100+ datasets found
  1. The WorldStrat Dataset: Open High-Resolution Satellite Imagery With Paired...

    • zenodo.org
    application/gzip, csv +2
    Updated Jul 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Julien Cornebise; Julien Cornebise; Ivan Oršolić; Ivan Oršolić; Freddie Kalaitzis; Freddie Kalaitzis (2024). The WorldStrat Dataset: Open High-Resolution Satellite Imagery With Paired Multi-Temporal Low-Resolution [Dataset]. http://doi.org/10.5281/zenodo.6810792
    Explore at:
    csv, application/gzip, txt, pdfAvailable download formats
    Dataset updated
    Jul 16, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Julien Cornebise; Julien Cornebise; Ivan Oršolić; Ivan Oršolić; Freddie Kalaitzis; Freddie Kalaitzis
    Description

    What is this dataset?

    Nearly 10,000 km² of free high-resolution and matched low-resolution satellite imagery of unique locations which ensure stratified representation of all types of land-use across the world: from agriculture to ice caps, from forests to multiple urbanization densities.

    Those locations are also enriched with typically under-represented locations in ML datasets: sites of humanitarian interest, illegal mining sites, and settlements of persons at risk.

    Each high-resolution image (1.5 m/pixel) comes with multiple temporally-matched low-resolution images from the freely accessible lower-resolution Sentinel-2 satellites (10 m/pixel).

    We accompany this dataset with a paper, datasheet for datasets and an open-source Python package to: rebuild or extend the WorldStrat dataset, train and infer baseline algorithms, and learn with abundant tutorials, all compatible with the popular EO-learn toolbox.

    Why make this?

    We hope to foster broad-spectrum applications of ML to satellite imagery, and possibly develop the same power of analysis allowed by costly private high-resolution imagery from free public low-resolution Sentinel2 imagery. We illustrate this specific point by training and releasing several highly compute-efficient baselines on the task of Multi-Frame Super-Resolution.

    Licences

    • The high-resolution Airbus imagery is distributed, with authorization from Airbus, under Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).
    • The labels, Sentinel2 imagery, and trained weights are released under Creative Commons with Attribution 4.0 International (CC BY 4.0).
    • The source code (will be shortly released on GitHub) under 3-Clause BSD license.
  2. Orthoimages of Canada, 1999-2003

    • open.canada.ca
    • catalogue.arctic-sdi.org
    • +1more
    geotif, gml, kmz, pdf +2
    Updated Aug 11, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Natural Resources Canada (2021). Orthoimages of Canada, 1999-2003 [Dataset]. https://open.canada.ca/data/en/dataset/560351c7-061f-442f-9539-e38bb453ccbf
    Explore at:
    geotif, wms, shp, pdf, gml, kmzAvailable download formats
    Dataset updated
    Aug 11, 2021
    Dataset provided by
    Ministry of Natural Resources of Canadahttps://www.nrcan.gc.ca/
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Time period covered
    Jan 1, 1999 - Jan 1, 2003
    Area covered
    Canada
    Description

    This collection is a legacy product that is no longer supported. It may not meet current government standards. This inventory presents chronologically the satellite images acquired, orthorectified and published over time by Natural Resources Canada. It is composed of imagery from the Landsat7 (1999-2003) and RADARSAT-1 (2001-2002) satellites, as well as the CanImage by-product and the control points used to process the images. Landsat7 Orthorectified Imagery: The orthoimage dataset is a complete set of cloud-free (less than 10%) orthoimages covering the Canadian landmass and created with the most accurate control data available at the time of creation. RADARSAT-1 Orthorectified Imagery: The 5 RADARSAT-1 images (processed and distributed by RADARSAT International (RSI) complete the landsat 7 orthoimagery coverage. They are stored as raster data produced from SAR Standard 7 (S7) beam mode with a pixel size of 15 m. They have been produced in accordance with NAD83 (North American Datum of 1983) using the Universal Transverse Mercator (UTM) projection. RADARSAT-1 orthoimagery were produced with the 1:250 000 Canadian Digital Elevation Data (CDED) and photogrammetric control points generated from the Aerial Survey Data Base (ASDB). CanImage -Landsat7 Orthoimages of Canada,1:50 000: CanImage is a raster image containing information from Landsat7 orthoimages that have been resampled and based on the National Topographic System (NTS) at the 1:50 000 scale in the UTM projection. The product is distributed in datasets in GeoTIFF format. The resolution of this product is 15 metres. Landsat7 Imagery Control Points: the control points were used for the geometric correction of Landsat7 satellite imagery. They can also be used to correct vector data and for simultaneously displaying data from several sources prepared at different scales or resolutions.

  3. a

    9.6m Resolution Metadata

    • data-sarasota.opendata.arcgis.com
    Updated Dec 12, 2009
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2009). 9.6m Resolution Metadata [Dataset]. https://data-sarasota.opendata.arcgis.com/datasets/esri::9-6m-resolution-metadata-114
    Explore at:
    Dataset updated
    Dec 12, 2009
    Dataset authored and provided by
    Esri
    Area covered
    Description

    World Imagery provides one meter or better satellite and aerial imagery for most of the world’s landmass and lower resolution satellite imagery worldwide. The map is currently comprised of the following sources:Worldwide 15-m resolution TerraColor imagery at small and medium map scales.Maxar imagery basemap products around the world: Vivid Premium at 15-cm HD resolution for select metropolitan areas, Vivid Advanced 30-cm HD for more than 1,000 metropolitan areas, and Vivid Standard from 1.2-m to 0.6-cm resolution for the most of the world, with 30-cm HD across the United States and parts of Western Europe. More information on the Maxar products is included below. High-resolution aerial photography contributed by the GIS User Community. This imagery ranges from 30-cm to 3-cm resolution. You can contribute your imagery to this map and have it served by Esri via the Community Maps Program.Maxar Basemap ProductsVivid PremiumProvides committed image currency in a high-resolution, high-quality image layer over defined metropolitan and high-interest areas across the globe. The product provides 15-cm HD resolution imagery.Vivid AdvancedProvides committed image currency in a high-resolution, high-quality image layer over defined metropolitan and high-interest areas across the globe. The product includes a mix of native 30-cm and 30-cm HD resolution imagery.Vivid StandardProvides a visually consistent and continuous image layer over large areas through advanced image mosaicking techniques, including tonal balancing and seamline blending across thousands of image strips. Available from 1.2-m down to 30-cm HD. More on Maxar HD.Updates and CoverageYou can use the World Imagery Updates app to learn more about recent updates and map coverage.CitationsThis layer includes imagery provider, collection date, resolution, accuracy, and source of the imagery. With the Identify tool in ArcGIS Desktop or the ArcGIS Online Map Viewer you can see imagery citations. Citations returned apply only to the available imagery at that location and scale. You may need to zoom in to view the best available imagery. Citations can also be accessed in the World Imagery with Metadata web map.UseYou can add this layer to the ArcGIS Online Map Viewer, ArcGIS Desktop, or ArcGIS Pro. To view this layer with a useful reference overlay, open the Imagery Hybrid web map.FeedbackHave you ever seen a problem in the Esri World Imagery Map that you wanted to report? You can use the Imagery Map Feedback web map to provide comments on issues. The feedback will be reviewed by the ArcGIS Online team and considered for one of our updates.

  4. G

    High Resolution Satellite Imagery

    • open.canada.ca
    • catalogue.arctic-sdi.org
    • +1more
    esri rest, html
    Updated Jan 9, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Yukon (2025). High Resolution Satellite Imagery [Dataset]. https://open.canada.ca/data/en/dataset/0a14b357-8a89-6e98-720e-3a800022cb99
    Explore at:
    html, esri restAvailable download formats
    Dataset updated
    Jan 9, 2025
    Dataset provided by
    Government of Yukon
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    This image service contains high resolution satellite imagery for selected regions throughout the Yukon. Imagery is 1m pixel resolution, or better. Imagery was supplied by the Government of Yukon, and the Canadian Department of National Defense. All the imagery in this service is licensed. If you have any questions about Yukon government satellite imagery, please contact Geomatics.Help@gov.yk.can. This service is managed by Geomatics Yukon.

  5. f

    Bonn Roof Material + Satellite Imagery Dataset

    • figshare.com
    zip
    Updated Apr 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Julian Huang; Yue Lin; Alex Nhancololo (2025). Bonn Roof Material + Satellite Imagery Dataset [Dataset]. http://doi.org/10.6084/m9.figshare.28713194.v2
    Explore at:
    zipAvailable download formats
    Dataset updated
    Apr 18, 2025
    Dataset provided by
    figshare
    Authors
    Julian Huang; Yue Lin; Alex Nhancololo
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Bonn
    Description

    This dataset consists of annotated high-resolution aerial imagery of roof materials in Bonn, Germany, in the Ultralytics YOLO instance segmentation dataset format. Aerial imagery was sourced from OpenAerialMap, specifically from the Maxar Open Data Program. Roof material labels and building outlines were sourced from OpenStreetMap. Images and labels are split into training, validation, and test sets, meant for future machine learning models to be trained upon, for both building segmentation and roof type classification.The dataset is intended for applications such as informing studies on thermal efficiency, roof durability, heritage conservation, or socioeconomic analyses. There are six roof material types: roof tiles, tar paper, metal, concrete, gravel, and glass.Note: The data is in a .zip due to file upload limits. Please find a more detailed dataset description in the README.md

  6. Training data for: CoastSat image classification

    • zenodo.org
    • data.niaid.nih.gov
    bin, jpeg, zip
    Updated Jul 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kilian Vos; Kilian Vos (2024). Training data for: CoastSat image classification [Dataset]. http://doi.org/10.5281/zenodo.3334147
    Explore at:
    jpeg, zip, binAvailable download formats
    Dataset updated
    Jul 22, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Kilian Vos; Kilian Vos
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    CoastSat image classification training data

    CoastSat is an open-source global shoreline mapping toolbox, available at https://github.com/kvos/CoastSat, which enables users to extract time-series of shoreline change from 30+ years of publicly available satellite imagery (Landsat 5, 7, 8 and Sentinel-2).

    The automated shoreline extraction relies on a classifier (Multilayer Perceptron from scikit-learn) which labels each pixels on the images with one of four classes: sand, water, white-water and other land features.

    The data used to train the classifier is stored here, the README.md file provides information on the data organisation and content of each file.

  7. S

    Satellite Remote Sensing Software Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Apr 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). Satellite Remote Sensing Software Report [Dataset]. https://www.marketreportanalytics.com/reports/satellite-remote-sensing-software-53977
    Explore at:
    doc, pdf, pptAvailable download formats
    Dataset updated
    Apr 2, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global satellite remote sensing software market is experiencing robust growth, driven by increasing demand across diverse sectors. While precise figures for market size and CAGR aren't provided, considering the technological advancements and applications in agriculture (precision farming, crop monitoring), water conservancy (flood management, irrigation optimization), forest management (deforestation monitoring, resource assessment), and the public sector (urban planning, disaster response), a conservative estimate places the 2025 market size at approximately $2 billion. This figure reflects the substantial investments in satellite imagery acquisition and analysis capabilities worldwide. The market is further fueled by the rising adoption of cloud-based solutions, enhancing accessibility and scalability of software platforms. Trends such as the integration of AI and machine learning for automated image processing, the proliferation of high-resolution satellite imagery, and the increasing availability of open-source software are accelerating market expansion. However, factors such as the high cost of specialized software licenses and the need for skilled professionals to operate the sophisticated systems act as restraints. The market is segmented by application (agriculture, water conservancy, forest management, public sector, others) and software type (open-source, non-open-source). The North American and European markets currently hold significant shares, but the Asia-Pacific region is witnessing rapid growth due to increasing infrastructure development and government initiatives promoting geospatial technologies. This dynamic market landscape presents lucrative opportunities for both established players and emerging companies in the years to come. The forecast period (2025-2033) anticipates continued growth, with a projected CAGR of approximately 12%, driven by the aforementioned technological advancements and broadening applications across various industry verticals. The competitive landscape is comprised of both major players like ESRI, Trimble, and PCI Geomatica, offering comprehensive suites of software, and smaller, specialized companies focusing on niche applications or open-source solutions. The market is characterized by both proprietary and open-source software options. Open-source solutions like QGIS and GRASS GIS offer cost-effective alternatives, particularly for research and smaller organizations, while commercial solutions provide advanced functionalities and support. The increasing availability of cloud-based solutions is blurring the lines between these segments, with hybrid models emerging that combine the benefits of both. Future growth will be significantly influenced by collaborations between software providers and satellite imagery providers, fostering a more integrated ecosystem and streamlining the data acquisition and processing workflow. The market will continue to benefit from advancements in satellite technology, producing higher-resolution, more frequent, and more affordable imagery.

  8. o

    Data from: Sentinel-2

    • registry.opendata.aws
    Updated Apr 19, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sinergise (2018). Sentinel-2 [Dataset]. https://registry.opendata.aws/sentinel-2/
    Explore at:
    Dataset updated
    Apr 19, 2018
    Dataset provided by
    <a href="https://www.sinergise.com/">Sinergise</a>
    Description

    The Sentinel-2 mission is a land monitoring constellation of two satellites that provide high resolution optical imagery and provide continuity for the current SPOT and Landsat missions. The mission provides a global coverage of the Earth's land surface every 5 days, making the data of great use in on-going studies. L1C data are available from June 2015 globally. L2A data are available from November 2016 over Europe region and globally since January 2017.

  9. 60cm Resolution Metadata

    • cacgeoportal.com
    • ai-climate-hackathon-global-community.hub.arcgis.com
    • +1more
    Updated Dec 12, 2009
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2009). 60cm Resolution Metadata [Dataset]. https://www.cacgeoportal.com/maps/esri::60cm-resolution-metadata-114
    Explore at:
    Dataset updated
    Dec 12, 2009
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    World Imagery provides one meter or better satellite and aerial imagery for most of the world’s landmass and lower resolution satellite imagery worldwide. The map is currently comprised of the following sources:Worldwide 15-m resolution TerraColor imagery at small and medium map scales.Maxar imagery basemap products around the world: Vivid Premium at 15-cm HD resolution for select metropolitan areas, Vivid Advanced 30-cm HD for more than 1,000 metropolitan areas, and Vivid Standard from 1.2-m to 0.6-cm resolution for the most of the world, with 30-cm HD across the United States and parts of Western Europe. More information on the Maxar products is included below. High-resolution aerial photography contributed by the GIS User Community. This imagery ranges from 30-cm to 3-cm resolution. You can contribute your imagery to this map and have it served by Esri via the Community Maps Program.Maxar Basemap ProductsVivid PremiumProvides committed image currency in a high-resolution, high-quality image layer over defined metropolitan and high-interest areas across the globe. The product provides 15-cm HD resolution imagery.Vivid AdvancedProvides committed image currency in a high-resolution, high-quality image layer over defined metropolitan and high-interest areas across the globe. The product includes a mix of native 30-cm and 30-cm HD resolution imagery.Vivid StandardProvides a visually consistent and continuous image layer over large areas through advanced image mosaicking techniques, including tonal balancing and seamline blending across thousands of image strips. Available from 1.2-m down to 30-cm HD. More on Maxar HD.Updates and CoverageYou can use the World Imagery Updates app to learn more about recent updates and map coverage.CitationsThis layer includes imagery provider, collection date, resolution, accuracy, and source of the imagery. With the Identify tool in ArcGIS Desktop or the ArcGIS Online Map Viewer you can see imagery citations. Citations returned apply only to the available imagery at that location and scale. You may need to zoom in to view the best available imagery. Citations can also be accessed in the World Imagery with Metadata web map.UseYou can add this layer to the ArcGIS Online Map Viewer, ArcGIS Desktop, or ArcGIS Pro. To view this layer with a useful reference overlay, open the Imagery Hybrid web map.FeedbackHave you ever seen a problem in the Esri World Imagery Map that you wanted to report? You can use the Imagery Map Feedback web map to provide comments on issues. The feedback will be reviewed by the ArcGIS Online team and considered for one of our updates.

  10. SEPAL

    • data.amerigeoss.org
    png, wms
    Updated Oct 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Food and Agriculture Organization (2023). SEPAL [Dataset]. https://data.amerigeoss.org/dataset/sepal
    Explore at:
    png(884051), png(409262), wmsAvailable download formats
    Dataset updated
    Oct 31, 2023
    Dataset provided by
    Food and Agriculture Organizationhttp://fao.org/
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Description

    What is SEPAL?

    SEPAL (https://sepal.io/) is a free and open source cloud computing platform for geo-spatial data access and processing. It empowers users to quickly process large amounts of data on their computer or mobile device. Users can create custom analysis ready data using freely available satellite imagery, generate and improve land use maps, analyze time series, run change detection and perform accuracy assessment and area estimation, among many other functionalities in the platform. Data can be created and analyzed for any place on Earth using SEPAL.

    https://data.apps.fao.org/catalog/dataset/9c4d7c45-7620-44c4-b653-fbe13eb34b65/resource/63a3efa0-08ab-4ad6-9d4a-96af7b6a99ec/download/cambodia_mosaic_2020.png" alt="alt text" title="Figure 1: Best pixel mosaic of Landsat 8 data for 2020 over Cambodia">

    Figure 1: Best pixel mosaic of Landsat 8 data for 2020 over Cambodia

    SEPAL reaches over 5000 users in 180 countries for the creation of custom data products from freely available satellite data. SEPAL was developed as a part of the Open Foris suite, a set of free and open source software platforms and tools that facilitate flexible and efficient data collection, analysis and reporting. SEPAL combines and integrates modern geospatial data infrastructures and supercomputing power available through Google Earth Engine and Amazon Web Services with powerful open-source data processing software, such as R, ORFEO, GDAL, Python and Jupiter Notebooks. Users can easily access the archive of satellite imagery from NASA, the European Space Agency (ESA) as well as high spatial and temporal resolution data from Planet Labs and turn such images into data that can be used for reporting and better decision making.

    National Forest Monitoring Systems in many countries have been strengthened by SEPAL, which provides technical government staff with computing resources and cutting edge technology to accurately map and monitor their forests. The platform was originally developed for monitoring forest carbon stock and stock changes for reducing emissions from deforestation and forest degradation (REDD+). The application of the tools on the platform now reach far beyond forest monitoring by providing different stakeholders access to cloud based image processing tools, remote sensing and machine learning for any application. Presently, users work on SEPAL for various applications related to land monitoring, land cover/use, land productivity, ecological zoning, ecosystem restoration monitoring, forest monitoring, near real time alerts for forest disturbances and fire, flood mapping, mapping impact of disasters, peatland rewetting status, and many others.

    The Hand-in-Hand initiative enables countries that generate data through SEPAL to disseminate their data widely through the platform and to combine their data with the numerous other datasets available through Hand-in-Hand.

    https://data.apps.fao.org/catalog/dataset/9c4d7c45-7620-44c4-b653-fbe13eb34b65/resource/868e59da-47b9-4736-93a9-f8d83f5731aa/download/probability_classification_over_zambia.png" alt="alt text" title="Figure 2: Image classification module for land monitoring and mapping. Probability classification over Zambia">

    Figure 2: Image classification module for land monitoring and mapping. Probability classification over Zambia
  11. Dataset - DeepWealth: A Generalizable Open-Source Deep Learning Framework...

    • zenodo.org
    bin, csv, zip
    Updated Jul 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ali Ben Abbes; Ali Ben Abbes; Jeaneth MACHICAO; Jeaneth MACHICAO; Pedro L. Pizzigatti CORREA; Pedro L. Pizzigatti CORREA; Alison Specht; Alison Specht; Rodolphe Devillers; Rodolphe Devillers; Jean P. Ometto; Jean P. Ometto; Yasuhisa KONDO; Yasuhisa KONDO; David MOUILLOT; David MOUILLOT (2024). Dataset - DeepWealth: A Generalizable Open-Source Deep Learning Framework using Satellite Images for Well-Being Estimation [Dataset]. http://doi.org/10.5281/zenodo.10575637
    Explore at:
    bin, zip, csvAvailable download formats
    Dataset updated
    Jul 15, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Ali Ben Abbes; Ali Ben Abbes; Jeaneth MACHICAO; Jeaneth MACHICAO; Pedro L. Pizzigatti CORREA; Pedro L. Pizzigatti CORREA; Alison Specht; Alison Specht; Rodolphe Devillers; Rodolphe Devillers; Jean P. Ometto; Jean P. Ometto; Yasuhisa KONDO; Yasuhisa KONDO; David MOUILLOT; David MOUILLOT
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Time period covered
    Feb 2024
    Description

    This dataset encapsulates the Checkpoints obtained during the training process of the Deep Learning model, which can be used for new estimations.

    The aim of the DeepWealth package is to provide a generalizable Deep Learning framework for the use of remote sensing in poverty estimation. The combination of Deep Learning and Earth Observation data is increasingly being used to estimate socioeconomic conditions at regional and global scales. The proposed framework aligns with the Sustainable Development Goal SDG1 of ending poverty. The framework provides open-source data, code, and training models (checkpoints) for reproducibility and replicability.

  12. G

    Data from: Satellite Image

    • open.canada.ca
    • ouvert.canada.ca
    pdf
    Updated Mar 14, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Natural Resources Canada (2022). Satellite Image [Dataset]. https://open.canada.ca/data/en/dataset/912a9d77-0a3f-5e0c-91f5-197ee5317e9f
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Mar 14, 2022
    Dataset provided by
    Natural Resources Canada
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    The satellite image of Canada is a composite of several individual satellite images form the Advanced Very High Resolution Radiometre (AVHRR) sensor on board various NOAA Satellites. The colours reflect differences in the density of vegetation cover: bright green for dense vegetation in humid southern regions; yellow for semi-arid and for mountainous regions; brown for the north where vegetation cover is very sparse; and white for snow and ice. An inset map shows a satellite image mosaic of North America with 35 land cover classes, based on data from the SPOT satellite VGT (vegetation) sensor.

  13. S

    Satellite Remote Sensing Software Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Apr 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). Satellite Remote Sensing Software Report [Dataset]. https://www.marketreportanalytics.com/reports/satellite-remote-sensing-software-54037
    Explore at:
    ppt, doc, pdfAvailable download formats
    Dataset updated
    Apr 2, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global satellite remote sensing software market is experiencing robust growth, driven by increasing demand across diverse sectors. While precise market size figures for 2025 aren't provided, considering a plausible CAGR of 10% (a conservative estimate given the technological advancements and expanding applications) and an assumed 2024 market size of $2 billion, we can project a 2025 market valuation of approximately $2.2 billion. This expansion is fueled by several key factors. Firstly, the agricultural sector is leveraging satellite imagery for precision farming, crop monitoring, and yield prediction, significantly enhancing efficiency and productivity. Secondly, advancements in water resource management are heavily reliant on remote sensing data for efficient irrigation and flood control. Furthermore, forest management and conservation efforts utilize this technology for deforestation monitoring and biodiversity assessment. The public sector, including government agencies and research institutions, is also a major consumer, relying on these tools for environmental monitoring, disaster response, and urban planning. The market is segmented by software type (open-source and non-open-source) and application, with non-open-source solutions currently commanding a larger share due to their advanced features and robust support. Growth is further propelled by continuous technological innovation leading to more sophisticated analytics capabilities and easier data accessibility. However, certain restraints hinder market expansion. High initial investment costs for software licenses and hardware can pose a significant barrier, particularly for smaller organizations. Furthermore, the need for specialized expertise to interpret and analyze the complex satellite data can limit widespread adoption. Data security and privacy concerns related to sensitive geographic information are also emerging challenges. Despite these limitations, the long-term outlook for the satellite remote sensing software market remains positive, fueled by ongoing technological advancements, increased government investments in space-based technologies, and the growing recognition of its importance in various sectors. The market is expected to continue its growth trajectory, creating opportunities for established players and new entrants alike. The diverse range of applications and continued integration with other technologies like AI and machine learning will significantly shape the future landscape of this market.

  14. Z

    Data from: An Open-Source Automatic Survey of Green Roofs in London using...

    • data.niaid.nih.gov
    Updated Feb 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Simpson, Charles (2023). An Open-Source Automatic Survey of Green Roofs in London using Segmentation of Aerial Imagery: Dataset [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_6861928
    Explore at:
    Dataset updated
    Feb 3, 2023
    Dataset provided by
    Heaviside, Clare
    Brousse, Oscar
    Davies, Michael
    Simpson, Charles
    Mohajeri, Nahid
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    London
    Description

    This archive contains code and data to go with the paper An Open-Source Automatic Survey of Green Roofs in London using Segmentation of Aerial Imagery.

    This archive contains geospatial data, as well as the code used to generate the geospatial data.

    The geospatial data consists of georeferenced polygons identifying areas which are covered by green roofs in London (GBR) generated from 2019 aerial imagery.

    The data is described in detail in the manuscript An Open-Source Automatic Survey of Green Roofs in London using Segmentation of Aerial Imagery. See abstract below.

    GeoJSON format:

    GeoJSON is a format for encoding geospatial data, see https://geojson.org/.

    GeoJSON can be read using GIS programs including ArcGIS, QGIS, OGR.

    Contents:

    geospatial_data/buffered_polygons_2021.zip a zip archive containing a geojson file. It is the estimated locations of green roofs in London in 2021 and is the main result, which can be opened in any GIS program after being unzipped.

    geospatial_data/buffered_polygons_2019.zip a zip archive containing a geojson file. It is the estimated locations of green roofs in London in 2019 and is a secondary result, which can be opened in any GIS program after being unzipped. The predictions were made with the same model as the 2021 results.

    geospatial_data/labelled_area.zip a zip archive containing a geojson file. Identifies the area which was hand-labelled.

    geospatial_data/manual_2021.zip a zip archive containing a geojson file. Manually labelled green roof from 2021 imagery.

    geospatial_data/manual_2019.zip a zip archive containing a geojson file. Manually labelled green roof from 2019 imagery.

    segmentation_code contains the code used to produce the segmentation from the aerial imagery.

    analysis_code contains the code used to produce the plots and tables for the paper.

    Imagery availability:

    Unfortunately the aerial imagery and building footprint data cannot be shared directly, as you will require the proper license. Both can be found at Digimap provided your institution has the license.

    Abstract:

    Green roofs can mitigate heat, increase biodiversity, and attenuate storm water, giving some of the benefits of natural vegetation in an urban context where ground space is scarce. To guide the design of more sustainable and climate resilient buildings and neighbourhoods, there is a need to assess the existing status of green roof coverage and explore the potential for future implementation. Therefore, accurate information on the prevalence and characteristics of existing green roofs is needed, but this information is currently lacking. Segmentation algorithms have been used widely to identify buildings and land cover in aerial imagery. Using a machine-learning algorithm based on U-Net to segment aerial imagery, we surveyed the area and coverage of green roofs in London, producing a geospatial dataset \cite[]{simpson_charles_2022_6861929}. We estimate that there was 0.23 km^2 of green roof in the Central Activities Zone (CAZ) of London, (1.07 km^2) in Inner London, and (1.89 km^2) in Greater London in the year 2021. This corresponds to 2.0% of the total building footprint area in the CAZ, and 1.3% in Inner London. There is a relatively higher concentration of green roofs in the City of London, covering 3.9% of the total building footprint area. Test set accuracy was 0.99, with an f-score of 0.58. When tested against imagery and labels from a different year (2019), the model performed just as well as a model trained on the imagery and labels from that year, showing that the model generalised well between different imagery. We improve on previous studies by including more negative examples in the training data, and by requiring coincidence between vector building footprints and green roof patches. We experimented with different data augmentation methods, and found a small improvement in performance when applying random elastic deformations, colour shifts, gamma adjustments, and rotations to the imagery. The survey covers 1558 km^2 of Greater London, making this the largest open automatic survey of green roofs in any city. The geospatial dataset is at the single-building level, providing a higher level of detail over the larger area compared to what was already available. This dataset will enable future work exploring the potential of green roofs in London and on urban climate modelling.

  15. d

    Satellite-derived shorelines for the U.S. Atlantic coast (1984-2021)

    • catalog.data.gov
    • data.usgs.gov
    • +2more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Satellite-derived shorelines for the U.S. Atlantic coast (1984-2021) [Dataset]. https://catalog.data.gov/dataset/satellite-derived-shorelines-for-the-u-s-atlantic-coast-1984-2021
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    U.S. Geological Survey
    Area covered
    United States, East Coast of the United States
    Description

    This dataset contains shoreline positions derived from available Landsat satellite imagery for five states (Delaware, Maryland, Viginia, Georgia, and Florida) along the U.S. Atlantic coast for the time period 1984 to 2021. An open-source toolbox, CoastSat (Vos and others, 2019a and 2019b), was used to classify coastal Landsat imagery and detect shorelines at the sub-pixel scale. Resulting shorelines are presented in KMZ format. Significant uncertainty is associated with the locations of shorelines in extremely dynamic regions, including at the locations of river mouths, tidal inlets, capes, and ends of spits. These data are readily viewable in Google Earth. For best display of results, it is recommended to turn off any 3D viewing. For technical users and researchers, data can be ingested into Global Mapper or QGIS for more detailed analysis. Similar shoreline positions for North Carolina and South Carolina are available from Barnard and others, 2023 at https://doi.org/10.5066/P9W91314.

  16. 15cm Resolution Metadata

    • cacgeoportal.com
    Updated Dec 12, 2009
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2009). 15cm Resolution Metadata [Dataset]. https://www.cacgeoportal.com/maps/esri::15cm-resolution-metadata-114
    Explore at:
    Dataset updated
    Dec 12, 2009
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    World Imagery provides one meter or better satellite and aerial imagery for most of the world’s landmass and lower resolution satellite imagery worldwide. The map is currently comprised of the following sources: Worldwide 15-m resolution TerraColor imagery at small and medium map scales.Maxar imagery basemap products around the world: Vivid Premium at 15-cm HD resolution for select metropolitan areas, Vivid Advanced 30-cm HD for more than 1,000 metropolitan areas, and Vivid Standard from 1.2-m to 0.6-cm resolution for the most of the world, with 30-cm HD across the United States and parts of Western Europe. More information on the Maxar products is included below. High-resolution aerial photography contributed by the GIS User Community. This imagery ranges from 30-cm to 3-cm resolution. You can contribute your imagery to this map and have it served by Esri via the Community Maps Program. Maxar Basemap ProductsVivid PremiumProvides committed image currency in a high-resolution, high-quality image layer over defined metropolitan and high-interest areas across the globe. The product provides 15-cm HD resolution imagery.Vivid AdvancedProvides committed image currency in a high-resolution, high-quality image layer over defined metropolitan and high-interest areas across the globe. The product includes a mix of native 30-cm and 30-cm HD resolution imagery.Vivid StandardProvides a visually consistent and continuous image layer over large areas through advanced image mosaicking techniques, including tonal balancing and seamline blending across thousands of image strips. Available from 1.2-m down to 30-cm HD. More on Maxar HD. Imagery UpdatesYou can use the Updates Mode in the World Imagery Wayback app to learn more about recent and pending updates. Accessing this information requires a user login with an ArcGIS organizational account. CitationsThis layer includes imagery provider, collection date, resolution, accuracy, and source of the imagery. With the Identify tool in ArcGIS Desktop or the ArcGIS Online Map Viewer you can see imagery citations. Citations returned apply only to the available imagery at that location and scale. You may need to zoom in to view the best available imagery. Citations can also be accessed in the World Imagery with Metadata web map.UseYou can add this layer to the ArcGIS Online Map Viewer, ArcGIS Desktop, or ArcGIS Pro. To view this layer with a useful reference overlay, open the Imagery Hybrid web map.FeedbackHave you ever seen a problem in the Esri World Imagery Map that you wanted to report? You can use the Imagery Map Feedback web map to provide comments on issues. The feedback will be reviewed by the ArcGIS Online team and considered for one of our updates.

  17. 150m Resolution Metadata

    • inspiracie.arcgeo.sk
    Updated Dec 12, 2009
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2009). 150m Resolution Metadata [Dataset]. https://inspiracie.arcgeo.sk/datasets/esri::150m-resolution-metadata-114
    Explore at:
    Dataset updated
    Dec 12, 2009
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    World Imagery provides one meter or better satellite and aerial imagery for most of the world’s landmass and lower resolution satellite imagery worldwide. The map is currently comprised of the following sources:Worldwide 15-m resolution TerraColor imagery at small and medium map scales.Maxar imagery basemap products around the world: Vivid Premium at 15-cm HD resolution for select metropolitan areas, Vivid Advanced 30-cm HD for more than 1,000 metropolitan areas, and Vivid Standard from 1.2-m to 0.6-cm resolution for the most of the world, with 30-cm HD across the United States and parts of Western Europe. More information on the Maxar products is included below. High-resolution aerial photography contributed by the GIS User Community. This imagery ranges from 30-cm to 3-cm resolution. You can contribute your imagery to this map and have it served by Esri via the Community Maps Program.Maxar Basemap ProductsVivid PremiumProvides committed image currency in a high-resolution, high-quality image layer over defined metropolitan and high-interest areas across the globe. The product provides 15-cm HD resolution imagery.Vivid AdvancedProvides committed image currency in a high-resolution, high-quality image layer over defined metropolitan and high-interest areas across the globe. The product includes a mix of native 30-cm and 30-cm HD resolution imagery.Vivid StandardProvides a visually consistent and continuous image layer over large areas through advanced image mosaicking techniques, including tonal balancing and seamline blending across thousands of image strips. Available from 1.2-m down to 30-cm HD. More on Maxar HD.Updates and CoverageYou can use the World Imagery Updates app to learn more about recent updates and map coverage.CitationsThis layer includes imagery provider, collection date, resolution, accuracy, and source of the imagery. With the Identify tool in ArcGIS Desktop or the ArcGIS Online Map Viewer you can see imagery citations. Citations returned apply only to the available imagery at that location and scale. You may need to zoom in to view the best available imagery. Citations can also be accessed in the World Imagery with Metadata web map.UseYou can add this layer to the ArcGIS Online Map Viewer, ArcGIS Desktop, or ArcGIS Pro. To view this layer with a useful reference overlay, open the Imagery Hybrid web map.FeedbackHave you ever seen a problem in the Esri World Imagery Map that you wanted to report? You can use the Imagery Map Feedback web map to provide comments on issues. The feedback will be reviewed by the ArcGIS Online team and considered for one of our updates.

  18. b

    Whales from Space Database: Image chips

    • hosted-metadata.bgs.ac.uk
    • data-search.nerc.ac.uk
    Updated Nov 15, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NERC EDS UK Polar Data Centre (2023). Whales from Space Database: Image chips [Dataset]. https://hosted-metadata.bgs.ac.uk/geonetwork/srv/api/records/GB_NERC_BAS_PDC_01592
    Explore at:
    Dataset updated
    Nov 15, 2023
    Dataset authored and provided by
    NERC EDS UK Polar Data Centre
    Time period covered
    Aug 12, 2006 - Feb 20, 2017
    Area covered
    Description

    Monitoring whales in remote regions is important for their conservation, using traditional survey platforms (boat and plane) is logistically difficult. The use of very high-resolution satellite imagery to survey whales, particularly in remote regions, is gaining interest and momentum. However, development is hindered by the lack of automated systems to detect whales. Such a system requires an open source library containing examples of whales and confounding features in satellite imagery. Here we present such a database, created by surveying 6,300 km2 of satellite imagery in various regions across the globe, which allowed us to detect 633 whale objects. This dataset contains image chips as png files.

    Funding was provided from a BAS Innovation Voucher.

  19. S

    Satellite Remote Sensing Software Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Apr 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). Satellite Remote Sensing Software Report [Dataset]. https://www.marketreportanalytics.com/reports/satellite-remote-sensing-software-53819
    Explore at:
    doc, pdf, pptAvailable download formats
    Dataset updated
    Apr 2, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global satellite remote sensing software market is experiencing robust growth, driven by increasing demand across diverse sectors. While precise figures for market size and CAGR aren't provided, a reasonable estimate based on industry reports and the stated study period (2019-2033) suggests a current market valuation (2025) in the range of $3-5 billion USD. This significant market size is fueled by several key factors. The agricultural sector relies heavily on remote sensing for precision farming, crop monitoring, and yield prediction, significantly contributing to market expansion. Similarly, the water conservancy and forest management sectors utilize satellite imagery and software for resource monitoring, disaster management, and sustainable practices. Government agencies and the public sector increasingly adopt these technologies for urban planning, environmental monitoring, and national security applications. The market's growth is further enhanced by advancements in open-source software, offering cost-effective alternatives and promoting wider adoption. Trends such as cloud-based solutions, improved data processing capabilities, and the integration of artificial intelligence are further accelerating market growth. However, the market faces certain constraints. High initial investment costs for software licenses and specialized hardware can act as a barrier for entry, particularly for smaller businesses and organizations in developing regions. Data security concerns and the need for skilled professionals to interpret the complex data generated also pose challenges. Despite these obstacles, the ongoing development of user-friendly interfaces, coupled with decreasing hardware costs and increasing availability of cloud-based services, is predicted to mitigate these restraints and sustain a healthy compound annual growth rate (CAGR) in the range of 8-12% throughout the forecast period (2025-2033). Segmentation by application (Agriculture, Water Conservancy, Forest Management, Public Sector, Others) and software type (Open Source, Non-Open Source) reveals distinct market dynamics, with the non-open source segment currently holding a larger share due to its advanced capabilities. This trend is expected to continue, though the open-source segment will show considerable growth driven by its affordability and accessibility.

  20. 38m Resolution Metadata

    • pacificgeoportal.com
    Updated Dec 12, 2009
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2009). 38m Resolution Metadata [Dataset]. https://www.pacificgeoportal.com/datasets/esri::38m-resolution-metadata-113
    Explore at:
    Dataset updated
    Dec 12, 2009
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    World Imagery provides one meter or better satellite and aerial imagery for most of the world’s landmass and lower resolution satellite imagery worldwide. The map is currently comprised of the following sources:Worldwide 15-m resolution TerraColor imagery at small and medium map scales.Maxar imagery basemap products around the world: Vivid Premium at 15-cm HD resolution for select metropolitan areas, Vivid Advanced 30-cm HD for more than 1,000 metropolitan areas, and Vivid Standard from 1.2-m to 0.6-cm resolution for the most of the world, with 30-cm HD across the United States and parts of Western Europe. More information on the Maxar products is included below. High-resolution aerial photography contributed by the GIS User Community. This imagery ranges from 30-cm to 3-cm resolution. You can contribute your imagery to this map and have it served by Esri via the Community Maps Program.Maxar Basemap ProductsVivid PremiumProvides committed image currency in a high-resolution, high-quality image layer over defined metropolitan and high-interest areas across the globe. The product provides 15-cm HD resolution imagery.Vivid AdvancedProvides committed image currency in a high-resolution, high-quality image layer over defined metropolitan and high-interest areas across the globe. The product includes a mix of native 30-cm and 30-cm HD resolution imagery.Vivid StandardProvides a visually consistent and continuous image layer over large areas through advanced image mosaicking techniques, including tonal balancing and seamline blending across thousands of image strips. Available from 1.2-m down to 30-cm HD. More on Maxar HD.Updates and CoverageYou can use the World Imagery Updates app to learn more about recent updates and map coverage.CitationsThis layer includes imagery provider, collection date, resolution, accuracy, and source of the imagery. With the Identify tool in ArcGIS Desktop or the ArcGIS Online Map Viewer you can see imagery citations. Citations returned apply only to the available imagery at that location and scale. You may need to zoom in to view the best available imagery. Citations can also be accessed in the World Imagery with Metadata web map.UseYou can add this layer to the ArcGIS Online Map Viewer, ArcGIS Desktop, or ArcGIS Pro. To view this layer with a useful reference overlay, open the Imagery Hybrid web map.FeedbackHave you ever seen a problem in the Esri World Imagery Map that you wanted to report? You can use the Imagery Map Feedback web map to provide comments on issues. The feedback will be reviewed by the ArcGIS Online team and considered for one of our updates.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Julien Cornebise; Julien Cornebise; Ivan Oršolić; Ivan Oršolić; Freddie Kalaitzis; Freddie Kalaitzis (2024). The WorldStrat Dataset: Open High-Resolution Satellite Imagery With Paired Multi-Temporal Low-Resolution [Dataset]. http://doi.org/10.5281/zenodo.6810792
Organization logo

The WorldStrat Dataset: Open High-Resolution Satellite Imagery With Paired Multi-Temporal Low-Resolution

Explore at:
2 scholarly articles cite this dataset (View in Google Scholar)
csv, application/gzip, txt, pdfAvailable download formats
Dataset updated
Jul 16, 2024
Dataset provided by
Zenodohttp://zenodo.org/
Authors
Julien Cornebise; Julien Cornebise; Ivan Oršolić; Ivan Oršolić; Freddie Kalaitzis; Freddie Kalaitzis
Description

What is this dataset?

Nearly 10,000 km² of free high-resolution and matched low-resolution satellite imagery of unique locations which ensure stratified representation of all types of land-use across the world: from agriculture to ice caps, from forests to multiple urbanization densities.

Those locations are also enriched with typically under-represented locations in ML datasets: sites of humanitarian interest, illegal mining sites, and settlements of persons at risk.

Each high-resolution image (1.5 m/pixel) comes with multiple temporally-matched low-resolution images from the freely accessible lower-resolution Sentinel-2 satellites (10 m/pixel).

We accompany this dataset with a paper, datasheet for datasets and an open-source Python package to: rebuild or extend the WorldStrat dataset, train and infer baseline algorithms, and learn with abundant tutorials, all compatible with the popular EO-learn toolbox.

Why make this?

We hope to foster broad-spectrum applications of ML to satellite imagery, and possibly develop the same power of analysis allowed by costly private high-resolution imagery from free public low-resolution Sentinel2 imagery. We illustrate this specific point by training and releasing several highly compute-efficient baselines on the task of Multi-Frame Super-Resolution.

Licences

  • The high-resolution Airbus imagery is distributed, with authorization from Airbus, under Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).
  • The labels, Sentinel2 imagery, and trained weights are released under Creative Commons with Attribution 4.0 International (CC BY 4.0).
  • The source code (will be shortly released on GitHub) under 3-Clause BSD license.
Search
Clear search
Close search
Google apps
Main menu