3 datasets found
  1. R

    Coverting Openimages Csv To Yolov5 Pytorch .txt Dataset

    • universe.roboflow.com
    zip
    Updated Aug 31, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    new-workspace-fpc6y (2021). Coverting Openimages Csv To Yolov5 Pytorch .txt Dataset [Dataset]. https://universe.roboflow.com/new-workspace-fpc6y/coverting-openimages-csv-to-yolov5-pytorch-.txt
    Explore at:
    zipAvailable download formats
    Dataset updated
    Aug 31, 2021
    Dataset authored and provided by
    new-workspace-fpc6y
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Variables measured
    Object Detection Bounding Boxes
    Description

    Coverting OpenImages CSV To YOLOv5 Pytorch .TXT

    ## Overview
    
    Coverting OpenImages CSV To YOLOv5 Pytorch .TXT is a dataset for object detection tasks - it contains Object Detection annotations for 267 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [MIT license](https://creativecommons.org/licenses/MIT).
    
  2. COCO, LVIS, Open Images V4 classes mapping

    • zenodo.org
    • data.niaid.nih.gov
    bin, csv, txt
    Updated Oct 13, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Giuseppe Amato; Giuseppe Amato; Paolo Bolettieri; Paolo Bolettieri; Fabio Carrara; Fabio Carrara; Fabrizio Falchi; Fabrizio Falchi; Claudio Gennaro; Claudio Gennaro; Nicola Messina; Nicola Messina; Lucia Vadicamo; Lucia Vadicamo; Claudio Vairo; Claudio Vairo (2022). COCO, LVIS, Open Images V4 classes mapping [Dataset]. http://doi.org/10.5281/zenodo.7194300
    Explore at:
    csv, txt, binAvailable download formats
    Dataset updated
    Oct 13, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Giuseppe Amato; Giuseppe Amato; Paolo Bolettieri; Paolo Bolettieri; Fabio Carrara; Fabio Carrara; Fabrizio Falchi; Fabrizio Falchi; Claudio Gennaro; Claudio Gennaro; Nicola Messina; Nicola Messina; Lucia Vadicamo; Lucia Vadicamo; Claudio Vairo; Claudio Vairo
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This repository contains a mapping between the classes of COCO, LVIS, and Open Images V4 datasets into a unique set of 1460 classes.

    COCO [Lin et al 2014] contains 80 classes, LVIS [gupta2019lvis] contains 1460 classes, Open Images V4 [Kuznetsova et al. 2020] contains 601 classes.

    We built a mapping of these classes using a semi-automatic procedure in order to have a unique final list of 1460 classes. We also generated a hierarchy for each class, using wordnet

    This repository contains the following files:

    • coco_classes_map.txt, contains the mapping for the 80 coco classes
    • lvis_classes_map.txt, contains the mapping for the 1460 coco classes
    • openimages_classes_map.txt, contains the mapping for the 601 coco classes
    • classname_hyperset_definition.csv, contains the final set of 1460 classes, their definition and hierarchy
    • all-classnames.xlsx, contains a side-by-side view of all classes considered

    This mapping was used in VISIONE [Amato et al. 2021, Amato et al. 2022] that is a content-based retrieval system that supports various search functionalities (text search, object/color-based search, semantic and visual similarity search, temporal search). For the object detection VISIONE uses three pre-trained models: VfNet [Zhang et al. 2021] (trained on COCO dataset), Mask R-CNN [He et al. 2017] (trained on LVIS), and a Faster R-CNN+Inception ResNet (trained on the Open Images V4).

    This is repository is released under a Creative Commons Attribution license, please cite the following paper if you use it in your work in any form:

    @inproceedings{amato2021visione,
     title={The visione video search system: exploiting off-the-shelf text search engines for large-scale video retrieval},
     author={Amato, Giuseppe and Bolettieri, Paolo and Carrara, Fabio and Debole, Franca and Falchi, Fabrizio and Gennaro, Claudio and Vadicamo, Lucia and Vairo, Claudio},
     journal={Journal of Imaging},
     volume={7},
     number={5},
     pages={76},
     year={2021},
     publisher={Multidisciplinary Digital Publishing Institute}
    }
    

    References:

    [Amato et al. 2022] Amato, G. et al. (2022). VISIONE at Video Browser Showdown 2022. In: , et al. MultiMedia Modeling. MMM 2022. Lecture Notes in Computer Science, vol 13142. Springer, Cham. https://doi.org/10.1007/978-3-030-98355-0_52

    [Amato et al. 2021] Amato, G., Bolettieri, P., Carrara, F., Debole, F., Falchi, F., Gennaro, C., Vadicamo, L. and Vairo, C., 2021. The visione video search system: exploiting off-the-shelf text search engines for large-scale video retrieval. Journal of Imaging, 7(5), p.76.

    [Gupta et al.2019] Gupta, A., Dollar, P. and Girshick, R., 2019. Lvis: A dataset for large vocabulary instance segmentation. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 5356-5364).

    [He et al. 2017] He, K., Gkioxari, G., Dollár, P. and Girshick, R., 2017. Mask r-cnn. In Proceedings of the IEEE international conference on computer vision (pp. 2961-2969).

    [Kuznetsova et al. 2020] Kuznetsova, A., Rom, H., Alldrin, N., Uijlings, J., Krasin, I., Pont-Tuset, J., Kamali, S., Popov, S., Malloci, M., Kolesnikov, A. and Duerig, T., 2020. The open images dataset v4. International Journal of Computer Vision, 128(7), pp.1956-1981.

    [Lin et al. 2014] Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P. and Zitnick, C.L., 2014, September. Microsoft coco: Common objects in context. In European conference on computer vision (pp. 740-755). Springer, Cham.

    [Zhang et al. 2021] Zhang, H., Wang, Y., Dayoub, F. and Sunderhauf, N., 2021. Varifocalnet: An iou-aware dense object detector. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 8514-8523).

  3. h

    snacks-detection

    • huggingface.co
    Updated Aug 26, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Matthijs Hollemans (2022). snacks-detection [Dataset]. https://huggingface.co/datasets/Matthijs/snacks-detection
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 26, 2022
    Authors
    Matthijs Hollemans
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Dataset Card for Snacks (Detection)

      Dataset Summary
    

    This is a dataset of 20 different types of snack foods that accompanies the book Machine Learning by Tutorials. The images were taken from the Google Open Images dataset, release 2017_11.

      Dataset Structure
    

    Included in the data folder are three CSV files with bounding box annotations for the images in the dataset, although not all images have annotations and some images have multiple annotations. The columns… See the full description on the dataset page: https://huggingface.co/datasets/Matthijs/snacks-detection.

  4. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
new-workspace-fpc6y (2021). Coverting Openimages Csv To Yolov5 Pytorch .txt Dataset [Dataset]. https://universe.roboflow.com/new-workspace-fpc6y/coverting-openimages-csv-to-yolov5-pytorch-.txt

Coverting Openimages Csv To Yolov5 Pytorch .txt Dataset

coverting-openimages-csv-to-yolov5-pytorch-.txt

coverting-openimages-csv-to-yolov5-pytorch-.txt-dataset

Explore at:
zipAvailable download formats
Dataset updated
Aug 31, 2021
Dataset authored and provided by
new-workspace-fpc6y
License

MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically

Variables measured
Object Detection Bounding Boxes
Description

Coverting OpenImages CSV To YOLOv5 Pytorch .TXT

## Overview

Coverting OpenImages CSV To YOLOv5 Pytorch .TXT is a dataset for object detection tasks - it contains Object Detection annotations for 267 images.

## Getting Started

You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.

  ## License

  This dataset is available under the [MIT license](https://creativecommons.org/licenses/MIT).
Search
Clear search
Close search
Google apps
Main menu