This is a dataset download, not a document. The Open button will start the download.
Oregon Geologic Data Compilation, release 7 (OGDC-7), compiled by Jon J. Franczyk, Ian P. Madin, Carlie J.M. Duda, and Jason D. McClaughry
The Oregon Geologic Data Compilation (OGDC) is a digital data collection of geologic studies created by the Oregon Department of Geology and Mineral Industries (DOGAMI). The purpose of the compilation is to integrate and make available the best available published geologic mapping for the state by combining maps and data into a single consistent and maintainable digital database. OGDC was first released by DOGAMI in 2004, with successive releases building either geographically or qualitatively on previous releases. OGDC-6 was published in 2015 and serves as the Oregon Geologic Data Standard for the state as a data element component of the Geosciences Theme within the Oregon Framework Themes. The release of OGDC-7 builds directly from data published in OGDC-6 by migrating the database structure to the National Cooperative Geologic Mapping Program (NCGMP) Geologic Map Schema (GeMS). DOGAMI has implemented the GeMS schema as the database standard for all geologic mapping projects published from 2019 onward to meet NCGMP requirements and to support the state’s contribution to standardized nationwide geologic content. The transition to OGDC-7 required migrating the existing OGDC statewide compilation to the GeMS format for streamlining future updates, data creation, and data maintenance. Additionally, the transition to GeMS adds fundamental geologic map point data (e.g., structural data, geochronology, and geochemistry) as comprehensive geospatial datasets not included as part of previous versions of OGDC.
A GIS database of geologic units and structural features in Oregon, with lithology, age, data structure, and format written and arranged just like the other states.
Everything DOGAMI has published since 1937 is now available for FREE download. Find maps, reports, data, posters, guides and more at www.OregonGeology.org/pubs
This report publishes a geologic digital spatial database (ORGEO) for the geologic map of Oregon by Walker and MacLeod (1991) which was originally printed on a single sheet of paper at a scale of 1:500,000 and accompanied by a second sheet for map unit descriptions and ancillary data. The spatial digital database (GIS) provided in this report supersedes an earlier digital edition by Raines and others (1996).
Oregon lithology. Faults are in a separate coverage. The legend for southeastern Oregon is in the coverage orlegend.
This digital map database, compiled from previously published and unpublished data, and new mapping by the authors, represents the general distribution of bedrock and surficial deposits of the Salem East and Turner 7.5 minute quadrangles. A previously published adjacent geologic map and database by Tolan, Beeson, and Wheeler (1999) contains a text file (geol.txt or geol.ps), it provides current information on the geologic structure and stratigraphy of the area covered. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The scale of the source maps limits the spatial resolution (scale) of the database to 1:24,000 or smaller.
The Digital Geologic Map for the Clarno Unit, John Day Fossil Beds National Monument, Oregon (Plate I) is composed of GIS data layers complete with ArcMap 9.2 layer (.LYR) files, two ancillary GIS tables, a Windows Help File with ancillary map text, figures and tables, a FGDC metadata record and a 9.2 ArcMap (.MXD) Document that displays the digital map in 9.2 ArcGIS. The data were completed as a component of the Geologic Resource Evaluation (GRE) program, a National Park Service (NPS) Inventory and Monitoring (I&M) funded program that is administered by the NPS Geologic Resources Division (GRD). All GIS and ancillary tables were produced as per the NPS GRE Geology-GIS Geodatabase Data Model v. 1.4. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data is available as a 9.2 personal geodatabase (clu1_geology.mdb), and as shapefile (.SHP) and DBASEIV (.DBF) table files. The GIS data projection is NAD83, UTM Zone 11N. That data is within the area of interest of John Day Fossil Beds National Monument.
This data release for the reconnaissance geologic map of the Hells Canyon Study Area, Wallowa County, Oregon, and Idaho and Adams Counties, Idaho, is a Geologic Map Schema (GeMS, 2020)-compliant version of the geologic map published in U.S. Geological Survey (USGS) Scientific Investigations Report Map SIR 2007-5046 (Simmons, et al, 2007). The database represents the geology for the 625,177-acre (2,530 square kilometers), geologically complex Hells Canyon Study Area in two plates, at a publication scale of 1:48,000. The study area includes (1) the Hells Canyon Wilderness; (2) parts of the Snake River, Rapid River, and West Fork Rapid River Wild and Scenic Rivers; (3) lands included in the second Roadless Area Review and Evaluation (RARE II); and (4) part of the Hells Canyon National Recreation Area. References: Simmons, G.C., Gualtieri, J.L., Close, T.J., Federspiel, F.E., and Leszcykowski, A.M., 2007, Mineral resources of the Hells Canyon study area, Wallowa County, Oregon, and Idaho and Adams Counties, Idaho, with a section on aeromagnetic and gravity surveys, by D.R. Mabey: U.S. Geological Survey Scientific Investigations Report 2007-5046, 62 p., https://pubs.usgs.gov/sir/2007/5046/. U.S. Geological Survey National Cooperative Geologic Mapping Program, 2020, GeMS (Geologic Map Schema) - A standard format for the digital publication of geologic maps: U.S. Geological Survey Techniques and Methods, book 11, chap. B10, 74 p., https://doi.org//10.3133/tm11B10.
The Bureau of Reclamation's Scoggins Dam lies within the Gales Creek fault zone southwest of Hillsboro, Oregon. Recent geologic mapping shows the dam to overlie a potentially active strand of the fault. This report describes the geology of the dam in detail and confirms that the dam overlies a strand of the Gales Creek fault. The report documents small faults in the reservoir and off the north end of the dam along the Parsons Creek strand of the fault. The report further documents the geology of an alternative dam site downstream of the existing dam.
This layer is a bedrock engineering geology map, for use in the deep landslide susceptibility model (per methods explained in DOGAMI's Special Paper 48). This map is an interpretation from geologic mapping derived the compilation Oregon Geologic Data Compilation 6 (OGDC 6), based dominantly on the geologic mapping from McClaughry and others, 2010.
This digital geologic map database represents the distribution and character of Cenozoic geologic strata in six 15' quadrangles covering most of the Tillamook Highlands in the northwest Oregon Coast Range. The geologic map was published as Open-File Report 94-21, the Geologic Map of the Tillamook Highlands, Northwest Oregon Coast Range, by Wells and others.
This digital map database, compiled from previously published and unpublished data, and new mapping by the authors, represents the general distribution of bedrock and surficial deposits of the Silverton 7.5 minute quadrangle along the eastern margin of the Willamette Valley and adjacent lower foothills (Waldo and Silverton Hills) of the Cascade Range. The major emphasis of this investigation was to identify and map Columbia River Basalt Group (CRBG) units and to utilize this detailed CRBG stratigraphy to identify and characterize structural features. Together with the accompanying text file (geol.txt or geol.ps), it provides current information on the geologic structure and stratigraphy of the area covered. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The scale of the source maps limits the spatial resolution (scale) of the database to 1:24.000 or smaller.
The Digital Geologic and Volcanic Hazards Map for Crater Lake National Park and Vicinity, Oregon is composed of GIS data layers complete with ArcMap 9.3 layer (.LYR) files, two ancillary GIS tables, a Map PDF document with ancillary map text, figures and tables, a FGDC metadata record and a 9.3 ArcMap (.MXD) Document that displays the digital map in 9.3 ArcGIS. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation sections(s) of this metadata record (clhz_metadata.txt; available at http://nrdata.nps.gov/crla/nrdata/geology/gis/clhz_metadata.xml). All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.1. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data is available as a 9.3 personal geodatabase (clhz_geology.mdb), and as shapefile (.SHP) and DBASEIV (.DBF) table files. The GIS data projection is NAD83, UTM Zone 10N. That data is within the area of interest of Crater Lake National Park.
Two 21-day field operations were conducted in 1997 and 1998 in the estuaries and on the inner continental shelf off the northern Oregon and southern Washington coast. These cruises aboard the R/V Corliss were run in order to generate reconnaissance maps of the seafloor geology and the shallow subsurface stratigraphy using sidescan-sonar and seismic-reflection mapping techniques. The 1998 cruise also collected sediment grab samples, bottom photographs, and video images to verify the sidescan-sonar imagery and to document the seafloor geology. The combination of these data with previously collected sediment sample data (Robert, 1974; Nittrouer, 1978; and Smith et. al., 1980) has been used to define the extent and lithology of shelf sediments associated with the Columbia River littoral cell. This work is one component of a larger project studying the erosion of the Washington Oregon coasts and is being coordinated by the U.S. Geological Survey and the Washington State Department of Ecology. The reasons for collecting these data are to provide a regional synthesis of the offshore geology for this project and to support a wide variety of management decisions and to provide a basis for further process-oriented investigations.
description: The Digital Geologic Map for the Painted Hills Unit, John Day Fossil Beds National Monument, Oregon (Plate I) is composed of GIS data layers complete with ArcMap 9.2 layer (.LYR) files, two ancillary GIS tables, a Windows Help File with ancillary map text, figures and tables, a FGDC metadata record and a 9.2 ArcMap (.MXD) Document that displays the digital map in 9.2 ArcGIS. The data were completed as a component of the Geologic Resource Evaluation (GRE) program, a National Park Service (NPS) Inventory and Monitoring (I&M) funded program that is administered by the NPS Geologic Resources Division (GRD). All GIS and ancillary tables were produced as per the NPS GRE Geology-GIS Geodatabase Data Model v. 1.4. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data is available as a 9.2 personal geodatabase (phu1_geology.mdb), and as shapefile (.SHP) and DBASEIV (.DBF) table files. The GIS data projection is NAD83, UTM Zone 11N. That data is within the area of interest of John Day Fossil Beds National Monument.; abstract: The Digital Geologic Map for the Painted Hills Unit, John Day Fossil Beds National Monument, Oregon (Plate I) is composed of GIS data layers complete with ArcMap 9.2 layer (.LYR) files, two ancillary GIS tables, a Windows Help File with ancillary map text, figures and tables, a FGDC metadata record and a 9.2 ArcMap (.MXD) Document that displays the digital map in 9.2 ArcGIS. The data were completed as a component of the Geologic Resource Evaluation (GRE) program, a National Park Service (NPS) Inventory and Monitoring (I&M) funded program that is administered by the NPS Geologic Resources Division (GRD). All GIS and ancillary tables were produced as per the NPS GRE Geology-GIS Geodatabase Data Model v. 1.4. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data is available as a 9.2 personal geodatabase (phu1_geology.mdb), and as shapefile (.SHP) and DBASEIV (.DBF) table files. The GIS data projection is NAD83, UTM Zone 11N. That data is within the area of interest of John Day Fossil Beds National Monument.
description: The Digital Geologic Map for the Sheep Rock Unit, John Day Fossil Beds National Monument, Oregon is composed of GIS data layers complete with ArcMap 9.2 layer (.LYR) files, two ancillary GIS tables, a Windows Help File with ancillary map text, figures and tables, a FGDC metadata record and a 9.2 ArcMap (.MXD) Document that displays the digital map in 9.2 ArcGIS. The data were completed as a component of the Geologic Resource Evaluation (GRE) program, a National Park Service (NPS) Inventory and Monitoring (I&M) funded program that is administered by the NPS Geologic Resources Division (GRD). All GIS and ancillary tables were produced as per the NPS GRE Geology-GIS Geodatabase Data Model v. 1.4. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data is available as a 9.2 personal geodatabase (shrk_geology.mdb), and as shapefile (.SHP) and DBASEIV (.DBF) table files. The GIS data projection is NAD83, UTM Zone 11N. That data is within the area of interest of John Day Fossil Beds National Monument.; abstract: The Digital Geologic Map for the Sheep Rock Unit, John Day Fossil Beds National Monument, Oregon is composed of GIS data layers complete with ArcMap 9.2 layer (.LYR) files, two ancillary GIS tables, a Windows Help File with ancillary map text, figures and tables, a FGDC metadata record and a 9.2 ArcMap (.MXD) Document that displays the digital map in 9.2 ArcGIS. The data were completed as a component of the Geologic Resource Evaluation (GRE) program, a National Park Service (NPS) Inventory and Monitoring (I&M) funded program that is administered by the NPS Geologic Resources Division (GRD). All GIS and ancillary tables were produced as per the NPS GRE Geology-GIS Geodatabase Data Model v. 1.4. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data is available as a 9.2 personal geodatabase (shrk_geology.mdb), and as shapefile (.SHP) and DBASEIV (.DBF) table files. The GIS data projection is NAD83, UTM Zone 11N. That data is within the area of interest of John Day Fossil Beds National Monument.
The Digital Geologic map of Whitman Mission National Historic Site and vicinity, Washington and Oregon is composed of GIS data layers complete with ArcMap 9.2 layer (.LYR) files, two ancillary GIS tables, a Windows Help File with ancillary map text, figures and tables, a FGDC metadata record and a 9.2 ArcMap (.MXD) Document that displays the digital map in 9.2 ArcGIS. The data were completed as a component of the Geologic Resource Evaluation (GRE) program, a National Park Service (NPS) Inventory and Monitoring (I&M) funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRE digital dataset were provided by the following: Washington Division of Geology and Earth Resources. Detailed information concerning the sources used and their contribution the GRE product are listed in the Source Citation sections(s) of this metadata record (whmi_metadata.txt; available at http://nrdata.nps.gov/whmi/nrdata/geology/gis/whmi_metadata.xml). All GIS and ancillary tables were produced as per the NPS GRE Geology-GIS Geodatabase Data Model v. 2.0. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data is available as a 9.2 personal geodatabase (whmi_geology.mdb), and as shapefile (.SHP) and DBASEIV (.DBF) table files. The GIS data projection is NAD83, UTM Zone 11N. That data is within the area of interest of Whitman Mission National Historic Site.
This record is maintained in the National Geologic Map Database (NGMDB). The NGMDB is a Congressionally mandated national archive of geoscience maps, reports, and stratigraphic information, developed according to standards defined by the cooperators, i.e., the USGS and the Association of American State Geologists (AASG). Included in this system is a comprehensive set of publication citations, stratigraphic nomenclature, downloadable content, unpublished source information, and guidance on standards development. The NGMDB contains information on more than 90,000 maps and related geoscience reports published from the early 1800s to the present day, by more than 630 agencies, universities, associations, and private companies. For more information, please see http://ngmdb.usgs.gov/.
This layer is a surficial engineering geology map, for use in the shallow landslide susceptibility model (per methods explained in DOGAMI's Special Paper 45). This map is an interpretation from geologic mapping derived the compilation Oregon Geologic Data Compilation 6 (OGDC 6), based dominantly on the geologic mapping from McClaughry and others, 2010. We also used the soil survey for Lane County, in order to best understand what materials are present in the top 15 feet of material at the surface (USDA, 1987).
{{description}}