Search methods
We first compiled a list of known domain specific USDA / ARS datasets / databases that are represented in the Ag Data Commons, including ARS Image Gallery, ARS Nutrition Databases (sub-components), SoyBase, PeanutBase, National Fungus Collection, i5K Workspace @ NAL, and GRIN. We then searched using search engines such as Bing and Google for non-USDA / federal ag databases, using Boolean variations of “agricultural data” /“ag data” / “scientific data” + NOT + USDA (to filter out the federal / USDA results). Most of these results were domain specific, though some contained a mix of data subjects.
We then used search engines such as Bing and Google to find top agricultural university repositories using variations of “agriculture”, “ag data” and “university” to find schools with agriculture programs. Using that list of universities, we searched each university web site to see if their institution had a repository for their unique, independent research data if not apparent in the initial web browser search. We found both ag specific university repositories and general university repositories that housed a portion of agricultural data. Ag specific university repositories are included in the list of domain-specific repositories. Results included Columbia University – International Research Institute for Climate and Society, UC Davis – Cover Crops Database, etc. If a general university repository existed, we determined whether that repository could filter to include only data results after our chosen ag search terms were applied. General university databases that contain ag data included Colorado State University Digital Collections, University of Michigan ICPSR (Inter-university Consortium for Political and Social Research), and University of Minnesota DRUM (Digital Repository of the University of Minnesota). We then split out NCBI (National Center for Biotechnology Information) repositories.
Next we searched the internet for open general data repositories using a variety of search engines, and repositories containing a mix of data, journals, books, and other types of records were tested to determine whether that repository could filter for data results after search terms were applied. General subject data repositories include Figshare, Open Science Framework, PANGEA, Protein Data Bank, and Zenodo.
Finally, we compared scholarly journal suggestions for data repositories against our list to fill in any missing repositories that might contain agricultural data. Extensive lists of journals were compiled, in which USDA published in 2012 and 2016, combining search results in ARIS, Scopus, and the Forest Service's TreeSearch, plus the USDA web sites Economic Research Service (ERS), National Agricultural Statistics Service (NASS), Natural Resources and Conservation Service (NRCS), Food and Nutrition Service (FNS), Rural Development (RD), and Agricultural Marketing Service (AMS). The top 50 journals' author instructions were consulted to see if they (a) ask or require submitters to provide supplemental data, or (b) require submitters to submit data to open repositories.
Data are provided for Journals based on a 2012 and 2016 study of where USDA employees publish their research studies, ranked by number of articles, including 2015/2016 Impact Factor, Author guidelines, Supplemental Data?, Supplemental Data reviewed?, Open Data (Supplemental or in Repository) Required? and Recommended data repositories, as provided in the online author guidelines for each the top 50 journals.
Evaluation
We ran a series of searches on all resulting general subject databases with the designated search terms. From the results, we noted the total number of datasets in the repository, type of resource searched (datasets, data, images, components, etc.), percentage of the total database that each term comprised, any dataset with a search term that comprised at least 1% and 5% of the total collection, and any search term that returned greater than 100 and greater than 500 results.
We compared domain-specific databases and repositories based on parent organization, type of institution, and whether data submissions were dependent on conditions such as funding or affiliation of some kind.
Results
A summary of the major findings from our data review:
Over half of the top 50 ag-related journals from our profile require or encourage open data for their published authors.
There are few general repositories that are both large AND contain a significant portion of ag data in their collection. GBIF (Global Biodiversity Information Facility), ICPSR, and ORNL DAAC were among those that had over 500 datasets returned with at least one ag search term and had that result comprise at least 5% of the total collection.
Not even one quarter of the domain-specific repositories and datasets reviewed allow open submission by any researcher regardless of funding or affiliation.
See included README file for descriptions of each individual data file in this dataset. Resources in this dataset:Resource Title: Journals. File Name: Journals.csvResource Title: Journals - Recommended repositories. File Name: Repos_from_journals.csvResource Title: TDWG presentation. File Name: TDWG_Presentation.pptxResource Title: Domain Specific ag data sources. File Name: domain_specific_ag_databases.csvResource Title: Data Dictionary for Ag Data Repository Inventory. File Name: Ag_Data_Repo_DD.csvResource Title: General repositories containing ag data. File Name: general_repos_1.csvResource Title: README and file inventory. File Name: README_InventoryPublicDBandREepAgData.txt
Multivariate Time-Series (MTS) are ubiquitous, and are generated in areas as disparate as sensor recordings in aerospace systems, music and video streams, medical monitoring, and financial systems. Domain experts are often interested in searching for interesting multivariate patterns from these MTS databases which can contain up to several gigabytes of data. Surprisingly, research on MTS search is very limited. Most existing work only supports queries with the same length of data, or queries on a fixed set of variables. In this paper, we propose an efficient and flexible subsequence search framework for massive MTS databases, that, for the first time, enables querying on any subset of variables with arbitrary time delays between them. We propose two provably correct algorithms to solve this problem — (1) an R-tree Based Search (RBS) which uses Minimum Bounding Rectangles (MBR) to organize the subsequences, and (2) a List Based Search (LBS) algorithm which uses sorted lists for indexing. We demonstrate the performance of these algorithms using two large MTS databases from the aviation domain, each containing several millions of observations. Both these tests show that our algorithms have very high prune rates (>95%) thus needing actual disk access for only less than 5% of the observations. To the best of our knowledge, this is the first flexible MTS search algorithm capable of subsequence search on any subset of variables. Moreover, MTS subsequence search has never been attempted on datasets of the size we have used in this paper.
An interactive dashboard that showcases the City of Austin Open Data Portal (data.austintexas.gov) web traffic and search-term performance metrics. *City of Austin Open Data Terms of Use https://data.austintexas.gov/stories/s/ranj‐cccq
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
The open data portal catalogue is a downloadable dataset containing some key metadata for the general datasets available on the Government of Canada's Open Data portal. Resource 1 is generated using the ckanapi tool (external link) Resources 2 - 8 are generated using the Flatterer (external link) utility. ###Description of resources: 1. Dataset is a JSON Lines (external link) file where the metadata of each Dataset/Open Information Record is one line of JSON. The file is compressed with GZip. The file is heavily nested and recommended for users familiar with working with nested JSON. 2. Catalogue is a XLSX workbook where the nested metadata of each Dataset/Open Information Record is flattened into worksheets for each type of metadata. 3. datasets metadata contains metadata at the dataset
level. This is also referred to as the package
in some CKAN documentation. This is the main
table/worksheet in the SQLite database and XLSX output. 4. Resources Metadata contains the metadata for the resources contained within each dataset. 5. resource views metadata contains the metadata for the views applied to each resource, if a resource has a view configured. 6. datastore fields metadata contains the DataStore information for CSV datasets that have been loaded into the DataStore. This information is displayed in the Data Dictionary for DataStore enabled CSVs. 7. Data Package Fields contains a description of the fields available in each of the tables within the Catalogue, as well as the count of the number of records each table contains. 8. data package entity relation diagram Displays the title and format for column, in each table in the Data Package in the form of a ERD Diagram. The Data Package resource offers a text based version. 9. SQLite Database is a .db
database, similar in structure to Catalogue. This can be queried with database or analytical software tools for doing analysis.
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
A log of dataset alerts open, monitored or resolved on the open data portal. Alerts can include issues as well as deprecation or discontinuation notices.
The data in this set was culled from the Directory of Open Access Journals (DOAJ), the Proquest database Library and Information Science Abstracts (LISA), and a sample of peer reviewed scholarly journals in the field of Library Science. The data include journals that are open access, which was first defined by the Budapest Open Access Initiative: By ‘open access’ to [scholarly] literature, we mean its free availability on the public internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. Starting with a batch of 377 journals, we focused our dataset to include journals that met the following criteria: 1) peer-reviewed 2) written in English or abstracted in English, 3) actively published at the time of..., Data Collection In the spring of 2023, researchers gathered 377 scholarly journals whose content covered the work of librarians, archivists, and affiliated information professionals. This data encompassed 221 journals from the Proquest database Library and Information Science Abstracts (LISA), widely regarded as an authoritative database in the field of librarianship. From the Directory of Open Access Journals, we included 144 LIS journals. We also included 12 other journals not indexed in DOAJ or LISA, based on the researchers’ knowledge of existing OA library journals. The data is separated into several different sets representing the different indices and journals we searched. The first set includes journals from the database LISA. The following fields are in this dataset:
Journal: title of the journal
Publisher: title of the publishing company
Open Data Policy: lists whether an open data exists and what the policy is
Country of publication: country where the journal is publ..., , # Open access practices of selected library science journals
The data in this set was culled from the Directory of Open Access Journals (DOAJ), the Proquest database Library and Information Science Abstracts (LISA), and a sample of peer reviewed scholarly journals in the field of Library Science.
The data include journals that are open access, which was first defined by the Budapest Open Access Initiative:Â
By ‘open access’ to [scholarly] literature, we mean its free availability on the public internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself.
Starting with a batch of 377 journals, we focused our dataset to include journals that met the following criteria: 1) peer-reviewed 2) written in Engli...
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
NYC Open Data is an opportunity to engage New Yorkers in the information that is produced and used by City government. We believe that every New Yorker can benefit from Open Data, and Open Data can benefit from every New Yorker. Source: https://opendata.cityofnewyork.us/overview/
Thanks to NYC Open Data, which makes public data generated by city agencies available for public use, and Citi Bike, we've incorporated over 150 GB of data in 5 open datasets into Google BigQuery Public Datasets, including:
Over 8 million 311 service requests from 2012-2016
More than 1 million motor vehicle collisions 2012-present
Citi Bike stations and 30 million Citi Bike trips 2013-present
Over 1 billion Yellow and Green Taxi rides from 2009-present
Over 500,000 sidewalk trees surveyed decennially in 1995, 2005, and 2015
This dataset is deprecated and not being updated.
Fork this kernel to get started with this dataset.
https://opendata.cityofnewyork.us/
This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - https://data.cityofnewyork.us/ - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
By accessing datasets and feeds available through NYC Open Data, the user agrees to all of the Terms of Use of NYC.gov as well as the Privacy Policy for NYC.gov. The user also agrees to any additional terms of use defined by the agencies, bureaus, and offices providing data. Public data sets made available on NYC Open Data are provided for informational purposes. The City does not warranty the completeness, accuracy, content, or fitness for any particular purpose or use of any public data set made available on NYC Open Data, nor are any such warranties to be implied or inferred with respect to the public data sets furnished therein.
The City is not liable for any deficiencies in the completeness, accuracy, content, or fitness for any particular purpose or use of any public data set, or application utilizing such data set, provided by any third party.
Banner Photo by @bicadmedia from Unplash.
On which New York City streets are you most likely to find a loud party?
Can you find the Virginia Pines in New York City?
Where was the only collision caused by an animal that injured a cyclist?
What’s the Citi Bike record for the Longest Distance in the Shortest Time (on a route with at least 100 rides)?
https://cloud.google.com/blog/big-data/2017/01/images/148467900588042/nyc-dataset-6.png" alt="enter image description here">
https://cloud.google.com/blog/big-data/2017/01/images/148467900588042/nyc-dataset-6.png
https://data.gov.tw/licensehttps://data.gov.tw/license
Statistical search field of the government open data platform
For this new study, researchers looked for charginos decaying in three ways – via two W bosons (WW), a W boson and a Z boson (WZ), or a W boson and a Higgs boson (WH). These decay channels can all result in similar experimental signatures with one lepton. Researchers looked for unique collision-event signatures with isolated leptons, missing momentum, and large-radius jets (or b-jets in the WH case). They applied improved cut-and-count strategies in the WW/WZ cases, and revised the previous cut-and-count WH analysis with new machine-learning techniques. Using Boosted Decision Trees (BDTs), researchers were able to enhance signal identification in scenarios where the chargino and next-to-lightest neutralino decays were mediated by a Higgs boson, or when their mass difference closely aligns with the mass of the Higgs boson itself.
Researchers utilised this open dataset for training the analysis BDTs, making it readily available for subsequent advanced theoretical or machine learning investigations. The dataset is organised into 16 folders, each containing root files derived from Monte Carlo (MC) simulations. These files encompass both object-level and event-level variables, incorporating their associated systematic uncertainties.
Within these folders, 14 pertain to Standard Model background samples, with three major contributors being Single Top, ttbar, and W jets. The remaining two folders house signal samples and theory uncertainties for all MC-generated events. Each file is enriched with additional variables representing BDT scores for both Signal and Backgrounds.
Adopting a 1 vs all strategy, separate BDTs undergo individual training, reweighing, and optimisation tailored to specific classifications. The resultant scores conform to a comprehensive classification framework, providing sample-targeted independent probabilities spanning from 0 to 1 for all noteworthy Backgrounds and Signal categories. These scores serve as benchmarks for evaluating other cutting-edge models, such as Graph Neural Networks (GNNs), in the ongoing exploration of competitive state-of-the-art methodologies.
The dataset contains a total number of 12,380,322 events of which more than 6 million are ttbar events, 463,056 events in MC-generated Signal samples, and 23,251,217 events in theory samples.
On August 25th, 2022, Metro Council Passed Open Data Ordinance; previously open data reports were published on Mayor Fischer's Executive Order, You can find here both the Open Data Ordinance, 2022 (PDF) and the Mayor's Open Data Executive Order, 2013 Open Data Annual ReportsPage 6 of the Open Data Ordinance, Within one year of the effective date of this Ordinance, and thereafter no later than September1 of each year, the Open Data Management Team shall submit to the Mayor and Metro Council an annual Open Data Report.The Open Data Management team (also known as the Data Governance Team is currently led by the city's Data Officer Andrew McKinney in the Office of Civic Innovation and Technology. Previously, it was led by the former Data Officer, Michael Schnuerle and prior to that by Director of IT.Open Data Ordinance O-243-22 TextLouisville Metro GovernmentLegislation TextFile #: O-243-22, Version: 3ORDINANCE NO._, SERIES 2022AN ORDINANCE CREATING A NEW CHAPTER OF THE LOUISVILLE/JEFFERSONCOUNTY METRO CODE OF ORDINANCES CREATING AN OPEN DATA POLICYAND REVIEW. (AMENDMENT BY SUBSTITUTION)(AS AMENDED).SPONSORED BY: COUNCIL MEMBERS ARTHUR, WINKLER, CHAMBERS ARMSTRONG,PIAGENTINI, DORSEY, AND PRESIDENT JAMESWHEREAS, Metro Government is the catalyst for creating a world-class city that provides itscitizens with safe and vibrant neighborhoods, great jobs, a strong system of education and innovationand a high quality of life;WHEREAS, it should be easy to do business with Metro Government. Online governmentinteractions mean more convenient services for citizens and businesses and online governmentinteractions improve the cost effectiveness and accuracy of government operations;WHEREAS, an open government also makes certain that every aspect of the builtenvironment also has reliable digital descriptions available to citizens and entrepreneurs for deepengagement mediated by smart devices;WHEREAS, every citizen has the right to prompt, efficient service from Metro Government;WHEREAS, the adoption of open standards improves transparency, access to publicinformation and improved coordination and efficiencies among Departments and partnerorganizations across the public, non-profit and private sectors;WHEREAS, by publishing structured standardized data in machine readable formats, MetroGovernment seeks to encourage the local technology community to develop software applicationsand tools to display, organize, analyze, and share public record data in new and innovative ways;WHEREAS, Metro Government’s ability to review data and datasets will facilitate a betterUnderstanding of the obstacles the city faces with regard to equity;WHEREAS, Metro Government’s understanding of inequities, through data and datasets, willassist in creating better policies to tackle inequities in the city;WHEREAS, through this Ordinance, Metro Government desires to maintain its continuousimprovement in open data and transparency that it initiated via Mayoral Executive Order No. 1,Series 2013;WHEREAS, Metro Government’s open data work has repeatedly been recognized asevidenced by its achieving What Works Cities Silver (2018), Gold (2019), and Platinum (2020)certifications. What Works Cities recognizes and celebrates local governments for their exceptionaluse of data to inform policy and funding decisions, improve services, create operational efficiencies,and engage residents. The Certification program assesses cities on their data-driven decisionmakingpractices, such as whether they are using data to set goals and track progress, allocatefunding, evaluate the effectiveness of programs, and achieve desired outcomes. These datainformedstrategies enable Certified Cities to be more resilient, respond in crisis situations, increaseeconomic mobility, protect public health, and increase resident satisfaction; andWHEREAS, in commitment to the spirit of Open Government, Metro Government will considerpublic information to be open by default and will proactively publish data and data containinginformation, consistent with the Kentucky Open Meetings and Open Records Act.NOW, THEREFORE, BE IT ORDAINED BY THE COUNCIL OF THELOUISVILLE/JEFFERSON COUNTY METRO GOVERNMENT AS FOLLOWS:SECTION I: A new chapter of the Louisville Metro Code of Ordinances (“LMCO”) mandatingan Open Data Policy and review process is hereby created as follows:§ XXX.01 DEFINITIONS. For the purpose of this Chapter, the following definitions shall apply unlessthe context clearly indicates or requires a different meaning.OPEN DATA. Any public record as defined by the Kentucky Open Records Act, which could bemade available online using Open Format data, as well as best practice Open Data structures andformats when possible, that is not Protected Information or Sensitive Information, with no legalrestrictions on use or reuse. Open Data is not information that is treated as exempt under KRS61.878 by Metro Government.OPEN DATA REPORT. The annual report of the Open Data Management Team, which shall (i)summarize and comment on the state of Open Data availability in Metro Government Departmentsfrom the previous year, including, but not limited to, the progress toward achieving the goals of MetroGovernment’s Open Data portal, an assessment of the current scope of compliance, a list of datasetscurrently available on the Open Data portal and a description and publication timeline for datasetsenvisioned to be published on the portal in the following year; and (ii) provide a plan for the next yearto improve online public access to Open Data and maintain data quality.OPEN DATA MANAGEMENT TEAM. A group consisting of representatives from each Departmentwithin Metro Government and chaired by the Data Officer who is responsible for coordinatingimplementation of an Open Data Policy and creating the Open Data Report.DATA COORDINATORS. The members of an Open Data Management Team facilitated by theData Officer and the Office of Civic Innovation and Technology.DEPARTMENT. Any Metro Government department, office, administrative unit, commission, board,advisory committee, or other division of Metro Government.DATA OFFICER. The staff person designated by the city to coordinate and implement the city’sopen data program and policy.DATA. The statistical, factual, quantitative or qualitative information that is maintained or created byor on behalf of Metro Government.DATASET. A named collection of related records, with the collection containing data organized orformatted in a specific or prescribed way.METADATA. Contextual information that makes the Open Data easier to understand and use.OPEN DATA PORTAL. The internet site established and maintained by or on behalf of MetroGovernment located at https://data.louisvilleky.gov/ or its successor website.OPEN FORMAT. Any widely accepted, nonproprietary, searchable, platform-independent, machinereadablemethod for formatting data which permits automated processes.PROTECTED INFORMATION. Any Dataset or portion thereof to which the Department may denyaccess pursuant to any law, rule or regulation.SENSITIVE INFORMATION. Any Data which, if published on the Open Data Portal, could raiseprivacy, confidentiality or security concerns or have the potential to jeopardize public health, safety orwelfare to an extent that is greater than the potential public benefit of publishing that data.§ XXX.02 OPEN DATA PORTAL(A) The Open Data Portal shall serve as the authoritative source for Open Data provided by MetroGovernment.(B) Any Open Data made accessible on Metro Government’s Open Data Portal shall use an OpenFormat.(C) In the event a successor website is used, the Data Officer shall notify the Metro Council andshall provide notice to the public on the main city website.§ XXX.03 OPEN DATA MANAGEMENT TEAM(A) The Data Officer of Metro Government will work with the head of each Department to identify aData Coordinator in each Department. The Open Data Management Team will work to establish arobust, nationally recognized, platform that addresses digital infrastructure and Open Data.(B) The Open Data Management Team will develop an Open Data Policy that will adopt prevailingOpen Format standards for Open Data and develop agreements with regional partners to publish andmaintain Open Data that is open and freely available while respecting exemptions allowed by theKentucky Open Records Act or other federal or state law.§ XXX.04 DEPARTMENT OPEN DATA CATALOGUE(A) Each Department shall retain ownership over the Datasets they submit to the Open DataPortal. The Departments shall also be responsible for all aspects of the quality, integrity and securityPortal. The Departments shall also be responsible for all aspects of the quality, integrity and securityof the Dataset contents, including updating its Data and associated Metadata.(B) Each Department shall be responsible for creating an Open Data catalogue which shall includecomprehensive inventories of information possessed and/or managed by the Department.(C) Each Department’s Open Data catalogue will classify information holdings as currently “public”or “not yet public;” Departments will work with the Office of Civic Innovation and Technology todevelop strategies and timelines for publishing Open Data containing information in a way that iscomplete, reliable and has a high level of detail.§ XXX.05 OPEN DATA REPORT AND POLICY REVIEW(A) Within one year of the effective date of this Ordinance, and thereafter no later than September1 of each year, the Open Data Management Team shall submit to the Mayor and Metro Council anannual Open Data Report.(B) Metro Council may request a specific Department to report on any data or dataset that may bebeneficial or pertinent in implementing policy and legislation.(C) In acknowledgment that technology changes rapidly, in the future, the Open Data Policy shouldshall be reviewed annually and considered for revisions or additions that will continue to positionMetro Government as a leader on issues of
Search for a business by name. You can obtain business information and then proceed to purchase a certificate of good standing or other documents. The purpose of this search is simply to determine whether a company/entity exists and to provide basic information on the company/entity.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Abstract (our paper)
The frequency of a web search keyword generally reflects the degree of public interest in a particular subject matter. Search logs are therefore useful resources for trend analysis. However, access to search logs is typically restricted to search engine providers. In this paper, we investigate whether search frequency can be estimated from a different resource such as Wikipedia page views of open data. We found frequently searched keywords to have remarkably high correlations with Wikipedia page views. This suggests that Wikipedia page views can be an effective tool for determining popular global web search trends.
Data
personal-name.txt.gz:
The first column is the Wikipedia article id, the second column is the search keyword, the third column is the Wikipedia article title, and the fourth column is the total of page views from 2008 to 2014.
personal-name_data_google-trends.txt.gz, personal-name_data_wikipedia.txt.gz:
The first column is the period to be collected, the second column is the source (Google or Wikipedia), the third column is the Wikipedia article id, the fourth column is the search keyword, the fifth column is the date, and the sixth column is the value of search trend or page view.
Publication
This data set was created for our study. If you make use of this data set, please cite:
Mitsuo Yoshida, Yuki Arase, Takaaki Tsunoda, Mikio Yamamoto. Wikipedia Page View Reflects Web Search Trend. Proceedings of the 2015 ACM Web Science Conference (WebSci '15). no.65, pp.1-2, 2015.
http://dx.doi.org/10.1145/2786451.2786495
http://arxiv.org/abs/1509.02218 (author-created version)
Note
The raw data of Wikipedia page views is available in the following page.
http://dumps.wikimedia.org/other/pagecounts-raw/
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This description is part of the blog post "Systematic Literature Review of teaching Open Science" https://sozmethode.hypotheses.org/839
According to my opinion, we do not pay enough attention to teaching Open Science in higher education. Therefore, I designed a seminar to teach students the practices of Open Science by doing qualitative research.About this seminar, I wrote the article ”Teaching Open Science and qualitative methods“. For the article ”Teaching Open Science and qualitative methods“, I started to review the literature on ”Teaching Open Science“. The result of my literature review is that certain aspects of Open Science are used for teaching. However, Open Science with all its aspects (Open Access, Open Data, Open Methodology, Open Science Evaluation and Open Science Tools) is not an issue in publications about teaching.
Based on this insight, I have started a systematic literature review. I realized quickly that I need help to analyse and interpret the articles and to evaluate my preliminary findings. Especially different disciplinary cultures of teaching different aspects of Open Science are challenging, as I myself, as a social scientist, do not have enough insight to be able to interpret the results correctly. Therefore, I would like to invite you to participate in this research project!
I am now looking for people who would like to join a collaborative process to further explore and write the systematic literature review on “Teaching Open Science“. Because I want to turn this project into a Massive Open Online Paper (MOOP). According to the 10 rules of Tennant et al (2019) on MOOPs, it is crucial to find a core group that is enthusiastic about the topic. Therefore, I am looking for people who are interested in creating the structure of the paper and writing the paper together with me. I am also looking for people who want to search for and review literature or evaluate the literature I have already found. Together with the interested persons I would then define, the rules for the project (cf. Tennant et al. 2019). So if you are interested to contribute to the further search for articles and / or to enhance the interpretation and writing of results, please get in touch. For everyone interested to contribute, the list of articles collected so far is freely accessible at Zotero: https://www.zotero.org/groups/2359061/teaching_open_science. The figure shown below provides a first overview of my ongoing work. I created the figure with the free software yEd and uploaded the file to zenodo, so everyone can download and work with it:
To make transparent what I have done so far, I will first introduce what a systematic literature review is. Secondly, I describe the decisions I made to start with the systematic literature review. Third, I present the preliminary results.
Systematic literature review – an Introduction
Systematic literature reviews “are a method of mapping out areas of uncertainty, and identifying where little or no relevant research has been done.” (Petticrew/Roberts 2008: 2). Fink defines the systematic literature review as a “systemic, explicit, and reproducible method for identifying, evaluating, and synthesizing the existing body of completed and recorded work produced by researchers, scholars, and practitioners.” (Fink 2019: 6). The aim of a systematic literature reviews is to surpass the subjectivity of a researchers’ search for literature. However, there can never be an objective selection of articles. This is because the researcher has for example already made a preselection by deciding about search strings, for example “Teaching Open Science”. In this respect, transparency is the core criteria for a high-quality review.
In order to achieve high quality and transparency, Fink (2019: 6-7) proposes the following seven steps:
Selecting a research question.
Selecting the bibliographic database.
Choosing the search terms.
Applying practical screening criteria.
Applying methodological screening criteria.
Doing the review.
Synthesizing the results.
I have adapted these steps for the “Teaching Open Science” systematic literature review. In the following, I will present the decisions I have made.
Systematic literature review – decisions I made
Research question: I am interested in the following research questions: How is Open Science taught in higher education? Is Open Science taught in its full range with all aspects like Open Access, Open Data, Open Methodology, Open Science Evaluation and Open Science Tools? Which aspects are taught? Are there disciplinary differences as to which aspects are taught and, if so, why are there such differences?
Databases: I started my search at the Directory of Open Science (DOAJ). “DOAJ is a community-curated online directory that indexes and provides access to high quality, open access, peer-reviewed journals.” (https://doaj.org/) Secondly, I used the Bielefeld Academic Search Engine (base). Base is operated by Bielefeld University Library and “one of the world’s most voluminous search engines especially for academic web resources” (base-search.net). Both platforms are non-commercial and focus on Open Access publications and thus differ from the commercial publication databases, such as Web of Science and Scopus. For this project, I deliberately decided against commercial providers and the restriction of search in indexed journals. Thus, because my explicit aim was to find articles that are open in the context of Open Science.
Search terms: To identify articles about teaching Open Science I used the following search strings: “teaching open science” OR teaching “open science” OR teach „open science“. The topic search looked for the search strings in title, abstract and keywords of articles. Since these are very narrow search terms, I decided to broaden the method. I searched in the reference lists of all articles that appear from this search for further relevant literature. Using Google Scholar I checked which other authors cited the articles in the sample. If the so checked articles met my methodological criteria, I included them in the sample and looked through the reference lists and citations at Google Scholar. This process has not yet been completed.
Practical screening criteria: I have included English and German articles in the sample, as I speak these languages (articles in other languages are very welcome, if there are people who can interpret them!). In the sample only journal articles, articles in edited volumes, working papers and conference papers from proceedings were included. I checked whether the journals were predatory journals – such articles were not included. I did not include blogposts, books or articles from newspapers. I only included articles that fulltexts are accessible via my institution (University of Kassel). As a result, recently published articles at Elsevier could not be included because of the special situation in Germany regarding the Project DEAL (https://www.projekt-deal.de/about-deal/). For articles that are not freely accessible, I have checked whether there is an accessible version in a repository or whether preprint is available. If this was not the case, the article was not included. I started the analysis in May 2019.
Methodological criteria: The method described above to check the reference lists has the problem of subjectivity. Therefore, I hope that other people will be interested in this project and evaluate my decisions. I have used the following criteria as the basis for my decisions: First, the articles must focus on teaching. For example, this means that articles must describe how a course was designed and carried out. Second, at least one aspect of Open Science has to be addressed. The aspects can be very diverse (FOSS, repositories, wiki, data management, etc.) but have to comply with the principles of openness. This means, for example, I included an article when it deals with the use of FOSS in class and addresses the aspects of openness of FOSS. I did not include articles when the authors describe the use of a particular free and open source software for teaching but did not address the principles of openness or re-use.
Doing the review: Due to the methodical approach of going through the reference lists, it is possible to create a map of how the articles relate to each other. This results in thematic clusters and connections between clusters. The starting point for the map were four articles (Cook et al. 2018; Marsden, Thompson, and Plonsky 2017; Petras et al. 2015; Toelch and Ostwald 2018) that I found using the databases and criteria described above. I used yEd to generate the network. „yEd is a powerful desktop application that can be used to quickly and effectively generate high-quality diagrams.” (https://www.yworks.com/products/yed) In the network, arrows show, which articles are cited in an article and which articles are cited by others as well. In addition, I made an initial rough classification of the content using colours. This classification is based on the contents mentioned in the articles’ title and abstract. This rough content classification requires a more exact, i.e., content-based subdivision and evaluation by others, who are experts in the respective fields/disciplines.
Discover the breadth of data collected by the state which is local in nature. Search by county and municipality and discover, explore, and download local data. With a click, find local data across a broad range of categories from health to transportation, from recreation to economic development; find local farmer’s markets, child care regulated facilities, craft beverages, solar installations, food service establishment inspections, and much more.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The appendix of our ICSE 2018 paper "Search-Based Test Data Generation for SQL Queries: Appendix".
The appendix contains:
The Ontario government, generates and maintains thousands of datasets. Since 2012, we have shared data with Ontarians via a data catalogue. Open data is data that is shared with the public. Click here to learn more about open data and why Ontario releases it. Ontario’s Open Data Directive states that all data must be open, unless there is good reason for it to remain confidential. Ontario’s Chief Digital and Data Officer also has the authority to make certain datasets available publicly. Datasets listed in the catalogue that are not open will have one of the following labels: If you want to use data you find in the catalogue, that data must have a licence – a set of rules that describes how you can use it. A licence: Most of the data available in the catalogue is released under Ontario’s Open Government Licence. However, each dataset may be shared with the public under other kinds of licences or no licence at all. If a dataset doesn’t have a licence, you don’t have the right to use the data. If you have questions about how you can use a specific dataset, please contact us. The Ontario Data Catalogue endeavors to publish open data in a machine readable format. For machine readable datasets, you can simply retrieve the file you need using the file URL. The Ontario Data Catalogue is built on CKAN, which means the catalogue has the following features you can use when building applications. APIs (Application programming interfaces) let software applications communicate directly with each other. If you are using the catalogue in a software application, you might want to extract data from the catalogue through the catalogue API. Note: All Datastore API requests to the Ontario Data Catalogue must be made server-side. The catalogue's collection of dataset metadata (and dataset files) is searchable through the CKAN API. The Ontario Data Catalogue has more than just CKAN's documented search fields. You can also search these custom fields. You can also use the CKAN API to retrieve metadata about a particular dataset and check for updated files. Read the complete documentation for CKAN's API. Some of the open data in the Ontario Data Catalogue is available through the Datastore API. You can also search and access the machine-readable open data that is available in the catalogue. How to use the API feature: Read the complete documentation for CKAN's Datastore API. The Ontario Data Catalogue contains a record for each dataset that the Government of Ontario possesses. Some of these datasets will be available to you as open data. Others will not be available to you. This is because the Government of Ontario is unable to share data that would break the law or put someone's safety at risk. You can search for a dataset with a word that might describe a dataset or topic. Use words like “taxes” or “hospital locations” to discover what datasets the catalogue contains. You can search for a dataset from 3 spots on the catalogue: the homepage, the dataset search page, or the menu bar available across the catalogue. On the dataset search page, you can also filter your search results. You can select filters on the left hand side of the page to limit your search for datasets with your favourite file format, datasets that are updated weekly, datasets released by a particular organization, or datasets that are released under a specific licence. Go to the dataset search page to see the filters that are available to make your search easier. You can also do a quick search by selecting one of the catalogue’s categories on the homepage. These categories can help you see the types of data we have on key topic areas. When you find the dataset you are looking for, click on it to go to the dataset record. Each dataset record will tell you whether the data is available, and, if so, tell you about the data available. An open dataset might contain several data files. These files might represent different periods of time, different sub-sets of the dataset, different regions, language translations, or other breakdowns. You can select a file and either download it or preview it. Make sure to read the licence agreement to make sure you have permission to use it the way you want. Read more about previewing data. A non-open dataset may be not available for many reasons. Read more about non-open data. Read more about restricted data. Data that is non-open may still be subject to freedom of information requests. The catalogue has tools that enable all users to visualize the data in the catalogue without leaving the catalogue – no additional software needed. Have a look at our walk-through of how to make a chart in the catalogue. Get automatic notifications when datasets are updated. You can choose to get notifications for individual datasets, an organization’s datasets or the full catalogue. You don’t have to provide and personal information – just subscribe to our feeds using any feed reader you like using the corresponding notification web addresses. Copy those addresses and paste them into your reader. Your feed reader will let you know when the catalogue has been updated. The catalogue provides open data in several file formats (e.g., spreadsheets, geospatial data, etc). Learn about each format and how you can access and use the data each file contains. A file that has a list of items and values separated by commas without formatting (e.g. colours, italics, etc.) or extra visual features. This format provides just the data that you would display in a table. XLSX (Excel) files may be converted to CSV so they can be opened in a text editor. How to access the data: Open with any spreadsheet software application (e.g., Open Office Calc, Microsoft Excel) or text editor. Note: This format is considered machine-readable, it can be easily processed and used by a computer. Files that have visual formatting (e.g. bolded headers and colour-coded rows) can be hard for machines to understand, these elements make a file more human-readable and less machine-readable. A file that provides information without formatted text or extra visual features that may not follow a pattern of separated values like a CSV. How to access the data: Open with any word processor or text editor available on your device (e.g., Microsoft Word, Notepad). A spreadsheet file that may also include charts, graphs, and formatting. How to access the data: Open with a spreadsheet software application that supports this format (e.g., Open Office Calc, Microsoft Excel). Data can be converted to a CSV for a non-proprietary format of the same data without formatted text or extra visual features. A shapefile provides geographic information that can be used to create a map or perform geospatial analysis based on location, points/lines and other data about the shape and features of the area. It includes required files (.shp, .shx, .dbt) and might include corresponding files (e.g., .prj). How to access the data: Open with a geographic information system (GIS) software program (e.g., QGIS). A package of files and folders. The package can contain any number of different file types. How to access the data: Open with an unzipping software application (e.g., WinZIP, 7Zip). Note: If a ZIP file contains .shp, .shx, and .dbt file types, it is an ArcGIS ZIP: a package of shapefiles which provide information to create maps or perform geospatial analysis that can be opened with ArcGIS (a geographic information system software program). A file that provides information related to a geographic area (e.g., phone number, address, average rainfall, number of owl sightings in 2011 etc.) and its geospatial location (i.e., points/lines). How to access the data: Open using a GIS software application to create a map or do geospatial analysis. It can also be opened with a text editor to view raw information. Note: This format is machine-readable, and it can be easily processed and used by a computer. Human-readable data (including visual formatting) is easy for users to read and understand. A text-based format for sharing data in a machine-readable way that can store data with more unconventional structures such as complex lists. How to access the data: Open with any text editor (e.g., Notepad) or access through a browser. Note: This format is machine-readable, and it can be easily processed and used by a computer. Human-readable data (including visual formatting) is easy for users to read and understand. A text-based format to store and organize data in a machine-readable way that can store data with more unconventional structures (not just data organized in tables). How to access the data: Open with any text editor (e.g., Notepad). Note: This format is machine-readable, and it can be easily processed and used by a computer. Human-readable data (including visual formatting) is easy for users to read and understand. A file that provides information related to an area (e.g., phone number, address, average rainfall, number of owl sightings in 2011 etc.) and its geospatial location (i.e., points/lines). How to access the data: Open with a geospatial software application that supports the KML format (e.g., Google Earth). Note: This format is machine-readable, and it can be easily processed and used by a computer. Human-readable data (including visual formatting) is easy for users to read and understand. This format contains files with data from tables used for statistical analysis and data visualization of Statistics Canada census data. How to access the data: Open with the Beyond 20/20 application. A database which links and combines data from different files or applications (including HTML, XML, Excel, etc.). The database file can be converted to a CSV/TXT to make the data machine-readable, but human-readable formatting will be lost. How to access the data: Open with Microsoft Office Access (a database management system used to develop application software). A file that keeps the original layout and
Learn the step-by-step process to start downloading the open data of the City of Mendoza. To access and download the open data of the City of Mendoza, you do not need to register or create a user account. Access to the repository is free, and all datasets can be downloaded free of charge and without restrictions. The homepage has access buttons to 14 data categories and a search engine where you can directly enter the topic you want to access. Each data category refers to a section of the platform where you will find the various datasets available, grouped by theme. As an example, if we enter the Security section, we find different datasets within. Once you enter the dataset, you will find a list of resources. Each of these resources is a file that contains the data. For example, the dataset Security Dependencies includes specific information about each of the dependencies and allows you to access the information published in different formats and download it. In this case, if you want to open the file with the Excel program, you must click on the download button of the second resource that specifies that the format is CSV. Likewise, in other sections, there are datasets with information in various formats, such as XLS and KMZ. Each of the datasets also contains a file with additional information where you can see the last update date, the update frequency, and which government area is generating this information, among other things. To access and download the open data of the City of Mendoza, you do not need to register or create a user account. Access to the repository is free, and all datasets can be downloaded free of charge and without restrictions. The homepage has access buttons to 14 data categories and a search engine where you can directly enter the topic you want to access. Each data category refers to a section of the platform where you will find the various datasets available, grouped by theme. As an example, if we enter the Security section, we find different datasets within. Once you enter the dataset, you will find a list of resources. Each of these resources is a file that contains the data. For example, the dataset Security Dependencies includes specific information about each of the dependencies and allows you to access the information published in different formats and download it. In this case, if you want to open the file with the Excel program, you must click on the download button of the second resource that specifies that the format is CSV. Likewise, in other sections, there are datasets with information in various formats, such as XLS and KMZ. Each of the datasets also contains a file with additional information where you can see the last update date, the update frequency, and which government area is generating this information, among other things. Translated from Spanish Original Text: Conocé el paso a paso para empezar a descargar los datos abiertos de la Ciudad de Mendoza. Para acceder y descargar los datos abiertos de la Ciudad de Mendoza, no necesitás realizar ningún tipo de registro ni crear un usuario. El acceso al repositorio es libre y todos los datasets se pueden descargar de manera gratuita y sin restricciones. La página de inicio cuenta con botones de acceso a 14 categorías de datos y un buscador en donde podés ingresar directamente al tema al que quieras acceder. Cada categoría de datos, refiere a una sección de la plataforma en donde vas a encontrar los distintos datasets disponibles agrupados por temática. A modo de ejemplo, si ingresamos en la sección Seguridad, dentro encontramos diferentes datasets. Una vez que ingresas al dataset, encontrarás una lista de recursos. Cada uno de estos recursos es un archivo que contiene los datos. Por ejemplo, el dataset Dependencias de Seguridad incluye información específica sobre cada una de las dependencias y te permite acceder a la información publicada en distintos formatos y descargarla. En este caso, si quieres abrir el archivo con el programa Excel deberás hacer clic sobre el botón descargar del segundo recurso que especifica que el formato es CSV. Así como también, en otras secciones hay datasets con la información en diversos formatos, como XLS y KMZ Cada uno de los datasets, contiene además una ficha con información adicional en donde podés ver la última fecha de actualización, la frecuencia de actualización y qué área de gobierno es la generadora de esta información, entre otros. Para acceder y descargar los datos abiertos de la Ciudad de Mendoza, no necesitás realizar ningún tipo de registro ni crear un usuario. El acceso al repositorio es libre y todos los datasets se pueden descargar de manera gratuita y sin restricciones. La página de inicio cuenta con botones de acceso a 14 categorías de datos y un buscador en donde podés ingresar directamente al tema al que quieras acceder. Cada categoría de datos, refiere a una sección de la plataforma en donde vas a encontrar los distintos datasets disponibles agrupados por temática. A modo de ejemplo, si ingresamos en la sección Seguridad, dentro encontramos diferentes datasets. Una vez que ingresas al dataset, encontrarás una lista de recursos. Cada uno de estos recursos es un archivo que contiene los datos. Por ejemplo, el dataset Dependencias de Seguridad incluye información específica sobre cada una de las dependencias y te permite acceder a la información publicada en distintos formatos y descargarla. En este caso, si quieres abrir el archivo con el programa Excel deberás hacer clic sobre el botón descargar del segundo recurso que especifica que el formato es CSV. Así como también, en otras secciones hay datasets con la información en diversos formatos, como XLS y KMZ Cada uno de los datasets, contiene además una ficha con información adicional en donde podés ver la última fecha de actualización, la frecuencia de actualización y qué área de gobierno es la generadora de esta información, entre otros.
To use the document, click on the link above and scroll to the link on the page titled “View the January 2024 Drug Tariff online”. Once in the file, use the search function on the left-hand side to search for ‘contraceptive’. Click on the link(s) that appear, and you will be able to see a breakdown of the products available and the cost in pence to the NHS. Data on prescribing volumes and costs for English dispensing in the community can be found in the published Prescription Cost Analysis statistics (PCA), this data is classified against what is considered to be the 'main' therapeutic use for the pharmaceutical 'presentation' expressed using the (pseudo) British National Formulary (BNF) hierarchy. The tables include a breakdown with each pharmaceutical presentation reported separately. https://www.nhsbsa.nhs.uk/statistical-collections/prescription-cost-analysis-england To use the document, click on the link above and scroll to the “Resource List”. From here you can choose to view the data on a national scale or narrowed down to local ICB level. Once in the file, we recommend downloading the file in order to filter the columns for ease of access. We recommend using the National Summary Tables and viewing Table 6: BNF presentation level data. Within this file you can filter by name in column C or the measurement in column D. We recommend that you access this data knowing the names of the medication, devices or patches you require. Please be aware of the PCA methodology which may be relevant depending on interpretation. https://nhsbsa-opendata.s3.eu-west-2.amazonaws.com/pca/pca_background_info_methodology_v001.html The basis of the cost information included in the PCA data is described in the 'metadata' section included with the release and relates to the amount included in the reimbursement. NHSBSA prescription data only covers prescription items that have been submitted for reimbursement by community NHS dispensing contractors - this does not include any direct purchases made by other parts of the NHS (for example hospitals or other facilities that are operated by NHS Trusts). The NHS Business Services Authority does not hold data - including cost information - about appointments.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
The Open Database of Buildings (ODB) is a collection of open data on buildings, primarily building footprints, and is made available under the Open Government License - Canada. The ODB brings together 65 datasets originating from various government sources of open data. The database aims to enhance access to a harmonized collection of building footprints across Canada.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains data collected during a study ("Towards High-Value Datasets determination for data-driven development: a systematic literature review") conducted by Anastasija Nikiforova (University of Tartu), Nina Rizun, Magdalena Ciesielska (Gdańsk University of Technology), Charalampos Alexopoulos (University of the Aegean) and Andrea Miletič (University of Zagreb)
It being made public both to act as supplementary data for "Towards High-Value Datasets determination for data-driven development: a systematic literature review" paper (pre-print is available in Open Access here -> https://arxiv.org/abs/2305.10234) and in order for other researchers to use these data in their own work.
The protocol is intended for the Systematic Literature review on the topic of High-value Datasets with the aim to gather information on how the topic of High-value datasets (HVD) and their determination has been reflected in the literature over the years and what has been found by these studies to date, incl. the indicators used in them, involved stakeholders, data-related aspects, and frameworks. The data in this dataset were collected in the result of the SLR over Scopus, Web of Science, and Digital Government Research library (DGRL) in 2023.
***Methodology***
To understand how HVD determination has been reflected in the literature over the years and what has been found by these studies to date, all relevant literature covering this topic has been studied. To this end, the SLR was carried out to by searching digital libraries covered by Scopus, Web of Science (WoS), Digital Government Research library (DGRL).
These databases were queried for keywords ("open data" OR "open government data") AND ("high-value data*" OR "high value data*"), which were applied to the article title, keywords, and abstract to limit the number of papers to those, where these objects were primary research objects rather than mentioned in the body, e.g., as a future work. After deduplication, 11 articles were found unique and were further checked for relevance. As a result, a total of 9 articles were further examined. Each study was independently examined by at least two authors.
To attain the objective of our study, we developed the protocol, where the information on each selected study was collected in four categories: (1) descriptive information, (2) approach- and research design- related information, (3) quality-related information, (4) HVD determination-related information.
***Test procedure***
Each study was independently examined by at least two authors, where after the in-depth examination of the full-text of the article, the structured protocol has been filled for each study.
The structure of the survey is available in the supplementary file available (see Protocol_HVD_SLR.odt, Protocol_HVD_SLR.docx)
The data collected for each study by two researchers were then synthesized in one final version by the third researcher.
***Description of the data in this data set***
Protocol_HVD_SLR provides the structure of the protocol
Spreadsheets #1 provides the filled protocol for relevant studies.
Spreadsheet#2 provides the list of results after the search over three indexing databases, i.e. before filtering out irrelevant studies
The information on each selected study was collected in four categories:
(1) descriptive information,
(2) approach- and research design- related information,
(3) quality-related information,
(4) HVD determination-related information
Descriptive information
1) Article number - a study number, corresponding to the study number assigned in an Excel worksheet
2) Complete reference - the complete source information to refer to the study
3) Year of publication - the year in which the study was published
4) Journal article / conference paper / book chapter - the type of the paper -{journal article, conference paper, book chapter}
5) DOI / Website- a link to the website where the study can be found
6) Number of citations - the number of citations of the article in Google Scholar, Scopus, Web of Science
7) Availability in OA - availability of an article in the Open Access
8) Keywords - keywords of the paper as indicated by the authors
9) Relevance for this study - what is the relevance level of the article for this study? {high / medium / low}
Approach- and research design-related information
10) Objective / RQ - the research objective / aim, established research questions
11) Research method (including unit of analysis) - the methods used to collect data, including the unit of analy-sis (country, organisation, specific unit that has been ana-lysed, e.g., the number of use-cases, scope of the SLR etc.)
12) Contributions - the contributions of the study
13) Method - whether the study uses a qualitative, quantitative, or mixed methods approach?
14) Availability of the underlying research data- whether there is a reference to the publicly available underly-ing research data e.g., transcriptions of interviews, collected data, or explanation why these data are not shared?
15) Period under investigation - period (or moment) in which the study was conducted
16) Use of theory / theoretical concepts / approaches - does the study mention any theory / theoretical concepts / approaches? If any theory is mentioned, how is theory used in the study?
Quality- and relevance- related information
17) Quality concerns - whether there are any quality concerns (e.g., limited infor-mation about the research methods used)?
18) Primary research object - is the HVD a primary research object in the study? (primary - the paper is focused around the HVD determination, sec-ondary - mentioned but not studied (e.g., as part of discus-sion, future work etc.))
HVD determination-related information
19) HVD definition and type of value - how is the HVD defined in the article and / or any other equivalent term?
20) HVD indicators - what are the indicators to identify HVD? How were they identified? (components & relationships, “input -> output")
21) A framework for HVD determination - is there a framework presented for HVD identification? What components does it consist of and what are the rela-tionships between these components? (detailed description)
22) Stakeholders and their roles - what stakeholders or actors does HVD determination in-volve? What are their roles?
23) Data - what data do HVD cover?
24) Level (if relevant) - what is the level of the HVD determination covered in the article? (e.g., city, regional, national, international)
***Format of the file***
.xls, .csv (for the first spreadsheet only), .odt, .docx
***Licenses or restrictions***
CC-BY
For more info, see README.txt
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
United States agricultural researchers have many options for making their data available online. This dataset aggregates the primary sources of ag-related data and determines where researchers are likely to deposit their agricultural data. These data serve as both a current landscape analysis and also as a baseline for future studies of ag research data. Purpose As sources of agricultural data become more numerous and disparate, and collaboration and open data become more expected if not required, this research provides a landscape inventory of online sources of open agricultural data. An inventory of current agricultural data sharing options will help assess how the Ag Data Commons, a platform for USDA-funded data cataloging and publication, can best support data-intensive and multi-disciplinary research. It will also help agricultural librarians assist their researchers in data management and publication. The goals of this study were to
establish where agricultural researchers in the United States-- land grant and USDA researchers, primarily ARS, NRCS, USFS and other agencies -- currently publish their data, including general research data repositories, domain-specific databases, and the top journals compare how much data is in institutional vs. domain-specific vs. federal platforms determine which repositories are recommended by top journals that require or recommend the publication of supporting data ascertain where researchers not affiliated with funding or initiatives possessing a designated open data repository can publish data
Approach
The National Agricultural Library team focused on Agricultural Research Service (ARS), Natural Resources Conservation Service (NRCS), and United States Forest Service (USFS) style research data, rather than ag economics, statistics, and social sciences data. To find domain-specific, general, institutional, and federal agency repositories and databases that are open to US research submissions and have some amount of ag data, resources including re3data, libguides, and ARS lists were analysed. Primarily environmental or public health databases were not included, but places where ag grantees would publish data were considered.
Search methods
We first compiled a list of known domain specific USDA / ARS datasets / databases that are represented in the Ag Data Commons, including ARS Image Gallery, ARS Nutrition Databases (sub-components), SoyBase, PeanutBase, National Fungus Collection, i5K Workspace @ NAL, and GRIN. We then searched using search engines such as Bing and Google for non-USDA / federal ag databases, using Boolean variations of “agricultural data” /“ag data” / “scientific data” + NOT + USDA (to filter out the federal / USDA results). Most of these results were domain specific, though some contained a mix of data subjects.
We then used search engines such as Bing and Google to find top agricultural university repositories using variations of “agriculture”, “ag data” and “university” to find schools with agriculture programs. Using that list of universities, we searched each university web site to see if their institution had a repository for their unique, independent research data if not apparent in the initial web browser search. We found both ag specific university repositories and general university repositories that housed a portion of agricultural data. Ag specific university repositories are included in the list of domain-specific repositories. Results included Columbia University – International Research Institute for Climate and Society, UC Davis – Cover Crops Database, etc. If a general university repository existed, we determined whether that repository could filter to include only data results after our chosen ag search terms were applied. General university databases that contain ag data included Colorado State University Digital Collections, University of Michigan ICPSR (Inter-university Consortium for Political and Social Research), and University of Minnesota DRUM (Digital Repository of the University of Minnesota). We then split out NCBI (National Center for Biotechnology Information) repositories.
Next we searched the internet for open general data repositories using a variety of search engines, and repositories containing a mix of data, journals, books, and other types of records were tested to determine whether that repository could filter for data results after search terms were applied. General subject data repositories include Figshare, Open Science Framework, PANGEA, Protein Data Bank, and Zenodo.
Finally, we compared scholarly journal suggestions for data repositories against our list to fill in any missing repositories that might contain agricultural data. Extensive lists of journals were compiled, in which USDA published in 2012 and 2016, combining search results in ARIS, Scopus, and the Forest Service's TreeSearch, plus the USDA web sites Economic Research Service (ERS), National Agricultural Statistics Service (NASS), Natural Resources and Conservation Service (NRCS), Food and Nutrition Service (FNS), Rural Development (RD), and Agricultural Marketing Service (AMS). The top 50 journals' author instructions were consulted to see if they (a) ask or require submitters to provide supplemental data, or (b) require submitters to submit data to open repositories.
Data are provided for Journals based on a 2012 and 2016 study of where USDA employees publish their research studies, ranked by number of articles, including 2015/2016 Impact Factor, Author guidelines, Supplemental Data?, Supplemental Data reviewed?, Open Data (Supplemental or in Repository) Required? and Recommended data repositories, as provided in the online author guidelines for each the top 50 journals.
Evaluation
We ran a series of searches on all resulting general subject databases with the designated search terms. From the results, we noted the total number of datasets in the repository, type of resource searched (datasets, data, images, components, etc.), percentage of the total database that each term comprised, any dataset with a search term that comprised at least 1% and 5% of the total collection, and any search term that returned greater than 100 and greater than 500 results.
We compared domain-specific databases and repositories based on parent organization, type of institution, and whether data submissions were dependent on conditions such as funding or affiliation of some kind.
Results
A summary of the major findings from our data review:
Over half of the top 50 ag-related journals from our profile require or encourage open data for their published authors.
There are few general repositories that are both large AND contain a significant portion of ag data in their collection. GBIF (Global Biodiversity Information Facility), ICPSR, and ORNL DAAC were among those that had over 500 datasets returned with at least one ag search term and had that result comprise at least 5% of the total collection.
Not even one quarter of the domain-specific repositories and datasets reviewed allow open submission by any researcher regardless of funding or affiliation.
See included README file for descriptions of each individual data file in this dataset. Resources in this dataset:Resource Title: Journals. File Name: Journals.csvResource Title: Journals - Recommended repositories. File Name: Repos_from_journals.csvResource Title: TDWG presentation. File Name: TDWG_Presentation.pptxResource Title: Domain Specific ag data sources. File Name: domain_specific_ag_databases.csvResource Title: Data Dictionary for Ag Data Repository Inventory. File Name: Ag_Data_Repo_DD.csvResource Title: General repositories containing ag data. File Name: general_repos_1.csvResource Title: README and file inventory. File Name: README_InventoryPublicDBandREepAgData.txt