FSDKaggle2019 is an audio dataset containing 29,266 audio files annotated with 80 labels of the AudioSet Ontology. FSDKaggle2019 has been used for the DCASE Challenge 2019 Task 2, which was run as a Kaggle competition titled Freesound Audio Tagging 2019.
Citation
If you use the FSDKaggle2019 dataset or part of it, please cite our DCASE 2019 paper:
Eduardo Fonseca, Manoj Plakal, Frederic Font, Daniel P. W. Ellis, Xavier Serra. "Audio tagging with noisy labels and minimal supervision". Proceedings of the DCASE 2019 Workshop, NYC, US (2019)
You can also consider citing our ISMIR 2017 paper, which describes how we gathered the manual annotations included in FSDKaggle2019.
Eduardo Fonseca, Jordi Pons, Xavier Favory, Frederic Font, Dmitry Bogdanov, Andres Ferraro, Sergio Oramas, Alastair Porter, and Xavier Serra, "Freesound Datasets: A Platform for the Creation of Open Audio Datasets", In Proceedings of the 18th International Society for Music Information Retrieval Conference, Suzhou, China, 2017
Data curators
Eduardo Fonseca, Manoj Plakal, Xavier Favory, Jordi Pons
Contact
You are welcome to contact Eduardo Fonseca should you have any questions at eduardo.fonseca@upf.edu.
ABOUT FSDKaggle2019
Freesound Dataset Kaggle 2019 (or FSDKaggle2019 for short) is an audio dataset containing 29,266 audio files annotated with 80 labels of the AudioSet Ontology [1]. FSDKaggle2019 has been used for the Task 2 of the Detection and Classification of Acoustic Scenes and Events (DCASE) Challenge 2019. Please visit the DCASE2019 Challenge Task 2 website for more information. This Task was hosted on the Kaggle platform as a competition titled Freesound Audio Tagging 2019. It was organized by researchers from the Music Technology Group (MTG) of Universitat Pompeu Fabra (UPF), and from Sound Understanding team at Google AI Perception. The competition intended to provide insight towards the development of broadly-applicable sound event classifiers able to cope with label noise and minimal supervision conditions.
FSDKaggle2019 employs audio clips from the following sources:
Freesound Dataset (FSD): a dataset being collected at the MTG-UPF based on Freesound content organized with the AudioSet Ontology
The soundtracks of a pool of Flickr videos taken from the Yahoo Flickr Creative Commons 100M dataset (YFCC)
The audio data is labeled using a vocabulary of 80 labels from Google’s AudioSet Ontology [1], covering diverse topics: Guitar and other Musical Instruments, Percussion, Water, Digestive, Respiratory sounds, Human voice, Human locomotion, Hands, Human group actions, Insect, Domestic animals, Glass, Liquid, Motor vehicle (road), Mechanisms, Doors, and a variety of Domestic sounds. The full list of categories can be inspected in vocabulary.csv (see Files & Download below). The goal of the task was to build a multi-label audio tagging system that can predict appropriate label(s) for each audio clip in a test set.
What follows is a summary of some of the most relevant characteristics of FSDKaggle2019. Nevertheless, it is highly recommended to read our DCASE 2019 paper for a more in-depth description of the dataset and how it was built.
Ground Truth Labels
The ground truth labels are provided at the clip-level, and express the presence of a sound category in the audio clip, hence can be considered weak labels or tags. Audio clips have variable lengths (roughly from 0.3 to 30s).
The audio content from FSD has been manually labeled by humans following a data labeling process using the Freesound Annotator platform. Most labels have inter-annotator agreement but not all of them. More details about the data labeling process and the Freesound Annotator can be found in [2].
The YFCC soundtracks were labeled using automated heuristics applied to the audio content and metadata of the original Flickr clips. Hence, a substantial amount of label noise can be expected. The label noise can vary widely in amount and type depending on the category, including in- and out-of-vocabulary noises. More information about some of the types of label noise that can be encountered is available in [3].
Specifically, FSDKaggle2019 features three types of label quality, one for each set in the dataset:
curated train set: correct (but potentially incomplete) labels
noisy train set: noisy labels
test set: correct and complete labels
Further details can be found below in the sections for each set.
Format
All audio clips are provided as uncompressed PCM 16 bit, 44.1 kHz, mono audio files.
DATA SPLIT
FSDKaggle2019 consists of two train sets and one test set. The idea is to limit the supervision provided for training (i.e., the manually-labeled, hence reliable, data), thus promoting approaches to deal with label noise.
Curated train set
The curated train set consists of manually-labeled data from FSD.
Number of clips/class: 75 except in a few cases (where there are less)
Total number of clips: 4970
Avg number of labels/clip: 1.2
Total duration: 10.5 hours
The duration of the audio clips ranges from 0.3 to 30s due to the diversity of the sound categories and the preferences of Freesound users when recording/uploading sounds. Labels are correct but potentially incomplete. It can happen that a few of these audio clips present additional acoustic material beyond the provided ground truth label(s).
Noisy train set
The noisy train set is a larger set of noisy web audio data from Flickr videos taken from the YFCC dataset [5].
Number of clips/class: 300
Total number of clips: 19,815
Avg number of labels/clip: 1.2
Total duration: ~80 hours
The duration of the audio clips ranges from 1s to 15s, with the vast majority lasting 15s. Labels are automatically generated and purposefully noisy. No human validation is involved. The label noise can vary widely in amount and type depending on the category, including in- and out-of-vocabulary noises.
Considering the numbers above, the per-class data distribution available for training is, for most of the classes, 300 clips from the noisy train set and 75 clips from the curated train set. This means 80% noisy / 20% curated at the clip level, while at the duration level the proportion is more extreme considering the variable-length clips.
Test set
The test set is used for system evaluation and consists of manually-labeled data from FSD.
Number of clips/class: between 50 and 150
Total number of clips: 4481
Avg number of labels/clip: 1.4
Total duration: 12.9 hours
The acoustic material present in the test set clips is labeled exhaustively using the aforementioned vocabulary of 80 classes. Most labels have inter-annotator agreement but not all of them. Except human error, the label(s) are correct and complete considering the target vocabulary; nonetheless, a few clips could still present additional (unlabeled) acoustic content out of the vocabulary.
During the DCASE2019 Challenge Task 2, the test set was split into two subsets, for the public and private leaderboards, and only the data corresponding to the public leaderboard was provided. In this current package you will find the full test set with all the test labels. To allow comparison with previous work, the file test_post_competition.csv includes a flag to determine the corresponding leaderboard (public or private) for each test clip (see more info in Files & Download below).
Acoustic mismatch
As mentioned before, FSDKaggle2019 uses audio clips from two sources:
FSD: curated train set and test set, and
YFCC: noisy train set.
While the sources of audio (Freesound and Flickr) are collaboratively contributed and pretty diverse themselves, a certain acoustic mismatch can be expected between FSD and YFCC. We conjecture this mismatch comes from a variety of reasons. For example, through acoustic inspection of a small sample of both data sources, we find a higher percentage of high quality recordings in FSD. In addition, audio clips in Freesound are typically recorded with the purpose of capturing audio, which is not necessarily the case in YFCC.
This mismatch can have an impact in the evaluation, considering that most of the train data come from YFCC, while all test data are drawn from FSD. This constraint (i.e., noisy training data coming from a different web audio source than the test set) is sometimes a real-world condition.
LICENSE
All clips in FSDKaggle2019 are released under Creative Commons (CC) licenses. For attribution purposes and to facilitate attribution of these files to third parties, we include a mapping from the audio clips to their corresponding licenses.
Curated train set and test set. All clips in Freesound are released under different modalities of Creative Commons (CC) licenses, and each audio clip has its own license as defined by the audio clip uploader in Freesound, some of them requiring attribution to their original authors and some forbidding further commercial reuse. The licenses are specified in the files train_curated_post_competition.csv and test_post_competition.csv. These licenses can be CC0, CC-BY, CC-BY-NC and CC Sampling+.
Noisy train set. Similarly, the licenses of the soundtracks from Flickr used in FSDKaggle2019 are specified in the file train_noisy_post_competition.csv. These licenses can be CC-BY and CC BY-SA.
In addition, FSDKaggle2019 as a whole is the result of a curation process and it has an additional license. FSDKaggle2019 is released under CC-BY. This license is specified in the LICENSE-DATASET file downloaded with the FSDKaggle2019.doc zip file.
FILES & DOWNLOAD
FSDKaggle2019 can be downloaded as a series of zip files with the following directory structure:
root
│
└───FSDKaggle2019.audio_train_curated/ Audio clips in the curated train set
│
└───FSDKaggle2019.audio_train_noisy/ Audio clips in the noisy
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ARCA23K is a dataset of labelled sound events created to investigate real-world label noise. It contains 23,727 audio clips originating from Freesound, and each clip belongs to one of 70 classes taken from the AudioSet ontology. The dataset was created using an entirely automated process with no manual verification of the data. For this reason, many clips are expected to be labelled incorrectly.
In addition to ARCA23K, this release includes a companion dataset called ARCA23K-FSD, which is a single-label subset of the FSD50K dataset. ARCA23K-FSD contains the same sound classes as ARCA23K and the same number of audio clips per class. As it is a subset of FSD50K, each clip and its label have been manually verified. Note that only the ground truth data of ARCA23K-FSD is distributed in this release. To download the audio clips, please visit the Zenodo page for FSD50K.
A paper has been published detailing how the dataset was constructed. See the Citing section below.
The source code used to create the datasets is available: https://github.com/tqbl/arca23k-dataset
Characteristics
ARCA23K(-FSD) is divided into:
A training set containing 17,979 clips (39.6 hours for ARCA23K).
A validation set containing 2,264 clips (5.0 hours).
A test test containing 3,484 clips (7.3 hours).
There are 70 sound classes in total. Each class belongs to the AudioSet ontology.
Each audio clip was sourced from the Freesound database. Other than format conversions (e.g. resampling), the audio clips have not been modified.
The duration of the audio clips varies from 0.3 seconds to 30 seconds.
All audio clips are mono 16-bit WAV files sampled at 44.1 kHz.
Based on listening tests (details in paper), 46.4% of the training examples are estimated to be labelled incorrectly. Among the incorrectly-labelled examples, 75.9% are estimated to be out-of-vocabulary.
Sound Classes
The list of sound classes is given below. They are grouped based on the top-level superclasses of the AudioSet ontology.
Music
Acoustic guitar
Bass guitar
Bowed string instrument
Crash cymbal
Electric guitar
Gong
Harp
Organ
Piano
Rattle (instrument)
Scratching (performance technique)
Snare drum
Trumpet
Wind chime
Wind instrument, woodwind instrument
Sounds of things
Boom
Camera
Coin (dropping)
Computer keyboard
Crack
Dishes, pots, and pans
Drawer open or close
Drill
Gunshot, gunfire
Hammer
Keys jangling
Knock
Microwave oven
Printer
Sawing
Scissors
Skateboard
Slam
Splash, splatter
Squeak
Tap
Thump, thud
Toilet flush
Train
Water tap, faucet
Whoosh, swoosh, swish
Writing
Zipper (clothing)
Natural sounds
Crackle
Stream
Waves, surf
Wind
Human sounds
Burping, eructation
Chewing, mastication
Child speech, kid speaking
Clapping
Cough
Crying, sobbing
Fart
Female singing
Female speech, woman speaking
Finger snapping
Giggle
Male speech, man speaking
Run
Screaming
Walk, footsteps
Animal
Bark
Cricket
Livestock, farm animals, working animals
Meow
Rattle
Source-ambiguous sounds
Crumpling, crinkling
Crushing
Tearing
License and Attribution
This release is licensed under the Creative Commons Attribution 4.0 International License.
The audio clips distributed as part of ARCA23K were sourced from Freesound and have their own Creative Commons license. The license information and attribution for each audio clip can be found in ARCA23K.metadata/train.json, which also includes the original Freesound URLs.
The files under ARCA23K-FSD.ground_truth/ are an adaptation of the ground truth data provided as part of FSD50K, which is licensed under the Creative Commons Attribution 4.0 International License. The curators of FSD50K are Eduardo Fonseca, Xavier Favory, Jordi Pons, Mercedes Collado, Ceren Can, Rachit Gupta, Javier Arredondo, Gary Avendano, and Sara Fernandez.
Citing
If you wish to cite this work, please cite the following paper:
T. Iqbal, Y. Cao, A. Bailey, M. D. Plumbley, and W. Wang, “ARCA23K: An audio dataset for investigating open-set label noise”, in Proceedings of the Detection and Classification of Acoustic Scenes and Events 2021 Workshop (DCASE2021), 2021, Barcelona, Spain, pp. 201–205.
BibTeX:
@inproceedings{Iqbal2021, author = {Iqbal, T. and Cao, Y. and Bailey, A. and Plumbley, M. D. and Wang, W.}, title = {{ARCA23K}: An audio dataset for investigating open-set label noise}, booktitle = {Proceedings of the Detection and Classification of Acoustic Scenes and Events 2021 Workshop (DCASE2021)}, pages = {201--205}, year = {2021}, address = {Barcelona, Spain}, }
Attribution-ShareAlike 3.0 (CC BY-SA 3.0)https://creativecommons.org/licenses/by-sa/3.0/
License information was derived automatically
AdA Project Public Data Release
This repository holds public data provided by the AdA project (Affektrhetoriken des Audiovisuellen - BMBF eHumanities Research Group Audio-Visual Rhetorics of Affect).
See: http://www.ada.cinepoetics.fu-berlin.de/en/index.html The data is made accessible under the terms of the Creative Commons Attribution-ShareAlike 3.0 License. The data can be accessed also at the project's public GitHub repository: https://github.com/ProjectAdA/public
Further explanations of the data can be found on our AdA project website: https://projectada.github.io/. See also the peer-reviewed data paper for this dataset that is in review to be published in NECSUS_European Journal of Media Studies, and will be available from https://necsus-ejms.org/ and https://mediarep.org
The data currently includes:
AdA Filmontology
The latest public release of the AdA Filmontology: https://github.com/ProjectAdA/public/tree/master/ontology
A vocabulary of film-analytical terms and concepts for fine-grained semantic video annotation.
The vocabulary is also available online in our triplestore: https://ada.cinepoetics.org/resource/2021/05/19/eMAEXannotationMethod.html
Advene Annotation Template
The latest public release of the template for the Advene annotation software: https://github.com/ProjectAdA/public/tree/master/advene_template
The template provides the developed semantic vocabulary in the Advene software with ready-to-use annotation tracks and predefined values.
In order to use the template you have to install and use Advene: https://www.advene.org/
Annotation Data
The latest public releases of our annotation datasets based on the AdA vocabulary: https://github.com/ProjectAdA/public/tree/master/annotations
The dataset of news reports, documentaries and feature films on the topic of "financial crisis" contains more than 92.000 manual & semi-automatic annotations authored in the open-source-software Advene (Aubert/Prié 2005) by expert annotators as well as more than 400.000 automatically generated annotations for wider corpus exploration. The annotations are published as Linked Open Data under the CC BY-SA 3.0 licence and available as rdf triples in turtle exports (ttl files) and in Advene's non-proprietary azp-file format, which allows instant access through the graphical interface of the software.
The annotation data can also be queried at our public SPARQL Endpoint: http://ada.filmontology.org/sparql
Manuals
The data set includes different manuals and documentations in German and English: https://github.com/ProjectAdA/public/tree/master/manuals
"AdA Filmontology – Levels, Types, Values": an overview over all analytical concepts and their definitions.
"Manual: Annotating with Advene and the AdA Filmontology". A manual on the usage of Advene and the AdA Annotation Explorer that provides the basics for annotating audiovisual aesthetics and visualizing them.
"Notes on collaborative annotation with the AdA Filmontology"
Not seeing a result you expected?
Learn how you can add new datasets to our index.
FSDKaggle2019 is an audio dataset containing 29,266 audio files annotated with 80 labels of the AudioSet Ontology. FSDKaggle2019 has been used for the DCASE Challenge 2019 Task 2, which was run as a Kaggle competition titled Freesound Audio Tagging 2019.
Citation
If you use the FSDKaggle2019 dataset or part of it, please cite our DCASE 2019 paper:
Eduardo Fonseca, Manoj Plakal, Frederic Font, Daniel P. W. Ellis, Xavier Serra. "Audio tagging with noisy labels and minimal supervision". Proceedings of the DCASE 2019 Workshop, NYC, US (2019)
You can also consider citing our ISMIR 2017 paper, which describes how we gathered the manual annotations included in FSDKaggle2019.
Eduardo Fonseca, Jordi Pons, Xavier Favory, Frederic Font, Dmitry Bogdanov, Andres Ferraro, Sergio Oramas, Alastair Porter, and Xavier Serra, "Freesound Datasets: A Platform for the Creation of Open Audio Datasets", In Proceedings of the 18th International Society for Music Information Retrieval Conference, Suzhou, China, 2017
Data curators
Eduardo Fonseca, Manoj Plakal, Xavier Favory, Jordi Pons
Contact
You are welcome to contact Eduardo Fonseca should you have any questions at eduardo.fonseca@upf.edu.
ABOUT FSDKaggle2019
Freesound Dataset Kaggle 2019 (or FSDKaggle2019 for short) is an audio dataset containing 29,266 audio files annotated with 80 labels of the AudioSet Ontology [1]. FSDKaggle2019 has been used for the Task 2 of the Detection and Classification of Acoustic Scenes and Events (DCASE) Challenge 2019. Please visit the DCASE2019 Challenge Task 2 website for more information. This Task was hosted on the Kaggle platform as a competition titled Freesound Audio Tagging 2019. It was organized by researchers from the Music Technology Group (MTG) of Universitat Pompeu Fabra (UPF), and from Sound Understanding team at Google AI Perception. The competition intended to provide insight towards the development of broadly-applicable sound event classifiers able to cope with label noise and minimal supervision conditions.
FSDKaggle2019 employs audio clips from the following sources:
Freesound Dataset (FSD): a dataset being collected at the MTG-UPF based on Freesound content organized with the AudioSet Ontology
The soundtracks of a pool of Flickr videos taken from the Yahoo Flickr Creative Commons 100M dataset (YFCC)
The audio data is labeled using a vocabulary of 80 labels from Google’s AudioSet Ontology [1], covering diverse topics: Guitar and other Musical Instruments, Percussion, Water, Digestive, Respiratory sounds, Human voice, Human locomotion, Hands, Human group actions, Insect, Domestic animals, Glass, Liquid, Motor vehicle (road), Mechanisms, Doors, and a variety of Domestic sounds. The full list of categories can be inspected in vocabulary.csv (see Files & Download below). The goal of the task was to build a multi-label audio tagging system that can predict appropriate label(s) for each audio clip in a test set.
What follows is a summary of some of the most relevant characteristics of FSDKaggle2019. Nevertheless, it is highly recommended to read our DCASE 2019 paper for a more in-depth description of the dataset and how it was built.
Ground Truth Labels
The ground truth labels are provided at the clip-level, and express the presence of a sound category in the audio clip, hence can be considered weak labels or tags. Audio clips have variable lengths (roughly from 0.3 to 30s).
The audio content from FSD has been manually labeled by humans following a data labeling process using the Freesound Annotator platform. Most labels have inter-annotator agreement but not all of them. More details about the data labeling process and the Freesound Annotator can be found in [2].
The YFCC soundtracks were labeled using automated heuristics applied to the audio content and metadata of the original Flickr clips. Hence, a substantial amount of label noise can be expected. The label noise can vary widely in amount and type depending on the category, including in- and out-of-vocabulary noises. More information about some of the types of label noise that can be encountered is available in [3].
Specifically, FSDKaggle2019 features three types of label quality, one for each set in the dataset:
curated train set: correct (but potentially incomplete) labels
noisy train set: noisy labels
test set: correct and complete labels
Further details can be found below in the sections for each set.
Format
All audio clips are provided as uncompressed PCM 16 bit, 44.1 kHz, mono audio files.
DATA SPLIT
FSDKaggle2019 consists of two train sets and one test set. The idea is to limit the supervision provided for training (i.e., the manually-labeled, hence reliable, data), thus promoting approaches to deal with label noise.
Curated train set
The curated train set consists of manually-labeled data from FSD.
Number of clips/class: 75 except in a few cases (where there are less)
Total number of clips: 4970
Avg number of labels/clip: 1.2
Total duration: 10.5 hours
The duration of the audio clips ranges from 0.3 to 30s due to the diversity of the sound categories and the preferences of Freesound users when recording/uploading sounds. Labels are correct but potentially incomplete. It can happen that a few of these audio clips present additional acoustic material beyond the provided ground truth label(s).
Noisy train set
The noisy train set is a larger set of noisy web audio data from Flickr videos taken from the YFCC dataset [5].
Number of clips/class: 300
Total number of clips: 19,815
Avg number of labels/clip: 1.2
Total duration: ~80 hours
The duration of the audio clips ranges from 1s to 15s, with the vast majority lasting 15s. Labels are automatically generated and purposefully noisy. No human validation is involved. The label noise can vary widely in amount and type depending on the category, including in- and out-of-vocabulary noises.
Considering the numbers above, the per-class data distribution available for training is, for most of the classes, 300 clips from the noisy train set and 75 clips from the curated train set. This means 80% noisy / 20% curated at the clip level, while at the duration level the proportion is more extreme considering the variable-length clips.
Test set
The test set is used for system evaluation and consists of manually-labeled data from FSD.
Number of clips/class: between 50 and 150
Total number of clips: 4481
Avg number of labels/clip: 1.4
Total duration: 12.9 hours
The acoustic material present in the test set clips is labeled exhaustively using the aforementioned vocabulary of 80 classes. Most labels have inter-annotator agreement but not all of them. Except human error, the label(s) are correct and complete considering the target vocabulary; nonetheless, a few clips could still present additional (unlabeled) acoustic content out of the vocabulary.
During the DCASE2019 Challenge Task 2, the test set was split into two subsets, for the public and private leaderboards, and only the data corresponding to the public leaderboard was provided. In this current package you will find the full test set with all the test labels. To allow comparison with previous work, the file test_post_competition.csv includes a flag to determine the corresponding leaderboard (public or private) for each test clip (see more info in Files & Download below).
Acoustic mismatch
As mentioned before, FSDKaggle2019 uses audio clips from two sources:
FSD: curated train set and test set, and
YFCC: noisy train set.
While the sources of audio (Freesound and Flickr) are collaboratively contributed and pretty diverse themselves, a certain acoustic mismatch can be expected between FSD and YFCC. We conjecture this mismatch comes from a variety of reasons. For example, through acoustic inspection of a small sample of both data sources, we find a higher percentage of high quality recordings in FSD. In addition, audio clips in Freesound are typically recorded with the purpose of capturing audio, which is not necessarily the case in YFCC.
This mismatch can have an impact in the evaluation, considering that most of the train data come from YFCC, while all test data are drawn from FSD. This constraint (i.e., noisy training data coming from a different web audio source than the test set) is sometimes a real-world condition.
LICENSE
All clips in FSDKaggle2019 are released under Creative Commons (CC) licenses. For attribution purposes and to facilitate attribution of these files to third parties, we include a mapping from the audio clips to their corresponding licenses.
Curated train set and test set. All clips in Freesound are released under different modalities of Creative Commons (CC) licenses, and each audio clip has its own license as defined by the audio clip uploader in Freesound, some of them requiring attribution to their original authors and some forbidding further commercial reuse. The licenses are specified in the files train_curated_post_competition.csv and test_post_competition.csv. These licenses can be CC0, CC-BY, CC-BY-NC and CC Sampling+.
Noisy train set. Similarly, the licenses of the soundtracks from Flickr used in FSDKaggle2019 are specified in the file train_noisy_post_competition.csv. These licenses can be CC-BY and CC BY-SA.
In addition, FSDKaggle2019 as a whole is the result of a curation process and it has an additional license. FSDKaggle2019 is released under CC-BY. This license is specified in the LICENSE-DATASET file downloaded with the FSDKaggle2019.doc zip file.
FILES & DOWNLOAD
FSDKaggle2019 can be downloaded as a series of zip files with the following directory structure:
root
│
└───FSDKaggle2019.audio_train_curated/ Audio clips in the curated train set
│
└───FSDKaggle2019.audio_train_noisy/ Audio clips in the noisy