https://ottawa.ca/en/city-hall/get-know-your-city/open-data#open-data-licence-version-2-0https://ottawa.ca/en/city-hall/get-know-your-city/open-data#open-data-licence-version-2-0
This dataset contains netcdf files for the indices calculated in the report. Timeseries of the index (for each tridecade, year, season, or month) are provided for each grid cell and for each model.
Accuracy: Index-dependent caveats are detailed in the report.
Update Frequency: One-time upload (2020)
Obtained from: Findings obtained during the project.
Contact: Climate Change and Resiliency Unit
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Climate Resilience Information System (CRIS) provides data and tools for developers of climate services. This image service provides access to gridded historical observations for 27 threshold values of temperature for the contiguous United States for 1950-2013. These services are intended to support analysis of climate exposure for custom geographies and time horizons. More details on the how the data were processed can be found in Understanding CRIS Data.Time RangesPixel values for each variable were calculated for each year from 1950 to 2013. Variable DefinitionsSee the variable list and definitions here. Additional ServicesTwo versions of the gridded hisorical observations are available from CRIS:nClimGrid: a 4-km resolution dataset generated by NOAA. This data was used to downscale the STAR-ESDM climate projections in CRIS.Livneh: a 6-km resolution dataset generated by Livneh et al. This data was used to downscale the LOCA2 climate projections in CRIS.Using the Imagery LayerThe ArcGIS Tiled Imagery Service has a multidimensional structure -- a data cube with variable and time dimensions. Methods for accessing the different dimensions will depend on the software/client being used. For more details, please see the CRIS Developer’s Hub along with this instructional StoryMap. To run analysis, first use the multidimensional tools Aggregate or Subset in ArcGIS Pro to copy the necessary data locally.Data ExportData export is enabled on the services if using an ArcGIS client. NetCDF or Zarr files are also available from the NOAA Open Data Distribution system on Amazon Web Services.
This webmap is a subset of Global Landcover 1992 - 2020 Image Layer. You can access the source data from here. This layer is a time series of the annual ESA CCI (Climate Change Initiative) land cover maps of the world. ESA has produced land cover maps for the years 1992-2020. These are available at the European Space Agency Climate Change Initiative website.Time Extent: 1992-2020Cell Size: 300 meterSource Type: ThematicPixel Type: 8 Bit UnsignedData Projection: GCS WGS84Mosaic Projection: Web Mercator Auxiliary SphereExtent: GlobalSource: ESA Climate Change InitiativeUpdate Cycle: Annual until 2020, no updates thereafterWhat can you do with this layer?This layer may be added to ArcGIS Online maps and applications and shown in a time series to watch a "time lapse" view of land cover change since 1992 for any part of the world. The same behavior exists when the layer is added to ArcGIS Pro.In addition to displaying all layers in a series, this layer may be queried so that only one year is displayed in a map. This layer can be used in analysis. For example, the layer may be added to ArcGIS Pro with a query set to display just one year. Then, an area count of land cover types may be produced for a feature dataset using the zonal statistics tool. Statistics may be compared with the statistics from other years to show a trend.To sum up area by land cover using this service, or any other analysis, be sure to use an equal area projection, such as Albers or Equal Earth.Different Classifications Available to MapFive processing templates are included in this layer. The processing templates may be used to display a smaller set of land cover classes.Cartographic Renderer (Default Template)Displays all ESA CCI land cover classes.*Forested lands TemplateThe forested lands template shows only forested lands (classes 50-90).Urban Lands TemplateThe urban lands template shows only urban areas (class 190).Converted Lands TemplateThe converted lands template shows only urban lands and lands converted to agriculture (classes 10-40 and 190).Simplified RendererDisplays the map in ten simple classes which match the ten simplified classes used in 2050 Land Cover projections from Clark University.Any of these variables can be displayed or analyzed by selecting their processing template. In ArcGIS Online, select the Image Display Options on the layer. Then pull down the list of variables from the Renderer options. Click Apply and Close. In ArcGIS Pro, go into the Layer Properties. Select Processing Templates from the left hand menu. From the Processing Template pull down menu, select the variable to display.Using TimeBy default, the map will display as a time series animation, one year per frame. A time slider will appear when you add this layer to your map. To see the most current data, move the time slider until you see the most current year.In addition to displaying the past quarter century of land cover maps as an animation, this time series can also display just one year of data by use of a definition query. For a step by step example using ArcGIS Pro on how to display just one year of this layer, as well as to compare one year to another, see the blog called Calculating Impervious Surface Change.Hierarchical ClassificationLand cover types are defined using the land cover classification (LCCS) developed by the United Nations, FAO. It is designed to be as compatible as possible with other products, namely GLCC2000, GlobCover 2005 and 2009.This is a heirarchical classification system. For example, class 60 means "closed to open" canopy broadleaved deciduous tree cover. But in some places a more specific type of broadleaved deciduous tree cover may be available. In that case, a more specific code 61 or 62 may be used which specifies "open" (61) or "closed" (62) cover.Land Cover ProcessingTo provide consistency over time, these maps are produced from baseline land cover maps, and are revised for changes each year depending on the best available satellite data from each period in time. These revisions were made from AVHRR 1km time series from 1992 to 1999, SPOT-VGT time series between 1999 and 2013, and PROBA-V data for years 2013, 2014 and 2015. When MERIS FR or PROBA-V time series are available, changes detected at 1 km are re-mapped at 300 m. The last step consists in back- and up-dating the 10-year baseline LC map to produce the 24 annual LC maps from 1992 to 2015.Source dataThe datasets behind this layer were extracted from NetCDF files and TIFF files produced by ESA. Years 1992-2015 were acquired from ESA CCI LC version 2.0.7 in TIFF format, and years 2016-2018 were acquired from version 2.1.1 in NetCDF format. These are downloadable from ESA with an account, after agreeing to their terms of use. https://maps.elie.ucl.ac.be/CCI/viewer/download.phpCitationESA. Land Cover CCI Product User Guide Version 2. Tech. Rep. (2017). Available at: maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdfMore technical documentation on the source datasets is available here:https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=doc*Index of all classes in this layer:10 Cropland, rainfed11 Herbaceous cover12 Tree or shrub cover20 Cropland, irrigated or post-flooding30 Mosaic cropland (>50%) / natural vegetation (tree, shrub, herbaceous cover) (<50%)40 Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%) / cropland (<50%)50 Tree cover, broadleaved, evergreen, closed to open (>15%)60 Tree cover, broadleaved, deciduous, closed to open (>15%)61 Tree cover, broadleaved, deciduous, closed (>40%)62 Tree cover, broadleaved, deciduous, open (15-40%)70 Tree cover, needleleaved, evergreen, closed to open (>15%)71 Tree cover, needleleaved, evergreen, closed (>40%)72 Tree cover, needleleaved, evergreen, open (15-40%)80 Tree cover, needleleaved, deciduous, closed to open (>15%)81 Tree cover, needleleaved, deciduous, closed (>40%)82 Tree cover, needleleaved, deciduous, open (15-40%)90 Tree cover, mixed leaf type (broadleaved and needleleaved)100 Mosaic tree and shrub (>50%) / herbaceous cover (<50%)110 Mosaic herbaceous cover (>50%) / tree and shrub (<50%)120 Shrubland121 Shrubland evergreen122 Shrubland deciduous130 Grassland140 Lichens and mosses150 Sparse vegetation (tree, shrub, herbaceous cover) (<15%)151 Sparse tree (<15%)152 Sparse shrub (<15%)153 Sparse herbaceous cover (<15%)160 Tree cover, flooded, fresh or brakish water170 Tree cover, flooded, saline water180 Shrub or herbaceous cover, flooded, fresh/saline/brakish water190 Urban areas200 Bare areas201 Consolidated bare areas202 Unconsolidated bare areas210 Water bodies
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Climate Resilience Information System (CRIS) provides data and tools for developers of climate services. This image service provides access to gridded historical observations for 16 threshold values of precipitation for the contiguous United States for 1950-2023. These services are intended to support analysis of climate exposure for custom geographies and time horizons. More details on the how the data were processed can be found in Understanding CRIS Data.Time RangesPixel values for each variable were calculated for each year from 1950 to 2023. Variable DefinitionsSee the variable list and definitions here. Additional ServicesTwo versions of the gridded hisorical observations are available from CRIS:nClimGrid: a 4-km resolution dataset generated by NOAA. This data was used to downscale the STAR-ESDM climate projections in CRIS.Livneh: a 6-km resolution dataset generated by Livneh et al. This data was used to downscale the LOCA2 climate projections in CRIS.Using the Imagery LayerThe ArcGIS Tiled Imagery Service has a multidimensional structure -- a data cube with variable and time dimensions. Methods for accessing the different dimensions will depend on the software/client being used. For more details, please see the CRIS Developer’s Hub along with this instructional StoryMap. To run analysis, first use the multidimensional tools Aggregate or Subset in ArcGIS Pro to copy the necessary data locally.Data ExportData export is enabled on the services if using an ArcGIS client. NetCDF or Zarr files are also available from the NOAA Open Data Distribution system on Amazon Web Services.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Climate Resilience Information System (CRIS) provides data and tools for developers of climate services. This image service provides access to gridded historical observations for 16 threshold values of precipitation for the contiguous United States for 1950-2013. These services are intended to support analysis of climate exposure for custom geographies and time horizons. More details on the how the data were processed can be found in Understanding CRIS Data.Time RangesPixel values for each variable were calculated for each year from 1950 to 2013. Variable DefinitionsSee the variable list and definitions here. Additional ServicesTwo versions of the gridded hisorical observations are available from CRIS:nClimGrid: a 4-km resolution dataset generated by NOAA. This data was used to downscale the STAR-ESDM climate projections in CRIS.Livneh: a 6-km resolution dataset generated by Livneh et al. This data was used to downscale the LOCA2 climate projections in CRIS.Using the Imagery LayerThe ArcGIS Tiled Imagery Service has a multidimensional structure -- a data cube with variable and time dimensions. Methods for accessing the different dimensions will depend on the software/client being used. For more details, please see the CRIS Developer’s Hub along with this instructional StoryMap. To run analysis, first use the multidimensional tools Aggregate or Subset in ArcGIS Pro to copy the necessary data locally.Data ExportData export is enabled on the services if using an ArcGIS client. NetCDF or Zarr files are also available from the NOAA Open Data Distribution system on Amazon Web Services.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Climate Resilience Information System (CRIS) provides data and tools for developers of climate services. This image service provides access to gridded historical observations for 27 threshold values of temperature for the contiguous United States for 1950-2023. These services are intended to support analysis of climate exposure for custom geographies and time horizons. More details on the how the data were processed can be found in Understanding CRIS Data.Time RangesPixel values for each variable were calculated for each year from 1950 to 2023. Variable DefinitionsSee the variable list and definitions here. Additional ServicesTwo versions of the gridded hisorical observations are available from CRIS:nClimGrid: a 4-km resolution dataset generated by NOAA. This data was used to downscale the STAR-ESDM climate projections in CRIS.Livneh: a 6-km resolution dataset generated by Livneh et al. This data was used to downscale the LOCA2 climate projections in CRIS.Using the Imagery LayerThe ArcGIS Tiled Imagery Service has a multidimensional structure -- a data cube with variable and time dimensions. Methods for accessing the different dimensions will depend on the software/client being used. For more details, please see the CRIS Developer’s Hub along with this instructional StoryMap. To run analysis, first use the multidimensional tools Aggregate or Subset in ArcGIS Pro to copy the necessary data locally.Data ExportData export is enabled on the services if using an ArcGIS client. NetCDF or Zarr files are also available from the NOAA Open Data Distribution system on Amazon Web Services.
Stamp Out COVID-19An apple a day keeps the doctor away.Linda Angulo LopezDecember 3, 2020https://theconversation.com/coronavirus-where-do-new-viruses-come-from-136105SNAP Participation Rates, was explored and analysed on ArcGIS Pro, the results of which can help decision makers set up further SNAP-D initiatives.In the USA foods are stored in every State and U.S. territory and may be used by state agencies or local disaster relief organizations to provide food to shelters or people who are in need.US Food Stamp Program has been ExtendedThe Supplemental Nutrition Assistance Program, SNAP, is a State Organized Food Stamp Program in the USA and was put in place to help individuals and families during this exceptional time. State agencies may request to operate a Disaster Supplemental Nutrition Assistance Program (D-SNAP) .D-SNAP Interactive DashboardAlmost all States have set up Food Relief Programs, in response to COVID-19.Scroll Down to Learn more about the SNAP Participation Analysis & ResultsSNAP Participation AnalysisInitial results of yearly participation rates to geography show statistically significant trends, to get acquainted with the results, explore the following 3D Time Cube Map:Visualize A Space Time Cube in 3Dhttps://arcg.is/1q8LLPnetCDF ResultsWORKFLOW: a space-time cube was generated as a netCDF structure with the ArcGIS Pro Space-Time Mining Tool : Create a Space Time Cube from Defined Locations, other tools were then used to incorporate the spatial and temporal aspects of the SNAP County Participation Rate Feature to reveal and render statistically significant trends about Nutrition Assistance in the USA.Hot Spot Analysis Explore the results in 2D or 3D.2D Hot Spotshttps://arcg.is/1Pu5WH02D Hot Spot ResultsWORKFLOW: Hot Spot Analysis, with the Hot Spot Analysis Tool shows that there are various trends across the USA for instance the Southeastern States have a mixture of consecutive, intensifying, and oscillating hot spots.3D Hot Spotshttps://arcg.is/1b41T43D Hot Spot ResultsThese trends over time are expanded in the above 3D Map, by inspecting the stacked columns you can see the trends over time which give result to the overall Hot Spot Results.Not all counties have significant trends, symbolized as Never Significant in the Space Time Cubes.Space-Time Pattern Mining AnalysisThe North-central areas of the USA, have mostly diminishing cold spots.2D Space-Time Mininghttps://arcg.is/1PKPj02D Space Time Mining ResultsWORKFLOW: Analysis, with the Emerging Hot Spot Analysis Tool shows that there are various trends across the USA for instance the South-Eastern States have a mixture of consecutive, intensifying, and oscillating hot spots.Results ShowThe USA has counties with persistent malnourished populations, they depend on Food Aide.3D Space-Time Mininghttps://arcg.is/01fTWf3D Space Time Mining ResultsIn addition to obvious planning for consistent Hot-Hot Spot Areas, areas oscillating Hot-Cold and/or Cold-Hot Spots can be identified for further analysis to mitigate the upward trend in food insecurity in the USA, since 2009 which has become even worse since the outbreak of the COVID-19 pandemic.After Notes:(i) The Johns Hopkins University has an Interactive Dashboard of the Evolution of the COVID-19 Pandemic.Coronavirus COVID-19 (2019-nCoV)(ii) Since March 2020 in a Response to COVID-19, SNAP has had to extend its benefits to help people in need. The Food Relief is coordinated within States and by local and voluntary organizations to provide nutrition assistance to those most affected by a disaster or emergency.Visit SNAPs Interactive DashboardFood Relief has been extended, reach out to your state SNAP office, if you are in need.(iii) Follow these Steps to build an ArcGIS Pro StoryMap:Step 1: [Get Data][Open An ArcGIS Pro Project][Run a Hot Spot Analysis][Review analysis parameters][Interpret the results][Run an Outlier Analysis][Interpret the results]Step 2: [Open the Space-Time Pattern Mining 2 Map][Create a space-time cube][Visualize a space-time cube in 2D][Visualize a space-time cube in 3D][Run a Local Outlier Analysis][Visualize a Local Outlier Analysis in 3DStep 3: [Communicate Analysis][Identify your Audience & Takeaways][Create an Outline][Find Images][Prepare Maps & Scenes][Create a New Story][Add Story Elements][Add Maps & Scenes] [Review the Story][Publish & Share]A submission for the Esri MOOCSpatial Data Science: The New Frontier in AnalyticsLinda Angulo LopezLauren Bennett . Shannon Kalisky . Flora Vale . Alberto Nieto . Atma Mani . Kevin Johnston . Orhun Aydin . Ankita Bakshi . Vinay Viswambharan . Jennifer Bell & Nick Giner
Not seeing a result you expected?
Learn how you can add new datasets to our index.
https://ottawa.ca/en/city-hall/get-know-your-city/open-data#open-data-licence-version-2-0https://ottawa.ca/en/city-hall/get-know-your-city/open-data#open-data-licence-version-2-0
This dataset contains netcdf files for the indices calculated in the report. Timeseries of the index (for each tridecade, year, season, or month) are provided for each grid cell and for each model.
Accuracy: Index-dependent caveats are detailed in the report.
Update Frequency: One-time upload (2020)
Obtained from: Findings obtained during the project.
Contact: Climate Change and Resiliency Unit