100+ datasets found
  1. a

    QGIS - Open Source GIS Software

    • hub.arcgis.com
    • data-ecgis.opendata.arcgis.com
    Updated Aug 9, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eaton County Michigan (2018). QGIS - Open Source GIS Software [Dataset]. https://hub.arcgis.com/documents/57198670f4234919bfab87fb64d40a82
    Explore at:
    Dataset updated
    Aug 9, 2018
    Dataset authored and provided by
    Eaton County Michigan
    Description

    This is a link to the QGIS website where you can download open-source GIS software for viewing, analyzing and manipulating geodata like our downloadable shapefiles.

  2. G

    GIS Mapping Tools Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Apr 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). GIS Mapping Tools Report [Dataset]. https://www.marketreportanalytics.com/reports/gis-mapping-tools-54869
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Apr 3, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global GIS mapping tools market is experiencing robust growth, driven by increasing demand across diverse sectors. The market, estimated at $15 billion in 2025, is projected to exhibit a Compound Annual Growth Rate (CAGR) of 12% from 2025 to 2033, reaching an estimated market value of approximately $45 billion by 2033. Key drivers include the rising adoption of cloud-based GIS solutions, enhanced data analytics capabilities, the proliferation of location-based services, and the growing need for precise spatial data analysis in various industries like urban planning, geological exploration, and water resource management. The market is segmented by application (Geological Exploration, Water Conservancy Projects, Urban Planning, Others) and type (Cloud-based, Web-based). Cloud-based solutions are gaining significant traction due to their scalability, accessibility, and cost-effectiveness. The increasing availability of high-resolution satellite imagery and advancements in artificial intelligence (AI) and machine learning (ML) are further fueling market expansion. While data security concerns and the high initial investment costs for some advanced solutions present restraints, the overall market outlook remains positive, with significant opportunities for both established players and emerging technology providers. Geographical expansion is another key aspect of market growth. North America and Europe currently hold a significant market share, owing to established GIS infrastructure and early adoption of advanced technologies. However, the Asia-Pacific region is expected to witness rapid growth in the coming years, driven by rising government investments in infrastructure development and increasing urbanization in countries like China and India. Competitive dynamics are shaping the market, with major players like Esri, Autodesk, Hexagon, and Mapbox competing on the basis of software features, data integration capabilities, and customer support. The emergence of open-source GIS solutions like QGIS and GRASS GIS is also challenging the dominance of proprietary software, offering cost-effective alternatives for various applications. The continued development and integration of advanced technologies like 3D mapping, real-time data visualization, and location intelligence will further enhance the capabilities of GIS mapping tools, driving market expansion and innovation across various sectors.

  3. Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter...

    • catalog.data.gov
    • datasets.ai
    • +1more
    Updated Jun 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida (NPS, GRD, GRI, GUIS, GUIS_geomorphology digital map) adapted from U.S. Geological Survey Open File Report maps by Morton and Rogers (2009) and Morton and Montgomery (2010) [Dataset]. https://catalog.data.gov/dataset/digital-geomorphic-gis-map-of-gulf-islands-national-seashore-5-meter-accuracy-and-1-foot-r
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Guisguis Port Sariaya, Quezon
    Description

    The Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (guis_geomorphology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (guis_geomorphology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (guis_geomorphology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (guis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (guis_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (guis_geomorphology_metadata_faq.pdf). Please read the guis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (guis_geomorphology_metadata.txt or guis_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:26,000 and United States National Map Accuracy Standards features are within (horizontally) 13.2 meters or 43.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  4. A

    Open Source GIS Software

    • data.amerigeoss.org
    • cloud.csiss.gmu.edu
    • +1more
    html
    Updated Aug 9, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Energy Data Exchange (2019). Open Source GIS Software [Dataset]. https://data.amerigeoss.org/bg/dataset/open-source-gis-software
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Aug 9, 2019
    Dataset provided by
    Energy Data Exchange
    Description

    Open source GIS software available for download

  5. d

    NEPAnode MapWarper

    • catalog.data.gov
    • s.cnmilf.com
    Updated Nov 10, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DOE General Counsel (2020). NEPAnode MapWarper [Dataset]. https://catalog.data.gov/dataset/nepanode-mapwarper
    Explore at:
    Dataset updated
    Nov 10, 2020
    Dataset provided by
    DOE General Counsel
    Description

    This site is part of pilot effort at the US Department of Energy (DOE) - Office of NEPA Policy and Compliance to evaluate providing IT web services as a shared service, hosted on the cloud, and using only Free and Open Source Software (FOSS). The site is an integrated component of the larger NEPAnode project but is a stand alone service. The site allows users to upload static map images with no geographic data so that they can be accurately referenced/rectified on an webmap. This site allows for the revitalizing of otherwise unusable/archived maps such as historic maps, site surveys, site plans, etc. turning them into usable geographic data which is subsequently made available as a KML file for use in Google Earth/Maps and as a Web Mapping Service (WMS) for using in web-based webmapping application such as NEPAnode or in desktop GIS software.

  6. G

    GIS Mapping Tools Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Apr 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). GIS Mapping Tools Report [Dataset]. https://www.marketreportanalytics.com/reports/gis-mapping-tools-55097
    Explore at:
    doc, pdf, pptAvailable download formats
    Dataset updated
    Apr 3, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global GIS mapping tools market is experiencing robust growth, driven by increasing demand across diverse sectors. The market, estimated at $15 billion in 2025, is projected to expand at a Compound Annual Growth Rate (CAGR) of 8% from 2025 to 2033, reaching approximately $28 billion by 2033. This growth is fueled by several key factors. Firstly, the burgeoning adoption of cloud-based solutions offers scalability, cost-effectiveness, and enhanced accessibility to a wider user base, including small and medium-sized enterprises (SMEs). Secondly, the escalating need for precise spatial data analysis in various applications, such as urban planning, geological exploration, and water resource management, is significantly boosting market demand. The increasing integration of GIS with other technologies like AI and IoT further amplifies its capabilities, leading to more sophisticated applications and increased market penetration. Finally, government initiatives promoting digitalization and smart city development across the globe are indirectly fueling this market expansion. However, certain restraints limit market growth. The high initial investment cost for advanced GIS software and the requirement for skilled professionals to operate these systems can be a barrier, especially for smaller organizations. Additionally, data security and privacy concerns related to the handling of sensitive geographical information pose challenges to wider adoption. Market segmentation reveals strong growth in the cloud-based GIS segment, driven by its inherent advantages, while applications in urban planning and geological exploration lead the application-based segmentation. North America and Europe currently hold significant market shares, with strong growth potential in the Asia-Pacific region due to increasing infrastructure development and government investments. Leading companies like Esri, Hexagon, and Autodesk are shaping the market landscape through continuous innovation and competitive pricing strategies, while the emergence of open-source options like QGIS and GRASS GIS provides alternative, cost-effective solutions.

  7. S

    Software Geographic Information Systems Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Feb 10, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2025). Software Geographic Information Systems Report [Dataset]. https://www.archivemarketresearch.com/reports/software-geographic-information-systems-16497
    Explore at:
    pdf, doc, pptAvailable download formats
    Dataset updated
    Feb 10, 2025
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Software Geographic Information Systems (GIS) market is thriving, with a market size of XXX million in 2025 and a CAGR of XX% projected for the period of 2025-2033. Digitalization, increasing demand for spatial data and analytics, and advancements in cloud computing and data storage are the primary drivers of this growth. Furthermore, the incorporation of GIS in various sectors such as disaster management, land information management, and infrastructure management is contributing to the market's expansion. Key trends shaping the market include the rise of mobile and cloud-based GIS, the integration of artificial intelligence and machine learning for enhanced data analysis, and the adoption of open-source GIS platforms. Despite these growth factors, challenges such as data privacy concerns, a lack of skilled GIS professionals, and budgetary constraints for implementing GIS solutions may hinder market expansion. Key players in the market include Pasco Corporation, Ubisense Group, Beijing SuperMap Software, Hexagon, and Schneider Electric, among others. North America holds a significant market share, followed by Europe and Asia Pacific.

  8. a

    OpenStreetMap

    • ethiopia.africageoportal.com
    • bbmaps.mapcram.com
    • +35more
    Updated May 19, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Africa GeoPortal (2020). OpenStreetMap [Dataset]. https://ethiopia.africageoportal.com/maps/a5511fbe18ce46788b78adbcba13bc1e
    Explore at:
    Dataset updated
    May 19, 2020
    Dataset authored and provided by
    Africa GeoPortal
    Area covered
    Description

    This web map references the live tiled map service from the OpenStreetMap project. OpenStreetMap (OSM) is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information such as free satellite imagery, and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap server: http://www.OpenStreetMap.org. See that website for additional information about OpenStreetMap. It is made available as a basemap for GIS work in Esri products under a Creative Commons Attribution-ShareAlike license.Tip: This service is one of the basemaps used in the ArcGIS.com map viewer and ArcGIS Explorer Online. Simply click one of those links to launch the interactive application of your choice, and then choose Open Street Map from the Basemap control to start using this service. You'll also find this service in the Basemap gallery in ArcGIS Explorer Desktop and ArcGIS Desktop 10.

  9. I

    Interactive Map Creation Tools Report

    • marketresearchforecast.com
    doc, pdf, ppt
    Updated Mar 15, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Research Forecast (2025). Interactive Map Creation Tools Report [Dataset]. https://www.marketresearchforecast.com/reports/interactive-map-creation-tools-35432
    Explore at:
    pdf, ppt, docAvailable download formats
    Dataset updated
    Mar 15, 2025
    Dataset authored and provided by
    Market Research Forecast
    License

    https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The interactive map creation tools market is experiencing robust growth, driven by increasing demand for visually engaging data representation across diverse sectors. The market, estimated at $2.5 billion in 2025, is projected to exhibit a Compound Annual Growth Rate (CAGR) of 15% from 2025 to 2033, reaching approximately $8 billion by 2033. This expansion is fueled by several key factors. The rising adoption of cloud-based solutions and the proliferation of readily available geospatial data are lowering the barrier to entry for both individual and corporate users. Furthermore, advancements in mapping technologies, such as 3D mapping capabilities and improved user interfaces, are enhancing the overall user experience and driving wider adoption. The increasing need for effective data visualization in fields like real estate, urban planning, environmental monitoring, and marketing is further bolstering market growth. Segmentation reveals a significant portion of the market is attributed to paid use licenses, reflecting the advanced features and support provided by premium tools. However, the free-use segment is also growing rapidly, driven by the availability of user-friendly open-source tools and freemium models offered by major players. Corporate users constitute a larger portion of the market compared to individual users, primarily due to their higher budget allocations for data visualization and analysis tools. Geographic distribution reveals a concentration of market share in North America and Europe, largely due to higher technological adoption and a well-established digital infrastructure. However, rapid growth is anticipated in Asia Pacific regions like China and India, driven by increasing urbanization and government initiatives promoting digital transformation. Market restraints include the high cost of advanced mapping software, the need for specialized technical skills for complex projects, and the potential for data security and privacy concerns. Nevertheless, ongoing technological innovation, coupled with the increasing accessibility of data and analytical tools, is anticipated to mitigate these challenges and continue to drive significant market expansion throughout the forecast period. Key players like Mapbox, ArcGIS StoryMaps, and Google are actively shaping the market landscape through continuous product development and strategic partnerships, fostering innovation and competitive pricing strategies.

  10. Open-Source GIScience Online Course

    • ckan.americaview.org
    Updated Nov 2, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.americaview.org (2021). Open-Source GIScience Online Course [Dataset]. https://ckan.americaview.org/dataset/open-source-giscience-online-course
    Explore at:
    Dataset updated
    Nov 2, 2021
    Dataset provided by
    CKANhttps://ckan.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    In this course, you will explore a variety of open-source technologies for working with geosptial data, performing spatial analysis, and undertaking general data science. The first component of the class focuses on the use of QGIS and associated technologies (GDAL, PROJ, GRASS, SAGA, and Orfeo Toolbox). The second component of the class introduces Python and associated open-source libraries and modules (NumPy, Pandas, Matplotlib, Seaborn, GeoPandas, Rasterio, WhiteboxTools, and Scikit-Learn) used by geospatial scientists and data scientists. We also provide an introduction to Structured Query Language (SQL) for performing table and spatial queries. This course is designed for individuals that have a background in GIS, such as working in the ArcGIS environment, but no prior experience using open-source software and/or coding. You will be asked to work through a series of lecture modules and videos broken into several topic areas, as outlined below. Fourteen assignments and the required data have been provided as hands-on opportunites to work with data and the discussed technologies and methods. If you have any questions or suggestions, feel free to contact us. We hope to continue to update and improve this course. This course was produced by West Virginia View (http://www.wvview.org/) with support from AmericaView (https://americaview.org/). This material is based upon work supported by the U.S. Geological Survey under Grant/Cooperative Agreement No. G18AP00077. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. Geological Survey. Mention of trade names or commercial products does not constitute their endorsement by the U.S. Geological Survey. After completing this course you will be able to: apply QGIS to visualize, query, and analyze vector and raster spatial data. use available resources to further expand your knowledge of open-source technologies. describe and use a variety of open data formats. code in Python at an intermediate-level. read, summarize, visualize, and analyze data using open Python libraries. create spatial predictive models using Python and associated libraries. use SQL to perform table and spatial queries at an intermediate-level.

  11. f

    Data from: Visual programming-based Geospatial Cyberinfrastructure for...

    • tandf.figshare.com
    docx
    Updated Mar 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lingbo Liu; Weihe Wendy Guan; Fahui Wang; Shuming Bao (2025). Visual programming-based Geospatial Cyberinfrastructure for open-source GIS education 3.0 [Dataset]. http://doi.org/10.6084/m9.figshare.28472871.v1
    Explore at:
    docxAvailable download formats
    Dataset updated
    Mar 4, 2025
    Dataset provided by
    Taylor & Francis
    Authors
    Lingbo Liu; Weihe Wendy Guan; Fahui Wang; Shuming Bao
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Open-Source GIS plays a pivotal role in advancing GIS education, fostering research collaboration, and supporting global sustainability by enabling the sharing of data, models, and knowledge. However, the integration of big data, deep learning methods, and artificial intelligence deep learning in geospatial research presents significant challenges for GIS education. These include increasing software learning costs, higher computational power demand, and the management of fragmented information in the Web 2.0 context. Addressing these challenges while integrating emerging GIS innovations and restructuring GIS knowledge systems is crucial for the evolution of GIS Education 3.0. This study introduces a Visual Programming-based Geospatial Cyberinfrastructure (V-GCI) framework, integrated with the replicable and reproducible (R&R) framework, to enhance GIS function compatibility, learning scalability, and web GIS application interoperability. Through a case study on spatial accessibility using the generalized two-step floating catchment area method (G2SFCA), this paper demonstrates how V-GCI can reshape the GIS knowledge tree and its potential to enhance replicability and reproducibility within open-source GIS Education 3.0.

  12. d

    Digital Geologic-GIS Map of the Rhoda Quadrangle, Kentucky (NPS, GRD, GRI,...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Jun 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geologic-GIS Map of the Rhoda Quadrangle, Kentucky (NPS, GRD, GRI, MACA, RHOD digital map) adapted from a U.S. Geological Survey Geologic Quadrangle Map by Klemic (1963) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-the-rhoda-quadrangle-kentucky-nps-grd-gri-maca-rhod-digital-ma
    Explore at:
    Dataset updated
    Jun 4, 2024
    Dataset provided by
    National Park Service
    Area covered
    Kentucky
    Description

    The Digital Geologic-GIS Map of the Rhoda Quadrangle, Kentucky is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (rhod_geology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (rhod_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (rhod_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (maca_abli_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (maca_abli_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (rhod_geology_metadata_faq.pdf). Please read the maca_abli_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (rhod_geology_metadata.txt or rhod_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  13. Digital Surficial Geologic-GIS Map of Mount Desert Island and Vicinity,...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Feb 14, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Digital Surficial Geologic-GIS Map of Mount Desert Island and Vicinity, Acadia National Park, Maine (NPS, GRD, GRI, ACAD, ACAD_surficial digital map) adapted from Maine Geological Survey Open-File Maps by Braun (2016), Braun, Lowell and Foley (2016), and Braun and Weddle (2016) [Dataset]. https://catalog.data.gov/dataset/digital-surficial-geologic-gis-map-of-mount-desert-island-and-vicinity-acadia-national-par-073e9
    Explore at:
    Dataset updated
    Feb 14, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Mount Desert Island, Maine
    Description

    The Digital Surficial Geologic-GIS Map of Mount Desert Island and Vicinity, Acadia National Park, Maine is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (acad_surficial_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro 3.X map file (.mapx) file (acad_surficial_geology.mapx) and individual Pro 3.X layer (.lyrx) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (acad_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (acad_surficial_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (acad_surficial_geology_metadata_faq.pdf). Please read the acad_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Maine Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (acad_surficial_geology_metadata.txt or acad_surficial_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  14. W

    Generic Mapping Tool

    • cloud.csiss.gmu.edu
    • data.amerigeoss.org
    • +1more
    html
    Updated Aug 8, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Energy Data Exchange (2019). Generic Mapping Tool [Dataset]. https://cloud.csiss.gmu.edu/uddi/dataset/generic-mapping-tool
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Aug 8, 2019
    Dataset provided by
    Energy Data Exchange
    Description

    Generic Mapping Tool (GMT)

    GMT is an open source collection of about 80 command-line tools for manipulating geographic and Cartesian data sets (including filtering, trend fitting, gridding, projecting, etc.) and producing PostScript illustrations ranging from simple x–y plots via contour maps to artificially illuminated surfaces and 3D perspective views; the GMT supplements add another 40 more specialized and discipline-specific tools. GMT supports over 30 map projections and transformations and requires support data such as GSHHG coastlines, rivers, and political boundaries and optionally DCW country polygons. GMT is developed and maintained by Paul Wessel, Walter H. F. Smith, Remko Scharroo, Joaquim Luis and Florian Wobbe, with help from a global set of volunteers, and is supported by the National Science Foundation. It is released under the GNU Lesser General Public License version 3 or any later version.

  15. a

    Open Data QGIS Map

    • data-ecgis.opendata.arcgis.com
    • hub.arcgis.com
    Updated Jan 16, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eaton County Michigan (2019). Open Data QGIS Map [Dataset]. https://data-ecgis.opendata.arcgis.com/content/710eba02b62d4d7c9149671be23fa478
    Explore at:
    Dataset updated
    Jan 16, 2019
    Dataset authored and provided by
    Eaton County Michigan
    Description

    QGIS 3 map of Eaton County, Michigan, USA with:ParcelsBuilding FootprintsSite Address PointsPolling PlacesCounty DistrictsControl CornersTownshipsSectionsGeopolitical AreasRoadsFlowlinesCounty DrainsWaterbodiesCountyAerial 2015 map service * The data in the map is stored in a geopackage called "geodata.gpkg" which should be kept in the same folder as the map "OpenData.qgz" in order to maintain the map's connectivity to the data sources. You will need the free GIS software QGIS installed to view this map. It's available at https://qgis.org

  16. U

    Introduction to QGIS

    • dataverse.ucla.edu
    Updated Aug 21, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ZHIYUAN YAO; Jamie Jamison; Leigh Phan; ZHIYUAN YAO; Jamie Jamison; Leigh Phan (2020). Introduction to QGIS [Dataset]. http://doi.org/10.25346/S6/LOZHYJ
    Explore at:
    mp4(302508743), application/zipped-shapefile(3245), application/zipped-shapefile(132968), tsv(2941), pptx(7792220), application/zipped-shapefile(258186)Available download formats
    Dataset updated
    Aug 21, 2020
    Dataset provided by
    UCLA Dataverse
    Authors
    ZHIYUAN YAO; Jamie Jamison; Leigh Phan; ZHIYUAN YAO; Jamie Jamison; Leigh Phan
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Quantum Geographic Information Systems (QGIS) is a user friendly open source GIS software. This workshop will introduce the interface and exhibit a small portion of spatial analysis techniques QGIS offers to familiarize you with some of the basis, and to illustrate the fundamentals of GIS. The workshop is targeted for beginners.The attendees will have a hands-on practice to apply the spatial analysis tools and create a map as as a final output.

  17. S

    Satellite Remote Sensing Software Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Apr 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). Satellite Remote Sensing Software Report [Dataset]. https://www.marketreportanalytics.com/reports/satellite-remote-sensing-software-53977
    Explore at:
    doc, pdf, pptAvailable download formats
    Dataset updated
    Apr 2, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global satellite remote sensing software market is experiencing robust growth, driven by increasing demand across diverse sectors. While precise figures for market size and CAGR aren't provided, considering the technological advancements and applications in agriculture (precision farming, crop monitoring), water conservancy (flood management, irrigation optimization), forest management (deforestation monitoring, resource assessment), and the public sector (urban planning, disaster response), a conservative estimate places the 2025 market size at approximately $2 billion. This figure reflects the substantial investments in satellite imagery acquisition and analysis capabilities worldwide. The market is further fueled by the rising adoption of cloud-based solutions, enhancing accessibility and scalability of software platforms. Trends such as the integration of AI and machine learning for automated image processing, the proliferation of high-resolution satellite imagery, and the increasing availability of open-source software are accelerating market expansion. However, factors such as the high cost of specialized software licenses and the need for skilled professionals to operate the sophisticated systems act as restraints. The market is segmented by application (agriculture, water conservancy, forest management, public sector, others) and software type (open-source, non-open-source). The North American and European markets currently hold significant shares, but the Asia-Pacific region is witnessing rapid growth due to increasing infrastructure development and government initiatives promoting geospatial technologies. This dynamic market landscape presents lucrative opportunities for both established players and emerging companies in the years to come. The forecast period (2025-2033) anticipates continued growth, with a projected CAGR of approximately 12%, driven by the aforementioned technological advancements and broadening applications across various industry verticals. The competitive landscape is comprised of both major players like ESRI, Trimble, and PCI Geomatica, offering comprehensive suites of software, and smaller, specialized companies focusing on niche applications or open-source solutions. The market is characterized by both proprietary and open-source software options. Open-source solutions like QGIS and GRASS GIS offer cost-effective alternatives, particularly for research and smaller organizations, while commercial solutions provide advanced functionalities and support. The increasing availability of cloud-based solutions is blurring the lines between these segments, with hybrid models emerging that combine the benefits of both. Future growth will be significantly influenced by collaborations between software providers and satellite imagery providers, fostering a more integrated ecosystem and streamlining the data acquisition and processing workflow. The market will continue to benefit from advancements in satellite technology, producing higher-resolution, more frequent, and more affordable imagery.

  18. G

    Geospatial Solutions Report

    • marketresearchforecast.com
    doc, pdf, ppt
    Updated May 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Research Forecast (2025). Geospatial Solutions Report [Dataset]. https://www.marketresearchforecast.com/reports/geospatial-solutions-333472
    Explore at:
    pdf, ppt, docAvailable download formats
    Dataset updated
    May 5, 2025
    Dataset authored and provided by
    Market Research Forecast
    License

    https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The geospatial solutions market, valued at $214,710 million in 2025, is projected to experience robust growth, driven by increasing adoption across diverse sectors. A Compound Annual Growth Rate (CAGR) of 7.2% from 2025 to 2033 indicates a significant expansion of this market. Key drivers include the rising demand for precise location intelligence in urban planning, infrastructure development, and resource management. The integration of advanced technologies like AI, machine learning, and IoT further fuels market growth, enhancing data analytics and decision-making capabilities. The market is segmented by hardware, software, and services, catering to applications in utility, business, transportation, defense, infrastructure, natural resources, and other sectors. North America currently holds a significant market share due to high technological advancements and substantial investments in geospatial technologies. However, the Asia-Pacific region is expected to witness rapid growth fueled by increasing urbanization and infrastructure projects. Competition is fierce, with major players including HERE Technologies, Esri, Hexagon, and Google vying for market dominance. The ongoing development of high-resolution imagery, improved data processing capabilities, and cloud-based solutions are shaping the future of the geospatial solutions landscape. The restraints to market growth include high initial investment costs for advanced technologies, concerns about data privacy and security, and the need for skilled professionals to manage and interpret complex geospatial data. However, the growing awareness of the benefits of geospatial solutions, coupled with ongoing technological advancements, is expected to mitigate these challenges. The increasing availability of open-source geospatial data and software is also democratizing access to these technologies, driving wider adoption across various industries and geographical regions. Future growth will depend on successful integration with emerging technologies, expanding the applications of geospatial data analysis, and addressing concerns related to data accessibility, security, and interoperability. The market’s evolution is likely to be characterized by increased collaboration between technology providers, government agencies, and private sector organizations.

  19. GIS In Utility Industry Market Analysis North America, Europe, APAC, Middle...

    • technavio.com
    Updated Dec 31, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2024). GIS In Utility Industry Market Analysis North America, Europe, APAC, Middle East and Africa, South America - US, China, Canada, Japan, Germany, Russia, India, Brazil, France, UAE - Size and Forecast 2025-2029 [Dataset]. https://www.technavio.com/report/gis-market-in-the-utility-industry-analysis
    Explore at:
    Dataset updated
    Dec 31, 2024
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    Global, Canada, Germany, United States
    Description

    Snapshot img

    GIS In Utility Industry Market Size 2025-2029

    The gis in utility industry market size is forecast to increase by USD 3.55 billion, at a CAGR of 19.8% between 2024 and 2029.

    The utility industry's growing adoption of Geographic Information Systems (GIS) is driven by the increasing need for efficient and effective infrastructure management. GIS solutions enable utility companies to visualize, analyze, and manage their assets and networks more effectively, leading to improved operational efficiency and customer service. A notable trend in this market is the expanding application of GIS for water management, as utilities seek to optimize water distribution and reduce non-revenue water losses. However, the utility GIS market faces challenges from open-source GIS software, which can offer cost-effective alternatives to proprietary solutions. These open-source options may limit the functionality and support available to users, necessitating careful consideration when choosing a GIS solution. To capitalize on market opportunities and navigate these challenges, utility companies must assess their specific needs and evaluate the trade-offs between cost, functionality, and support when selecting a GIS provider. Effective strategic planning and operational execution will be crucial for success in this dynamic market.

    What will be the Size of the GIS In Utility Industry Market during the forecast period?

    Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
    Request Free SampleThe Global Utilities Industry Market for Geographic Information Systems (GIS) continues to evolve, driven by the increasing demand for advanced data management and analysis solutions. GIS services play a crucial role in utility infrastructure management, enabling asset management, data integration, project management, demand forecasting, data modeling, data analytics, grid modernization, data security, field data capture, outage management, and spatial analysis. These applications are not static but rather continuously unfolding, with new patterns emerging in areas such as energy efficiency, smart grid technologies, renewable energy integration, network optimization, and transmission lines. Spatial statistics, data privacy, geospatial databases, and remote sensing are integral components of this evolving landscape, ensuring the effective management of utility infrastructure. Moreover, the adoption of mobile GIS, infrastructure planning, customer service, asset lifecycle management, metering systems, regulatory compliance, GIS data management, route planning, environmental impact assessment, mapping software, GIS consulting, GIS training, smart metering, workforce management, location intelligence, aerial imagery, construction management, data visualization, operations and maintenance, GIS implementation, and IoT sensors is transforming the industry. The integration of these technologies and services facilitates efficient utility infrastructure management, enhancing network performance, improving customer service, and ensuring regulatory compliance. The ongoing evolution of the utilities industry market for GIS reflects the dynamic nature of the sector, with continuous innovation and adaptation to meet the changing needs of utility providers and consumers.

    How is this GIS In Utility Industry Industry segmented?

    The gis in utility industry industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. ProductSoftwareDataServicesDeploymentOn-premisesCloudGeographyNorth AmericaUSCanadaEuropeFranceGermanyRussiaMiddle East and AfricaUAEAPACChinaIndiaJapanSouth AmericaBrazilRest of World (ROW).

    By Product Insights

    The software segment is estimated to witness significant growth during the forecast period.In the utility industry, Geographic Information Systems (GIS) play a pivotal role in optimizing operations and managing infrastructure. Utilities, including electricity, gas, water, and telecommunications providers, utilize GIS software for asset management, infrastructure planning, network performance monitoring, and informed decision-making. The GIS software segment in the utility industry encompasses various solutions, starting with fundamental GIS software that manages and analyzes geographical data. Additionally, utility companies leverage specialized software for field data collection, energy efficiency, smart grid technologies, distribution grid design, renewable energy integration, network optimization, transmission lines, spatial statistics, data privacy, geospatial databases, GIS services, project management, demand forecasting, data modeling, data analytics, grid modernization, data security, field data capture, outage ma

  20. Digital Geologic-GIS Map of Sagamore Hill National Historic Site and...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Jun 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geologic-GIS Map of Sagamore Hill National Historic Site and Vicinity, New York (NPS, GRD, GRI, SAHI, SAHI digital map) adapted from U.S. Geological Survey Water-Supply Paper maps by Isbister (1966) and Lubke (1964) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-sagamore-hill-national-historic-site-and-vicinity-new-york-nps
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    New York
    Description

    The Digital Geologic-GIS Map of Sagamore Hill National Historic Site and Vicinity, New York is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (sahi_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (sahi_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (sahi_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (sahi_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (sahi_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (sahi_geology_metadata_faq.pdf). Please read the sahi_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (sahi_geology_metadata.txt or sahi_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:62,500 and United States National Map Accuracy Standards features are within (horizontally) 31.8 meters or 104.2 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Eaton County Michigan (2018). QGIS - Open Source GIS Software [Dataset]. https://hub.arcgis.com/documents/57198670f4234919bfab87fb64d40a82

QGIS - Open Source GIS Software

Explore at:
32 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Aug 9, 2018
Dataset authored and provided by
Eaton County Michigan
Description

This is a link to the QGIS website where you can download open-source GIS software for viewing, analyzing and manipulating geodata like our downloadable shapefiles.

Search
Clear search
Close search
Google apps
Main menu