High resolution orthorectified images combine the image characteristics of an aerial photograph with the geometric qualities of a map. An orthoimage is a uniform-scale image where corrections have been made for feature displacement such as building tilt and for scale variations caused by terrain relief, sensor geometry, and camera tilt. A mathematical equation based on ground control points, sensor calibration information, and a digital elevation model is applied to each pixel to rectify the image to obtain the geometric qualities of a map. A digital orthoimage may be created from several photographs mosaicked to form the final image. The source imagery may be black-and-white, natural color, or color infrared with a pixel resolution of 1-meter or finer. With orthoimagery, the resolution refers to the distance on the ground represented by each pixel.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Collection of digitised orthophoto maps over Queensland at various scales 1975–1996. An orthophoto map displays traditional map contours over an aerial photograph base. The quality of scans varies. The majority of series include key maps.
Please note: Each CSV file includes a jpg_linkage column this column contains the URL required to access the related map scan.
https://opendata.vancouver.ca/pages/licence/https://opendata.vancouver.ca/pages/licence/
This dataset provides links to aerial imagery (orthophoto) taken in 2022 as individual tiled areas over the City of Vancouver.An orthophoto is an aerial photograph that has been processed (via a scanning and rectification process) in such a way as to eliminate image displacement due to camera tilt and terrain relief, so that it represents every object as if viewed directly from above, as in a map which is usually in an orthographic projection. An orthophoto combines the visual properties of a photograph with the geometric qualities of a map and offers a realistic visualization of the landscape.The City's orthophoto coverage includes the City, UBC, and the University Endowment Lands and parts of Richmond and the Vancouver International Airport (YVR) as well. The area is defined by the City's facet grid (see Facet Grid Boundaries).Since the 2015 orthophotos, resolution for our imagery is 7.5 cm. Orthophotos are in coordinate system UTM NAD83, Zone 10 (EPSG:26910). NoteAtmospheric correction was not applied to this dataset. Data currencyThe 2022 orthophotos were captured between June 6, 2022 and July 1, 2022. This imagery is current as of these dates. Data accuracyImagery is accurate as of the dates it was taken although colours may or may not be exactly as occurred on that day as colours change from moment to moment due to sun and cloud cover.
This dataset provides orthorectified aerial imagery (“orthophotos”) for the City of Courtenay. These tiles are used as a base layer for mapping, land use planning, and visual analysis. 5cm resolution. Taken March 2020.
Medium resolution true color ortho images for the Commonwealth of Massachusetts, distributed by MassGIS. The photography for the entire commonwealth was captured in April 2005 when deciduous trees were mostly bare and the ground was generally free of snow. Original imagery pixel resolution is 1/2-meter.Original image type is 4-band (RGBN) natural color (Red, Green, Blue) and Near infrared in 8 bits (values ranging 0-255) per band format. This map service contains only the RGB bands and uses the "contrast stretched" JPEG 2000 versions MassGIS Produced from the original GeoTiff files. Image horizontal accuracy is +/-3 meters at the 95% confidence level at the nominal scale of 1:5,000. This digital orthoimagery can serve a variety of purposes, from general planning, to field reference for spatial analysis, to a tool for development and revision of vector maps. It can also serve as a reference layer or basemap for myriad applications inside geographic information system (GIS) software. The project was funded by the Executive Office of Environmental Affairs, the Department of Environmental Protection, the Massachusetts Highway Department, and the Department of Public Health.For full metadata visit https://www.mass.gov/info-details/massgis-data-2005-aerial-imagery.
Orthophotos at a map scale of 1"=200' with one foot ground pixel resolution were produced for Osceola, FL. Orthophotography was collected from DMC 10,000' above ground color aerial photography. All photogrammetric mapping products compiled by Surdex Corporation meet National Map Accuracy Standards for 1"=200' scale mapping.
https://www.nconemap.gov/pages/termshttps://www.nconemap.gov/pages/terms
NOTE: DO NOT DOWNLOAD THE IMAGERY BY USING THE MAP OR DOWNLOAD TOOLS ON THIS ARCGIS HUB ITEM PAGE. IT WILL RESULT IN A PIXELATED ORTHOIMAGE. INSTEAD, DOWNLOAD THE IMAGERY BY TILE OR BY COUNTY MOSAIC (2010 - current year).This service contains the most recent imagery collected by the NC Orthoimagery Program for any given area of North Carolina. The imagery has a pixel resolution of 6 inches with an RMSE of 1.0 ft X and Y. Individual pixel values may have been altered during image processing. Therefore, this service should be used for general reference and viewing. Image analysis requiring examination of individual pixel values is discouraged.
2018 Aerial Imagery Basemap of Seneca County, Ohio, USA. Map Tile Package Created by the Seneca County Auditor's Office. Original Imagery tiles by Eagle View Pictometry.
In spring 2008, the U.S. Geological Survey, as part of its Boston 133 Cities Urban Area mapping program, contracted for true-color imagery covering the metropolitan Boston area and beyond. Image type for the entire region (more than 1.7 million acres) is 24-bit, 3-band (red, green, blue) natural color. Each band has pixel values ranging 0-255. Pixel resolution is 30 cm., or approximately one foot. In spring 2009, USGS continued the project and 4-band 30cm imagery was obtained for the remainder of the state.This digital orthoimagery can serve a variety of purposes, from general planning, to field reference for spatial analysis, to a tool for data development and revision of vector maps. It can also serve as a reference layer or basemap for myriad applications inside geographic information system (GIS) software.The data are served from MassGIS' ArcGIS Online account as a tiled cached map service for fast display.For full metadata and links to download the imagery visit https://www.mass.gov/info-details/massgis-data-20082009-aerial-imagery.
BY USING THIS WEBSITE OR THE CONTENT THEREIN, YOU AGREE TO THE TERMS OF USE.
This 2015 raster dataset consists of 8-bit, 4-band (R, G, B, NIR) color orthoimagery. A digital orthoimage is a raster image processed from vertical aerial images in which displacement in the image due to sensor orientation and terrain relief have been removed. Orthoimagery combines the image characteristics of an image with the geometric qualities of a map. Unlike planimetric maps which depict natural and manmade features by means of lines, point symbols, texts and polygons, orthoimagery illustrates the actual images of features and are thus more easily interpreted than regular maps. The normal orientation of data in an orthoimage is by lines (rows) and samples (columns). Each line contains a series of pixels ordered from west to east with the order of the lines from north to south. Each image tile is stored in industry standard TIFF (tagged interchange file format) with an associated TIFF world file. Aerial imagery was acquired between April 12 and 15 2015 from flying heights of approximately 1400-1640 feet above ground level (AGL). Each orthoimage tile is 2500feet X 2500feet in dimension, edge-tied with the adjacent tiles (no gap and no overlap). T
The Digital Globe 2011-2012 aerial-photo reference map layer contains visible color, 30-centimeter pixel resolution ortho imagery from Digital Globe captured in spring 2011 and spring 2012. Imagery was captured statewide in spring 2011 in nine delivery areas. In Spring 2012, Berkshire County (the "Pittsfield" delivery area) and the town of Barnstable were re-flown. Image acquisition consisted of "high value" and "standard" data, with the high value areas complying with more stringent standards. MassGIS created the ortho imagery base map such that the High Value imagery draws atop any Standard imagery where the areas overlap. The imagery was part of Digital Globe's Advanced Ortho Aerial Program “Precision Aerial” high-resolution orthomosaics.Please see the metadata for more details.
BY USING THIS WEBSITE OR THE CONTENT THEREIN, YOU AGREE TO THE TERMS OF USE. This raster dataset consists of 8-bit, 4-band (R, G, B, NIR) color orthoimagery. A digital orthoimage is a raster image processed from vertical aerial images in which displacement in the image due to sensor orientation and terrain relief have been removed. Orthoimagery combines the image characteristics of an image with the geometric qualities of a map. Unlike planimetric maps which depict natural and manmade features by means of lines, point symbols, texts and polygons, orthoimagery illustrates the actual images of features and are thus more easily interpreted than regular maps. The normal orientation of data in an orthoimage is by lines (rows) and samples (columns). Each line contains a series of pixels ordered from west to east with the order of the lines from north to south. Each image tile is stored in industry standard TIFF (tagged interchange file format) with an associated TIFF world file. Aerial imagery was acquired on May 6, 2014, May 19, 2014 from flying heights of approximately 14500 feet above ground level (AGL). Each orthoimage tile is 5000 feet X 5000 feet in dimension, edge-tied with the adjacent tiles (no gap and no overlap).
A Digital Orthophoto Quadrangle (DOQ) is a computer-generated image of an aerial photograph in which the image displacement caused by terrain relief and camera tilt has been removed. The DOQ combines the image characteristics of the original photograph with the georeferenced qualities of a map. DOQs are black and white (B/W), natural color, or color-infrared (CIR) images with 1-meter ground resolution. The USGS produces three types of DOQs: 3.75-minute (quarter-quad) DOQs cover an area measuring 3.75-minutes longitude by 3.75-minutes latitude. Most of the U.S. is currently available, and the remaining locations should be complete by 2004. Quarter-quad DOQs are available in both Native and GeoTIFF formats. Native format consists of an ASCII keyword header followed by a series of 8-bit binary image lines for B/W and 24-bit band-interleaved-by-pixel (BIP) for color. DOQs in native format are cast to the Universal Transverse Mercator (UTM) projection and referenced to either the North American Datum (NAD) of 1927 (NAD27) or the NAD of 1983 (NAD83). GeoTIFF format consists of a georeferenced Tagged Image File Format (TIFF), with all geographic referencing information embedded within the .tif file. DOQs in GeoTIFF format are cast to the UTM projection and referenced to NAD83. The average file size of a B/W quarter quad is 40-45 megabytes, and a color file is generally 140-150 megabytes. Quarter-quad DOQs are distributed via File Transfer Protocol (FTP) as uncompressed files. 7.5-minute (full-quad) DOQs cover an area measuring 7.5-minutes longitude by 7.5-minutes latitude. Full-quad DOQs are mostly available for Oregon, Washington, and Alaska. Limited coverage may also be available for other states. Full-quad DOQs are available in both Native and GeoTIFF formats. Native is formatted with an ASCII keyword header followed by a series of 8-bit binary image lines for B/W. DOQs in native format are cast to the UTM projection and referenced to either NAD27 or NAD83. GeoTIFF is a georeferenced Tagged Image File Format with referencing information embedded within the .tif file. DOQs in GeoTIFF format are cast to the UTM projection and referenced to NAD83. The average file size of a B/W full quad is 140-150 megabytes. Full-quad DOQs are distributed via FTP as uncompressed files. Seamless DOQs are available for free download from the Seamless site. DOQs on this site are the most current version and are available for the conterminous U.S. [Summary provided by the USGS.]
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A digital orthophoto is a georeferenced image prepared from aerial imagery, or other remotely-sensed data in which the displacement within the image due to sensor orientation and terrain relief has been removed. Orthophotos combine the characteristics of an image with the geometric qualities of a map. Orthoimages show ground features such as roads, buildings, and streams in their proper positions, without the distortion characteristic of unrectified aerial imagery. Digital orthoimages produced and used within the Forest Service are developed from imagery acquired through various national and regional image acquisition programs. The resulting orthoimages, also known as orthomaps, can be directly applied in remote sensing, GIS and mapping applications. They serve a variety of purposes, from interim maps to references for earth science investigations and analysis. Because of the orthographic property, an orthoimage can be used like a map for measurement of distances, angles, and areas with scale being constant everywhere. Also, they can be used as map layers in GIS or other computer-based manipulation, overlaying, and analysis. An orthoimage differs from a map in a manner of depiction of detail; on a map only selected detail is shown by conventional symbols, whereas on an orthoimage all details appear just as in original aerial or satellite imagery.This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: ISO-19139 metadata ArcGIS Hub Dataset ArcGIS GeoServiceFor complete information, please visit https://data.gov.
This data set contains 4-band ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery was acquired on 20240608 with a Leica RCD30 imagery system. The original images were acquired at a higher resolution to support the final ortho-rectified mosaic.
This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery was acquired from 20110306 - 20110306. The images were acquired with an Applanix Digital Sensor System (DSS). The original images were acquired at a higher resolution than the final ortho-rectified mosaic.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A digital orthophoto is a georeferenced image prepared from aerial imagery, or other remotely-sensed data in which the displacement within the image due to sensor orientation and terrain relief has been removed. Orthophotos combine the characteristics of an image with the geometric qualities of a map. Orthoimages show ground features such as roads, buildings, and streams in their proper positions, without the distortion characteristic of unrectified aerial imagery. Digital orthoimages produced and used within the Forest Service are developed from imagery acquired through various national and regional image acquisition programs. The resulting orthoimages, also known as orthomaps, can be directly applied in remote sensing, GIS and mapping applications. They serve a variety of purposes, from interim maps to references for earth science investigations and analysis. Because of the orthographic property, an orthoimage can be used like a map for measurement of distances, angles, and areas with scale being constant everywhere. Also, they can be used as map layers in GIS or other computer-based manipulation, overlaying, and analysis. An orthoimage differs from a map in a manner of depiction of detail; on a map only selected detail is shown by conventional symbols, whereas on an orthoimage all details appear just as in original aerial or satellite imagery.This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: ISO-19139 metadata ArcGIS Hub Dataset ArcGIS GeoServiceFor complete information, please visit https://data.gov.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
'High resolution orthorectified images combine the image characteristics of an aerial photograph with the geometric qualities of a map. An orthoimage is a uniform-scale image where corrections have been made for feature displacement such as building tilt and for scale variations caused by terrain relief, sensor geometry, and camera tilt. A mathematical equation based on ground control points, sensor calibration information, and a digital elevation model is applied to each pixel to rectify the image to obtain the geometric qualities of a map. A digital orthoimage may be created from several photographs mosaicked to form the final image. The source imagery may be black-and-white, natural color, color infrared, or color near infrared (4-band) with a pixel resolution of 1-meter or finer. With orthoimagery, the resolution refers to the distance on the ground represented by each pixel. '
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The product was developed in the context of the project "Protecting the Inner Ionian Archipelago and Formicula' implemented by iSea in 2024 and funded by Blue Marine Foundation. The orthophoto map was created using drone imagery for the collection of groundtrouthing points on habitat types to assist in the mapping of Posidonia oceanica in close association with aquaculture fascilities in the municipality of Xiromero, Greece.
High resolution orthorectified images combine the image characteristics of an aerial photograph with the geometric qualities of a map. An orthoimage is a uniform-scale image where corrections have been made for feature displacement such as building tilt and for scale variations caused by terrain relief, sensor geometry, and camera tilt. A mathematical equation based on ground control points, sensor calibration information, and a digital elevation model is applied to each pixel to rectify the image to obtain the geometric qualities of a map. A digital orthoimage may be created from several photographs mosaicked to form the final image. The source imagery may be black-and-white, natural color, or color infrared with a pixel resolution of 1-meter or finer. With orthoimagery, the resolution refers to the distance on the ground represented by each pixel.