100+ datasets found
  1. r

    Data from: Datasets for outlier detection

    • researchdata.edu.au
    • research-repository.rmit.edu.au
    • +1more
    Updated Mar 27, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sevvandi Kandanaarachchi; Mario Munoz Acosta; Kate Smith-Miles; Rob Hyndman (2019). Datasets for outlier detection [Dataset]. http://doi.org/10.26180/5c6253c0b3323
    Explore at:
    Dataset updated
    Mar 27, 2019
    Dataset provided by
    Monash University
    Authors
    Sevvandi Kandanaarachchi; Mario Munoz Acosta; Kate Smith-Miles; Rob Hyndman
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The zip files contains 12338 datasets for outlier detection investigated in the following papers:


    (1) Instance space analysis for unsupervised outlier detection
    Authors : Sevvandi Kandanaarachchi, Mario A. Munoz, Kate Smith-Miles

    (2) On normalization and algorithm selection for unsupervised outlier detection
    Authors : Sevvandi Kandanaarachchi, Mario A. Munoz, Rob J. Hyndman, Kate Smith-Miles

    Some of these datasets were originally discussed in the paper:

    On the evaluation of unsupervised outlier detection:measures, datasets and an empirical study
    Authors : G. O. Campos, A, Zimek, J. Sander, R. J.G.B. Campello, B. Micenkova, E. Schubert, I. Assent, M.E. Houle.




  2. MNIST dataset for Outliers Detection - [ MNIST4OD ]

    • figshare.com
    application/gzip
    Updated May 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Giovanni Stilo; Bardh Prenkaj (2024). MNIST dataset for Outliers Detection - [ MNIST4OD ] [Dataset]. http://doi.org/10.6084/m9.figshare.9954986.v2
    Explore at:
    application/gzipAvailable download formats
    Dataset updated
    May 17, 2024
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Giovanni Stilo; Bardh Prenkaj
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Here we present a dataset, MNIST4OD, of large size (number of dimensions and number of instances) suitable for Outliers Detection task.The dataset is based on the famous MNIST dataset (http://yann.lecun.com/exdb/mnist/).We build MNIST4OD in the following way:To distinguish between outliers and inliers, we choose the images belonging to a digit as inliers (e.g. digit 1) and we sample with uniform probability on the remaining images as outliers such as their number is equal to 10% of that of inliers. We repeat this dataset generation process for all digits. For implementation simplicity we then flatten the images (28 X 28) into vectors.Each file MNIST_x.csv.gz contains the corresponding dataset where the inlier class is equal to x.The data contains one instance (vector) in each line where the last column represents the outlier label (yes/no) of the data point. The data contains also a column which indicates the original image class (0-9).See the following numbers for a complete list of the statistics of each datasets ( Name | Instances | Dimensions | Number of Outliers in % ):MNIST_0 | 7594 | 784 | 10MNIST_1 | 8665 | 784 | 10MNIST_2 | 7689 | 784 | 10MNIST_3 | 7856 | 784 | 10MNIST_4 | 7507 | 784 | 10MNIST_5 | 6945 | 784 | 10MNIST_6 | 7564 | 784 | 10MNIST_7 | 8023 | 784 | 10MNIST_8 | 7508 | 784 | 10MNIST_9 | 7654 | 784 | 10

  3. Outlier Detection and Removal Dataset

    • kaggle.com
    Updated Jul 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aamir Shahzad (2025). Outlier Detection and Removal Dataset [Dataset]. https://www.kaggle.com/datasets/aamir5659/outlier-detection-and-removal-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 9, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Aamir Shahzad
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    šŸ“ Files Included: Outlier_Loan_datase.csv – Raw dataset with outliers `.Final_Outliers_clean_dataset.csv (IQR + Z-score)

    This dataset is designed for practicing outlier detection and data cleaning techniques.
    It includes both the original (uncleaned) and cleaned versions of a financial dataset.

  4. f

    Data from: A Diagnostic Procedure for Detecting Outliers in Linear...

    • tandf.figshare.com
    • figshare.com
    txt
    Updated Feb 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dongjun You; Michael Hunter; Meng Chen; Sy-Miin Chow (2024). A Diagnostic Procedure for Detecting Outliers in Linear State–Space Models [Dataset]. http://doi.org/10.6084/m9.figshare.12162075.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Feb 9, 2024
    Dataset provided by
    Taylor & Francis
    Authors
    Dongjun You; Michael Hunter; Meng Chen; Sy-Miin Chow
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Outliers can be more problematic in longitudinal data than in independent observations due to the correlated nature of such data. It is common practice to discard outliers as they are typically regarded as a nuisance or an aberration in the data. However, outliers can also convey meaningful information concerning potential model misspecification, and ways to modify and improve the model. Moreover, outliers that occur among the latent variables (innovative outliers) have distinct characteristics compared to those impacting the observed variables (additive outliers), and are best evaluated with different test statistics and detection procedures. We demonstrate and evaluate the performance of an outlier detection approach for multi-subject state-space models in a Monte Carlo simulation study, with corresponding adaptations to improve power and reduce false detection rates. Furthermore, we demonstrate the empirical utility of the proposed approach using data from an ecological momentary assessment study of emotion regulation together with an open-source software implementation of the procedures.

  5. s

    Outlier Set Two-step Method (OSTI)

    • orda.shef.ac.uk
    application/x-rar
    Updated Jul 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Amal Sarfraz; Abigail Birnbaum; Flannery Dolan; Jonathan Lamontagne; Lyudmila Mihaylova; Charles Rouge (2025). Outlier Set Two-step Method (OSTI) [Dataset]. http://doi.org/10.15131/shef.data.28227974.v3
    Explore at:
    application/x-rarAvailable download formats
    Dataset updated
    Jul 1, 2025
    Dataset provided by
    The University of Sheffield
    Authors
    Amal Sarfraz; Abigail Birnbaum; Flannery Dolan; Jonathan Lamontagne; Lyudmila Mihaylova; Charles Rouge
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    These files are supplements to the paper titled 'A Robust Two-step Method for Detection of Outlier Sets'.This paper identifies and addresses the need for a robust method that identifies sets of points that collectively deviate from typical patterns in a dataset, which it calls "outlier sets'', while excluding individual points from detection. This new methodology, Outlier Set Two-step Identification (OSTI) employs a two-step approach to detect and label these outlier sets. First, it uses Gaussian Mixture Models for probabilistic clustering, identifying candidate outlier sets based on cluster weights below a predetermined threshold. Second, OSTI measures the Inter-cluster Mahalanobis distance between each candidate outlier set's centroid and the overall dataset mean. OSTI then tests the null hypothesis that this distance does not significantly differ from its theoretical chi-square distribution, enabling the formal detection of outlier sets. We test OSTI systematically on 8,000 synthetic 2D datasets across various inlier configurations and thousands of possible outlier set characteristics. Results show OSTI robustly and consistently detects outlier sets with an average F1 score of 0.92 and an average purity (the degree to which outlier sets identified correspond to those generated synthetically, i.e., our ground truth) of 98.58%. We also compare OSTI with state-of-the-art outlier detection methods, to illuminate how OSTI fills a gap as a tool for the exclusive detection of outlier sets.

  6. d

    Algorithms for Speeding up Distance-Based Outlier Detection

    • catalog.data.gov
    • cloud.csiss.gmu.edu
    • +2more
    Updated Apr 10, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dashlink (2025). Algorithms for Speeding up Distance-Based Outlier Detection [Dataset]. https://catalog.data.gov/dataset/algorithms-for-speeding-up-distance-based-outlier-detection
    Explore at:
    Dataset updated
    Apr 10, 2025
    Dataset provided by
    Dashlink
    Description

    The problem of distance-based outlier detection is difficult to solve efficiently in very large datasets because of potential quadratic time complexity. We address this problem and develop sequential and distributed algorithms that are significantly more efficient than state-of-the-art methods while still guaranteeing the same outliers. By combining simple but effective indexing and disk block accessing techniques, we have developed a sequential algorithm iOrca that is up to an order-of-magnitude faster than the state-of-the-art. The indexing scheme is based on sorting the data points in order of increasing distance from a fixed reference point and then accessing those points based on this sorted order. To speed up the basic outlier detection technique, we develop two distributed algorithms (DOoR and iDOoR) for modern distributed multi-core clusters of machines, connected on a ring topology. The first algorithm passes data blocks from each machine around the ring, incrementally updating the nearest neighbors of the points passed. By maintaining a cutoff threshold, it is able to prune a large number of points in a distributed fashion. The second distributed algorithm extends this basic idea with the indexing scheme discussed earlier. In our experiments, both distributed algorithms exhibit significant improvements compared to the state-of-the-art distributed methods.

  7. f

    Data from: Error and anomaly detection for intra-participant time-series...

    • tandf.figshare.com
    xlsx
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David R. Mullineaux; Gareth Irwin (2023). Error and anomaly detection for intra-participant time-series data [Dataset]. http://doi.org/10.6084/m9.figshare.5189002
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    Taylor & Francis
    Authors
    David R. Mullineaux; Gareth Irwin
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Identification of errors or anomalous values, collectively considered outliers, assists in exploring data or through removing outliers improves statistical analysis. In biomechanics, outlier detection methods have explored the ā€˜shape’ of the entire cycles, although exploring fewer points using a ā€˜moving-window’ may be advantageous. Hence, the aim was to develop a moving-window method for detecting trials with outliers in intra-participant time-series data. Outliers were detected through two stages for the strides (mean 38 cycles) from treadmill running. Cycles were removed in stage 1 for one-dimensional (spatial) outliers at each time point using the median absolute deviation, and in stage 2 for two-dimensional (spatial–temporal) outliers using a moving window standard deviation. Significance levels of the t-statistic were used for scaling. Fewer cycles were removed with smaller scaling and smaller window size, requiring more stringent scaling at stage 1 (mean 3.5 cycles removed for 0.0001 scaling) than at stage 2 (mean 2.6 cycles removed for 0.01 scaling with a window size of 1). Settings in the supplied Matlab code should be customised to each data set, and outliers assessed to justify whether to retain or remove those cycles. The method is effective in identifying trials with outliers in intra-participant time series data.

  8. d

    Data from: Privacy Preserving Outlier Detection through Random Nonlinear...

    • catalog.data.gov
    • data.staging.idas-ds1.appdat.jsc.nasa.gov
    • +1more
    Updated Apr 10, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dashlink (2025). Privacy Preserving Outlier Detection through Random Nonlinear Data Distortion [Dataset]. https://catalog.data.gov/dataset/privacy-preserving-outlier-detection-through-random-nonlinear-data-distortion
    Explore at:
    Dataset updated
    Apr 10, 2025
    Dataset provided by
    Dashlink
    Description

    Consider a scenario in which the data owner has some private/sensitive data and wants a data miner to access it for studying important patterns without revealing the sensitive information. Privacy preserving data mining aims to solve this problem by randomly transforming the data prior to its release to data miners. Previous work only considered the case of linear data perturbations — additive, multiplicative or a combination of both for studying the usefulness of the perturbed output. In this paper, we discuss nonlinear data distortion using potentially nonlinear random data transformation and show how it can be useful for privacy preserving anomaly detection from sensitive datasets. We develop bounds on the expected accuracy of the nonlinear distortion and also quantify privacy by using standard definitions. The highlight of this approach is to allow a user to control the amount of privacy by varying the degree of nonlinearity. We show how our general transformation can be used for anomaly detection in practice for two specific problem instances: a linear model and a popular nonlinear model using the sigmoid function. We also analyze the proposed nonlinear transformation in full generality and then show that for specific cases it is distance preserving. A main contribution of this paper is the discussion between the invertibility of a transformation and privacy preservation and the application of these techniques to outlier detection. Experiments conducted on real-life datasets demonstrate the effectiveness of the approach.

  9. f

    Data from: Multivariate Functional Data Visualization and Outlier Detection

    • datasetcatalog.nlm.nih.gov
    Updated May 22, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Genton, Marc G.; Dai, Wenlin (2018). Multivariate Functional Data Visualization and Outlier Detection [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0000679969
    Explore at:
    Dataset updated
    May 22, 2018
    Authors
    Genton, Marc G.; Dai, Wenlin
    Description

    This article proposes a new graphical tool, the magnitude-shape (MS) plot, for visualizing both the magnitude and shape outlyingness of multivariate functional data. The proposed tool builds on the recent notion of functional directional outlyingness, which measures the centrality of functional data by simultaneously considering the level and the direction of their deviation from the central region. The MS-plot intuitively presents not only levels but also directions of magnitude outlyingness on the horizontal axis or plane, and demonstrates shape outlyingness on the vertical axis. A dividing curve or surface is provided to separate nonoutlying data from the outliers. Both the simulated data and the practical examples confirm that the MS-plot is superior to existing tools for visualizing centrality and detecting outliers for functional data. Supplementary material for this article is available online.

  10. Outlier Datasets - original

    • kaggle.com
    zip
    Updated Feb 5, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hai Vo (2021). Outlier Datasets - original [Dataset]. https://www.kaggle.com/hariwh0/outlier-detection-datasets
    Explore at:
    zip(1534928268 bytes)Available download formats
    Dataset updated
    Feb 5, 2021
    Authors
    Hai Vo
    License

    http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/

    Description

    Dataset

    This dataset was created by Hai Vo

    Released under Database: Open Database, Contents: Database Contents

    Contents

  11. R

    Vision Based Building Energy Data Outlier Detection Dataset

    • universe.roboflow.com
    zip
    Updated Apr 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    energy data outlier detection (2024). Vision Based Building Energy Data Outlier Detection Dataset [Dataset]. https://universe.roboflow.com/energy-data-outlier-detection/vision-based-building-energy-data-outlier-detection/model/5
    Explore at:
    zipAvailable download formats
    Dataset updated
    Apr 3, 2024
    Dataset authored and provided by
    energy data outlier detection
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    11785 Bounding Boxes
    Description

    Vision Based Building Energy Data Outlier Detection

    ## Overview
    
    Vision Based Building Energy Data Outlier Detection is a dataset for object detection tasks - it contains 11785 annotations for 2,159 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
    
  12. z

    Controlled Anomalies Time Series (CATS) Dataset

    • zenodo.org
    bin
    Updated Jul 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Patrick Fleith; Patrick Fleith (2024). Controlled Anomalies Time Series (CATS) Dataset [Dataset]. http://doi.org/10.5281/zenodo.7646897
    Explore at:
    binAvailable download formats
    Dataset updated
    Jul 12, 2024
    Dataset provided by
    Solenix Engineering GmbH
    Authors
    Patrick Fleith; Patrick Fleith
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The Controlled Anomalies Time Series (CATS) Dataset consists of commands, external stimuli, and telemetry readings of a simulated complex dynamical system with 200 injected anomalies.

    The CATS Dataset exhibits a set of desirable properties that make it very suitable for benchmarking Anomaly Detection Algorithms in Multivariate Time Series [1]:

    • Multivariate (17 variables) including sensors reading and control signals. It simulates the operational behaviour of an arbitrary complex system including:
      • 4 Deliberate Actuations / Control Commands sent by a simulated operator / controller, for instance, commands of an operator to turn ON/OFF some equipment.
      • 3 Environmental Stimuli / External Forces acting on the system and affecting its behaviour, for instance, the wind affecting the orientation of a large ground antenna.
      • 10 Telemetry Readings representing the observable states of the complex system by means of sensors, for instance, a position, a temperature, a pressure, a voltage, current, humidity, velocity, acceleration, etc.
    • 5 million timestamps. Sensors readings are at 1Hz sampling frequency.
      • 1 million nominal observations (the first 1 million datapoints). This is suitable to start learning the "normal" behaviour.
      • 4 million observations that include both nominal and anomalous segments. This is suitable to evaluate both semi-supervised approaches (novelty detection) as well as unsupervised approaches (outlier detection).
    • 200 anomalous segments. One anomalous segment may contain several successive anomalous observations / timestamps. Only the last 4 million observations contain anomalous segments.
    • Different types of anomalies to understand what anomaly types can be detected by different approaches.
    • Fine control over ground truth. As this is a simulated system with deliberate anomaly injection, the start and end time of the anomalous behaviour is known very precisely. In contrast to real world datasets, there is no risk that the ground truth contains mislabelled segments which is often the case for real data.
    • Obvious anomalies. The simulated anomalies have been designed to be "easy" to be detected for human eyes (i.e., there are very large spikes or oscillations), hence also detectable for most algorithms. It makes this synthetic dataset useful for screening tasks (i.e., to eliminate algorithms that are not capable to detect those obvious anomalies). However, during our initial experiments, the dataset turned out to be challenging enough even for state-of-the-art anomaly detection approaches, making it suitable also for regular benchmark studies.
    • Context provided. Some variables can only be considered anomalous in relation to other behaviours. A typical example consists of a light and switch pair. The light being either on or off is nominal, the same goes for the switch, but having the switch on and the light off shall be considered anomalous. In the CATS dataset, users can choose (or not) to use the available context, and external stimuli, to test the usefulness of the context for detecting anomalies in this simulation.
    • Pure signal ideal for robustness-to-noise analysis. The simulated signals are provided without noise: while this may seem unrealistic at first, it is an advantage since users of the dataset can decide to add on top of the provided series any type of noise and choose an amplitude. This makes it well suited to test how sensitive and robust detection algorithms are against various levels of noise.
    • No missing data. You can drop whatever data you want to assess the impact of missing values on your detector with respect to a clean baseline.

    [1] Example Benchmark of Anomaly Detection in Time Series: ā€œSebastian Schmidl, Phillip Wenig, and Thorsten Papenbrock. Anomaly Detection in Time Series: A Comprehensive Evaluation. PVLDB, 15(9): 1779 - 1797, 2022. doi:10.14778/3538598.3538602ā€

    About Solenix

    Solenix is an international company providing software engineering, consulting services and software products for the space market. Solenix is a dynamic company that brings innovative technologies and concepts to the aerospace market, keeping up to date with technical advancements and actively promoting spin-in and spin-out technology activities. We combine modern solutions which complement conventional practices. We aspire to achieve maximum customer satisfaction by fostering collaboration, constructivism, and flexibility.

  13. Outlier Detection and Prevention

    • kaggle.com
    Updated Jul 9, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Omsingh Bais (2021). Outlier Detection and Prevention [Dataset]. https://www.kaggle.com/datasets/ombais/outlier-detection-and-prevention
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 9, 2021
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Omsingh Bais
    Description

    Dataset

    This dataset was created by Omsingh Bais

    Contents

  14. t

    Outlier Detection on Sensor Data - Dataset - LDM

    • service.tib.eu
    Updated Dec 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Outlier Detection on Sensor Data - Dataset - LDM [Dataset]. https://service.tib.eu/ldmservice/dataset/outlier-detection-on-sensor-data
    Explore at:
    Dataset updated
    Dec 2, 2024
    Description

    The dataset used for outlier detection on sensor data from temperature and humidity sensors deployed in sensorized farms and manufacturing units on Purdue University's campus.

  15. Multi-Domain Outlier Detection Dataset

    • zenodo.org
    • data.niaid.nih.gov
    zip
    Updated Mar 31, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hannah Kerner; Hannah Kerner; Umaa Rebbapragada; Umaa Rebbapragada; Kiri Wagstaff; Kiri Wagstaff; Steven Lu; Bryce Dubayah; Eric Huff; Raymond Francis; Jake Lee; Vinay Raman; Sakshum Kulshrestha; Steven Lu; Bryce Dubayah; Eric Huff; Raymond Francis; Jake Lee; Vinay Raman; Sakshum Kulshrestha (2022). Multi-Domain Outlier Detection Dataset [Dataset]. http://doi.org/10.5281/zenodo.6400786
    Explore at:
    zipAvailable download formats
    Dataset updated
    Mar 31, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Hannah Kerner; Hannah Kerner; Umaa Rebbapragada; Umaa Rebbapragada; Kiri Wagstaff; Kiri Wagstaff; Steven Lu; Bryce Dubayah; Eric Huff; Raymond Francis; Jake Lee; Vinay Raman; Sakshum Kulshrestha; Steven Lu; Bryce Dubayah; Eric Huff; Raymond Francis; Jake Lee; Vinay Raman; Sakshum Kulshrestha
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The Multi-Domain Outlier Detection Dataset contains datasets for conducting outlier detection experiments for four different application domains:

    1. Astrophysics - detecting anomalous observations in the Dark Energy Survey (DES) catalog (data type: feature vectors)
    2. Planetary science - selecting novel geologic targets for follow-up observation onboard the Mars Science Laboratory (MSL) rover (data type: grayscale images)
    3. Earth science: detecting anomalous samples in satellite time series corresponding to ground-truth observations of maize crops (data type: time series/feature vectors)
    4. Fashion-MNIST/MNIST: benchmark task to detect anomalous MNIST images among Fashion-MNIST images (data type: grayscale images)

    Each dataset contains a "fit" dataset (used for fitting or training outlier detection models), a "score" dataset (used for scoring samples used to evaluate model performance, analogous to test set), and a label dataset (indicates whether samples in the score dataset are considered outliers or not in the domain of each dataset).

    To read more about the datasets and how they are used for outlier detection, or to cite this dataset in your own work, please see the following citation:

    Kerner, H. R., Rebbapragada, U., Wagstaff, K. L., Lu, S., Dubayah, B., Huff, E., Lee, J., Raman, V., and Kulshrestha, S. (2022). Domain-agnostic Outlier Ranking Algorithms (DORA)-A Configurable Pipeline for Facilitating Outlier Detection in Scientific Datasets. Under review for Frontiers in Astronomy and Space Sciences.

  16. i

    Fifth Generation Wireless Channels Outlier Detection and Clustering

    • ieee-dataport.org
    Updated May 27, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jojo Blanza (2024). Fifth Generation Wireless Channels Outlier Detection and Clustering [Dataset]. https://ieee-dataport.org/documents/fifth-generation-wireless-channels-outlier-detection-and-clustering
    Explore at:
    Dataset updated
    May 27, 2024
    Authors
    Jojo Blanza
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    lower latency

  17. d

    Data from: Distributed Anomaly Detection using 1-class SVM for Vertically...

    • catalog.data.gov
    • s.cnmilf.com
    • +1more
    Updated Apr 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dashlink (2025). Distributed Anomaly Detection using 1-class SVM for Vertically Partitioned Data [Dataset]. https://catalog.data.gov/dataset/distributed-anomaly-detection-using-1-class-svm-for-vertically-partitioned-data
    Explore at:
    Dataset updated
    Apr 11, 2025
    Dataset provided by
    Dashlink
    Description

    There has been a tremendous increase in the volume of sensor data collected over the last decade for different monitoring tasks. For example, petabytes of earth science data are collected from modern satellites, in-situ sensors and different climate models. Similarly, huge amount of flight operational data is downloaded for different commercial airlines. These different types of datasets need to be analyzed for finding outliers. Information extraction from such rich data sources using advanced data mining methodologies is a challenging task not only due to the massive volume of data, but also because these datasets are physically stored at different geographical locations with only a subset of features available at any location. Moving these petabytes of data to a single location may waste a lot of bandwidth. To solve this problem, in this paper, we present a novel algorithm which can identify outliers in the entire data without moving all the data to a single location. The method we propose only centralizes a very small sample from the different data subsets at different locations. We analytically prove and experimentally verify that the algorithm offers high accuracy compared to complete centralization with only a fraction of the communication cost. We show that our algorithm is highly relevant to both earth sciences and aeronautics by describing applications in these domains. The performance of the algorithm is demonstrated on two large publicly available datasets: (1) the NASA MODIS satellite images and (2) a simulated aviation dataset generated by the ā€˜Commercial Modular Aero-Propulsion System Simulation’ (CMAPSS).

  18. e

    Analysis of the Neighborhood Parameter on Outlier Detection Algorithms -...

    • b2find.eudat.eu
    Updated Nov 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Analysis of the Neighborhood Parameter on Outlier Detection Algorithms - Evaluation Tests - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/97061c16-018f-5d82-9125-2217026d9480
    Explore at:
    Dataset updated
    Nov 21, 2024
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of the Neighborhood Parameter on Outlier Detection Algorithms - Evaluation Tests conducted for the paper: Impact of the Neighborhood Parameter on Outlier Detection Algorithms by F. Iglesias, C. MartĆ­nez, T. Zseby Context and methodology A significant number of anomaly detection algorithms base their distance and density estimates on neighborhood parameters (usually referred to as k). The experiments in this repository analyze how five different SoTA algorithms (kNN, LOF, LooP, ABOD and SDO) are affected by variations in k in combination with different alterations that the data may undergo in relation to: cardinality, dimensionality, global outlier ratio, local outlier ratio, layers of density, inliers-outliers density ratio, and zonification. Evaluations are conducted with accuracy measurements (ROC-AUC, adjusted Average Precision, and Precision at n) and runtimes. This repository is framed within the research on the following domains: algorithm evaluation, outlier detection, anomaly detection, unsupervised learning, machine learning, data mining, data analysis. Datasets and algorithms can be used for experiment replication and for further evaluation and comparison. Technical details Experiments are in Python 3 (tested with v3.9.6). Provided scripts generate all data and results. We keep them in the repo for the sake of comparability and replicability. The file and folder structure is as follows: results_datasets_scores.zip contains all results and plots as shown in the paper, also the generated datasets and files with anomaly dependencies.sh for installing required Python packages in a clean environment. generate_data.py creates experimental datasets. outdet.py runs outlier detection with ABOD, kNN, LOF, LoOP and SDO over the collection of datasets. indices.py contains functions implementing accuracy indices. explore_results.py parses results obtained with outlier detection algorithms to create comparison plots and a table with optimal ks. test_kfc.py rusn KFC tests for finding the optimal k in a collection of datasets. It requires kfc.py, which is not included in this repo and must be downloaded from https://github.com/TimeIsAFriend/KFC. kfc.py implements the KFCS and KFCR methods for finding the optimal k as presented in: [1] explore_kfc.py parses results obtained with KFCS and KFCR methods to create latex tables. README.md provides explanations and step by step instructions for replication. References [1] Jiawei Yang, Xu Tan, Sylwan Rahardja, Outlier detection: How to Select k for k-nearest-neighbors-based outlier detectors, Pattern Recognition Letters, Volume 174, 2023, Pages 112-117, ISSN 0167-8655, https://doi.org/10.1016/j.patrec.2023.08.020. License The CC-BY license applies to all data generated with the "generate_data.py" script. All distributed code is under the GNU GPL license.

  19. f

    Outlier Set Two-step Method (OSTI)

    • figshare.com
    application/x-rar
    Updated Jul 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Amal Sarfraz (2025). Outlier Set Two-step Method (OSTI) [Dataset]. http://doi.org/10.15131/shef.data.28227974.v1
    Explore at:
    application/x-rarAvailable download formats
    Dataset updated
    Jul 1, 2025
    Dataset provided by
    The University of Sheffield
    Authors
    Amal Sarfraz
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    These files are supplements to the paper titled 'A Robust Two-step Method for Detection of Outlier Sets'.

  20. outlier detection

    • kaggle.com
    Updated Aug 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ali Mortezaie (2025). outlier detection [Dataset]. https://www.kaggle.com/datasets/alimortezaie/outlier-detection
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 7, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Ali Mortezaie
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Dataset

    This dataset was created by Ali Mortezaie

    Released under Apache 2.0

    Contents

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Sevvandi Kandanaarachchi; Mario Munoz Acosta; Kate Smith-Miles; Rob Hyndman (2019). Datasets for outlier detection [Dataset]. http://doi.org/10.26180/5c6253c0b3323

Data from: Datasets for outlier detection

Related Article
Explore at:
Dataset updated
Mar 27, 2019
Dataset provided by
Monash University
Authors
Sevvandi Kandanaarachchi; Mario Munoz Acosta; Kate Smith-Miles; Rob Hyndman
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

The zip files contains 12338 datasets for outlier detection investigated in the following papers:


(1) Instance space analysis for unsupervised outlier detection
Authors : Sevvandi Kandanaarachchi, Mario A. Munoz, Kate Smith-Miles

(2) On normalization and algorithm selection for unsupervised outlier detection
Authors : Sevvandi Kandanaarachchi, Mario A. Munoz, Rob J. Hyndman, Kate Smith-Miles

Some of these datasets were originally discussed in the paper:

On the evaluation of unsupervised outlier detection:measures, datasets and an empirical study
Authors : G. O. Campos, A, Zimek, J. Sander, R. J.G.B. Campello, B. Micenkova, E. Schubert, I. Assent, M.E. Houle.




Search
Clear search
Close search
Google apps
Main menu