Les prévisions quotidiennes du modèle météorologique ALADIN-Tunisie avec une résolution spatiale de 7.5 km.
la prévision saisonnière de précipitation et de la température sur la Tunisie
réseau des stations météorologiques synoptiques
les données extrêmes des différents paramètres météorologiques de la Tunisie.
Les projections climatiques régionalisées qui permettent d'envisager le futur du climat de la Tunisie à l'horizon 2100 avec une haute résolution spatiale de 12 km.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
subject to appropriate attribution.
Les données des stations pour le calcul des normales climatiques en Tunisie entre 1981 2010.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Validated and gapfilled meteorological surface observations of precipitation, visibility, radiation, air pressure, wind speed, wind direction, temperature and dew point at Cabauw on a 10-minute basis. Visibility and precipitation type available from January 2008. For more information about how to interpret the data, please read: https://cdn.knmi.nl/knmi/pdf/bibliotheek/knmipubTR/TR384.pdf. Please note: Due to dataset maintenance, data uploading has been halted temporarily since 01-06-2021 for an unspecified time.
Les normales climatiques sont des produits statistiques calculés sur des périodes de 30 ans. Elles permettent de caractériser le climat sur cette période et servent de référence. Ces valeurs sont calculées sur la période 1961-1990. Par exemple, la température normale du mois de janvier a été calculée en moyennant les températures moyennes mensuelles des trente mois de janvier de 1961 à 1990.
Various kinds of weather raw data and charts from Central Weather Administration.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In the framework of a long-term joint co-operation between Japan and KNMI aimed at climate reconstruction of Japan in its pre-instrumental era, we now explored the availability of the mostly visual weather data in the daily Diary of the Chief of the Dutch trading post on the island Dejima near Nagasaki. A Pilot project extracted the Januaries of the years 1700-1860; the Follow-up project extracted all months during the period 1817-1823, the term of office of the Chief Jan Cock Blomhoff. Together with the subsequently extracted Von Siebold data 1825-1828 (a supplementary project), the Cock Blomhoff series provides a detailed picture of the Kyushu daily weather in the early 19th century. With this report all data are made systematically accessible and available for further analysis.
Global and high-resolution regional atmospheric models from Météo-France.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
observations météorologiques tri_horaires pour les stations synoptiques
heure et azimut de la qibla
This map displays the Quantitative Precipitation Forecast (QPF) for the next 72 hours across the contiguous United States. Data are updated hourly from the National Digital Forecast Database produced by the National Weather Service.The dataset includes incremental and cumulative precipitation data in 6-hour intervals. In the ArcGIS Online map viewer you can enable the time animation feature and select either the "Amount by Time" (incremental) layer or the "Accumulation by Time" (cumulative) layer to view a 72-hour animation of forecast precipitation. All times are reported according to your local time zone.Where is the data coming from?The National Digital Forecast Database (NDFD) was designed to provide access to weather forecasts in digital form from a central location. The NDFD produces forecast data of sensible weather elements. NDFD contains a seamless mosaic of digital forecasts from National Weather Service (NWS) field offices working in collaboration with the National Centers for Environmental Prediction (NCEP). All of these organizations are under the administration of the National Oceanic and Atmospheric Administration (NOAA).Source: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.conus/VP.001-003/ds.qpf.binWhere can I find other NDFD data?The Source data is downloaded and parsed using the Aggregated Live Feeds methodology to return information that can be served through ArcGIS Server as a map service or used to update Hosted Feature Services in Online or Enterprise.What can you do with this layer?This map service is suitable for data discovery and visualization. Identify features by clicking on the map to reveal the pre-configured pop-ups. View the time-enabled data using the time slider by Enabling Time Animation.This map is provided for informational purposes and is not monitored 24/7 for accuracy and currency.If you would like to be alerted to potential issues or simply see when this Service will update next, please visit our Live Feed Status Page!
Open Data Commons Attribution License (ODC-By) v1.0https://www.opendatacommons.org/licenses/by/1.0/
License information was derived automatically
Hourly air temperature data was collected at ICBA Weather Station.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Le SPI est un indice permettant de mesurer la sécheresse météorologique. Il s’agit d’un indice de probabilité qui repose seulement sur les précipitations. Les probabilités sont standardisées de sorte qu’un SPI de 0 indique une quantité de précipitation médiane (par rapport à une climatologie moyenne de référence, calculée sur 30 ans). L’indice est négatif pour les sécheresses, et positif pour les conditions humides.
The High Impact Weather Assessment Toolkit (HIWAT) uses a mesoscale numerical weather prediction model and the Global Precipitation Measurement (GPM) constellation of satellites. The toolkit includes a suite of ensemble model forecasts to constrain uncertainties and provide a probabilistic forecast for improved decision-making. The toolkit provides outlooks for lightning strikes, high-impact winds, high rainfall rates, hail damage, and other weather events. The toolkit provides a 54-hour probabilistic forecast over Nepal and Bangladesh along with parts of northeast India (i.e., the Hindu Kush Himalayan region). HIWAT will also support threat assessments, such as thunderstorm intensity, using GPM and impact assessments using Landsat/MODIS land imagery to identify damage scars. The dataset files are available from April 2, 2017, through October 2, 2022, in netCDF-3 format.
The AMSR-E Wakasa Bay Field Campaign was conducted over Wakasa Bay, Japan. The Wakasa Bay Field Campaign includes joint research observations, such as precipitation amount, pressure thickness, seal level pressure, and surface winds by the Japan Aerospace Exploration Agency (JAXA), the AMSR precipitation validation team, and the NASA AMSR-E team.
https://data.gov.tw/licensehttps://data.gov.tw/license
The weather overview of Taiwan * The download URL has been updated since September 15, 112, please change the connection before December 31, 112, and the old link will be invalid after the time expires. If you need to download a large amount of data, please apply for membership on the Meteorological Data Open Platform https://opendata.cwa.gov.tw/index
Les prévisions quotidiennes du modèle météorologique ALADIN-Tunisie avec une résolution spatiale de 7.5 km.