Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Identification of errors or anomalous values, collectively considered outliers, assists in exploring data or through removing outliers improves statistical analysis. In biomechanics, outlier detection methods have explored the ‘shape’ of the entire cycles, although exploring fewer points using a ‘moving-window’ may be advantageous. Hence, the aim was to develop a moving-window method for detecting trials with outliers in intra-participant time-series data. Outliers were detected through two stages for the strides (mean 38 cycles) from treadmill running. Cycles were removed in stage 1 for one-dimensional (spatial) outliers at each time point using the median absolute deviation, and in stage 2 for two-dimensional (spatial–temporal) outliers using a moving window standard deviation. Significance levels of the t-statistic were used for scaling. Fewer cycles were removed with smaller scaling and smaller window size, requiring more stringent scaling at stage 1 (mean 3.5 cycles removed for 0.0001 scaling) than at stage 2 (mean 2.6 cycles removed for 0.01 scaling with a window size of 1). Settings in the supplied Matlab code should be customised to each data set, and outliers assessed to justify whether to retain or remove those cycles. The method is effective in identifying trials with outliers in intra-participant time series data.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
These files are supplements to the paper titled 'A Robust Two-step Method for Detection of Outlier Sets'.This paper identifies and addresses the need for a robust method that identifies sets of points that collectively deviate from typical patterns in a dataset, which it calls "outlier sets'', while excluding individual points from detection. This new methodology, Outlier Set Two-step Identification (OSTI) employs a two-step approach to detect and label these outlier sets. First, it uses Gaussian Mixture Models for probabilistic clustering, identifying candidate outlier sets based on cluster weights below a predetermined threshold. Second, OSTI measures the Inter-cluster Mahalanobis distance between each candidate outlier set's centroid and the overall dataset mean. OSTI then tests the null hypothesis that this distance does not significantly differ from its theoretical chi-square distribution, enabling the formal detection of outlier sets. We test OSTI systematically on 8,000 synthetic 2D datasets across various inlier configurations and thousands of possible outlier set characteristics. Results show OSTI robustly and consistently detects outlier sets with an average F1 score of 0.92 and an average purity (the degree to which outlier sets identified correspond to those generated synthetically, i.e., our ground truth) of 98.58%. We also compare OSTI with state-of-the-art outlier detection methods, to illuminate how OSTI fills a gap as a tool for the exclusive detection of outlier sets.
http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
This dataset was created by Hai Vo
Released under Database: Open Database, Contents: Database Contents
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset was created by Ali Mortezaie
Released under Apache 2.0
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Vision Based Building Energy Data Outlier Detection is a dataset for object detection tasks - it contains 11785 annotations for 2,159 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Additional file 2.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Kriging with interpolation is widely used in various noise-free areas, such as computer experiments. However, owing to its Gaussian assumption, it is susceptible to outliers, which affects statistical inference, and the resulting conclusions could be misleading. Little work has explored outlier detection for kriging. Therefore, we propose a novel kriging method for simultaneous outlier detection and prediction by introducing a normal-gamma prior, which results in an unbounded penalty on the biases to distinguish outliers from normal data points. We develop a simple and efficient method, avoiding the expensive computation of the Markov chain Monte Carlo algorithm, to simultaneously detect outliers and make a prediction. We establish the true identification property for outlier detection and the consistency of the estimated hyperparameters in kriging under the increasing domain framework as if the number and locations of the outliers were known in advance. Under appropriate regularity conditions, we demonstrate information consistency for prediction in the presence of outliers. Numerical studies and real data examples show that the proposed method generally provides robust analyses in the presence of outliers. Supplementary materials for this article are available online.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Multi-Domain Outlier Detection Dataset contains datasets for conducting outlier detection experiments for four different application domains:
Each dataset contains a "fit" dataset (used for fitting or training outlier detection models), a "score" dataset (used for scoring samples used to evaluate model performance, analogous to test set), and a label dataset (indicates whether samples in the score dataset are considered outliers or not in the domain of each dataset).
To read more about the datasets and how they are used for outlier detection, or to cite this dataset in your own work, please see the following citation:
Kerner, H. R., Rebbapragada, U., Wagstaff, K. L., Lu, S., Dubayah, B., Huff, E., Lee, J., Raman, V., and Kulshrestha, S. (2022). Domain-agnostic Outlier Ranking Algorithms (DORA)-A Configurable Pipeline for Facilitating Outlier Detection in Scientific Datasets. Under review for Frontiers in Astronomy and Space Sciences.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Identifying and dealing with outliers is an important part of data analysis. A new visualization, the O3 plot, is introduced to aid in the display and understanding of patterns of multivariate outliers. It uses the results of identifying outliers for every possible combination of dataset variables to provide insight into why particular cases are outliers. The O3 plot can be used to compare the results from up to six different outlier identification methods. There is anRpackage OutliersO3 implementing the plot. The article is illustrated with outlier analyses of German demographic and economic data. Supplementary materials for this article are available online.
This dataset was created by Omsingh Bais
According to our latest research, the global AI Histology QC Outlier Detection Tool market size reached USD 412 million in 2024, with a robust compound annual growth rate (CAGR) of 18.7% observed over the past year. The market’s expansion is primarily driven by the increasing adoption of artificial intelligence in digital pathology and the rising demand for high-precision quality control in histological workflows. By 2033, the market is forecasted to reach USD 1.97 billion, reflecting the accelerating integration of AI-powered QC outlier detection tools across clinical and research environments worldwide.
The surge in demand for AI Histology QC Outlier Detection Tools is primarily attributed to the pressing need for accuracy and consistency in histopathological diagnostics. Traditional quality control processes in histology are labor-intensive and prone to human error, which can result in diagnostic discrepancies and impact patient outcomes. The deployment of advanced AI-driven QC outlier detection tools addresses these challenges by automating the identification of anomalies and artifacts in histological slides, ensuring standardized results and significantly reducing turnaround times. Moreover, the integration of machine learning algorithms enables these systems to continuously improve their detection capabilities, further enhancing diagnostic reliability and supporting the growing trend towards digitization in pathology laboratories.
Another significant growth driver for the AI Histology QC Outlier Detection Tool market is the increasing prevalence of cancer and other chronic diseases that require histopathological examination for diagnosis and treatment planning. The rising global cancer burden, coupled with the shortage of skilled pathologists, is pushing healthcare providers to adopt AI-powered solutions that can streamline workflow efficiency and mitigate diagnostic bottlenecks. These tools not only facilitate faster and more accurate detection of outliers in tissue samples but also support pathologists in prioritizing cases that require immediate attention. As a result, healthcare institutions are investing heavily in AI-based QC solutions to optimize resource utilization, improve patient care, and comply with stringent regulatory standards for laboratory quality assurance.
Technological advancements and strategic collaborations between AI developers, pathology labs, and healthcare providers are further accelerating market growth. The ongoing development of sophisticated image analysis algorithms, cloud-based platforms, and interoperability standards is enabling seamless integration of AI QC tools into existing laboratory information systems. Additionally, government initiatives aimed at promoting digital health transformation and funding for AI research in medical diagnostics are creating a favorable environment for market expansion. The proliferation of digital pathology infrastructure, particularly in developed regions, is expected to drive the adoption of AI QC outlier detection tools, while emerging markets are witnessing growing interest as healthcare systems modernize and invest in advanced diagnostic technologies.
From a regional perspective, North America currently dominates the AI Histology QC Outlier Detection Tool market, accounting for a significant share of global revenues in 2024. The region’s leadership is underpinned by a well-established healthcare infrastructure, high adoption rates of digital pathology, and strong presence of leading AI technology providers. Europe follows closely, supported by robust investments in healthcare innovation and a proactive regulatory landscape. Meanwhile, the Asia Pacific region is poised for the fastest growth over the forecast period, driven by increasing healthcare expenditure, expanding cancer screening programs, and rising awareness of the benefits of AI-powered diagnostic solutions. Latin America and the Middle East & Africa are also expected to witness steady growth as digital transformation initiatives gain momentum in these regions.
In this work we apply and expand on a recently introduced outlier detection algorithm that is based on an unsupervised random forest. We use the algorithm to calculate a similarity measure for stellar spectra from the Apache Point Observatory Galactic Evolution Experiment (APOGEE). We show that the similarity measure traces non-trivial physical properties and contains information about complex structures in the data. We use it for visualization and clustering of the dataset, and discuss its ability to find groups of highly similar objects, including spectroscopic twins. Using the similarity matrix to search the dataset for objects allows us to find objects that are impossible to find using their best fitting model parameters. This includes extreme objects for which the models fail, and rare objects that are outside the scope of the model. We use the similarity measure to detect outliers in the dataset, and find a number of previously unknown Be-type stars, spectroscopic binaries, carbon rich stars, young stars, and a few that we cannot interpret. Our work further demonstrates the potential for scientific discovery when combining machine learning methods with modern survey data. Cone search capability for table J/MNRAS/476/2117/apogeenn (Nearest neighbors APOGEE IDs)
This dataset was created by imadkhan9691
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Additional file 1. Lists of GISAID IDs for the two reference datasets (simulating the time before the emergence of a new variant and the onset of a new variant) for each variant under consideration in the article (alpha, beta, delta, gamma, GH, lambda, mu, omicron).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
These data sets were originally created for the following publications:
M. E. Houle, H.-P. Kriegel, P. Kröger, E. Schubert, A. Zimek Can Shared-Neighbor Distances Defeat the Curse of Dimensionality? In Proceedings of the 22nd International Conference on Scientific and Statistical Database Management (SSDBM), Heidelberg, Germany, 2010.
H.-P. Kriegel, E. Schubert, A. Zimek Evaluation of Multiple Clustering Solutions In 2nd MultiClust Workshop: Discovering, Summarizing and Using Multiple Clusterings Held in Conjunction with ECML PKDD 2011, Athens, Greece, 2011.
The outlier data set versions were introduced in:
E. Schubert, R. Wojdanowski, A. Zimek, H.-P. Kriegel On Evaluation of Outlier Rankings and Outlier Scores In Proceedings of the 12th SIAM International Conference on Data Mining (SDM), Anaheim, CA, 2012.
They are derived from the original image data available at https://aloi.science.uva.nl/
The image acquisition process is documented in the original ALOI work: J. M. Geusebroek, G. J. Burghouts, and A. W. M. Smeulders, The Amsterdam library of object images, Int. J. Comput. Vision, 61(1), 103-112, January, 2005
Additional information is available at: https://elki-project.github.io/datasets/multi_view
The following views are currently available:
Feature type
Description
Files
Object number
Sparse 1000 dimensional vectors that give the true object assignment
objs.arff.gz
RGB color histograms
Standard RGB color histograms (uniform binning)
aloi-8d.csv.gz aloi-27d.csv.gz aloi-64d.csv.gz aloi-125d.csv.gz aloi-216d.csv.gz aloi-343d.csv.gz aloi-512d.csv.gz aloi-729d.csv.gz aloi-1000d.csv.gz
HSV color histograms
Standard HSV/HSB color histograms in various binnings
aloi-hsb-2x2x2.csv.gz aloi-hsb-3x3x3.csv.gz aloi-hsb-4x4x4.csv.gz aloi-hsb-5x5x5.csv.gz aloi-hsb-6x6x6.csv.gz aloi-hsb-7x7x7.csv.gz aloi-hsb-7x2x2.csv.gz aloi-hsb-7x3x3.csv.gz aloi-hsb-14x3x3.csv.gz aloi-hsb-8x4x4.csv.gz aloi-hsb-9x5x5.csv.gz aloi-hsb-13x4x4.csv.gz aloi-hsb-14x5x5.csv.gz aloi-hsb-10x6x6.csv.gz aloi-hsb-14x6x6.csv.gz
Color similiarity
Average similarity to 77 reference colors (not histograms) 18 colors x 2 sat x 2 bri + 5 grey values (incl. white, black)
aloi-colorsim77.arff.gz (feature subsets are meaningful here, as these features are computed independently of each other)
Haralick features
First 13 Haralick features (radius 1 pixel)
aloi-haralick-1.csv.gz
Front to back
Vectors representing front face vs. back faces of individual objects
front.arff.gz
Basic light
Vectors indicating basic light situations
light.arff.gz
Manual annotations
Manually annotated object groups of semantically related objects such as cups
manual1.arff.gz
Outlier Detection Versions
Additionally, we generated a number of subsets for outlier detection:
Feature type
Description
Files
RGB Histograms
Downsampled to 100000 objects (553 outliers)
aloi-27d-100000-max10-tot553.csv.gz aloi-64d-100000-max10-tot553.csv.gz
Downsampled to 75000 objects (717 outliers)
aloi-27d-75000-max4-tot717.csv.gz aloi-64d-75000-max4-tot717.csv.gz
Downsampled to 50000 objects (1508 outliers)
aloi-27d-50000-max5-tot1508.csv.gz aloi-64d-50000-max5-tot1508.csv.gz
Anomaly Detection Market Size 2025-2029
The anomaly detection market size is forecast to increase by USD 4.44 billion at a CAGR of 14.4% between 2024 and 2029.
The market is experiencing significant growth, particularly in the BFSI sector, as organizations increasingly prioritize identifying and addressing unusual patterns or deviations from normal business operations. The rising incidence of internal threats and cyber frauds necessitates the implementation of advanced anomaly detection tools to mitigate potential risks and maintain security. However, implementing these solutions comes with challenges, primarily infrastructural requirements. Ensuring compatibility with existing systems, integrating new technologies, and training staff to effectively utilize these tools pose significant hurdles for organizations.
Despite these challenges, the potential benefits of anomaly detection, such as improved risk management, enhanced operational efficiency, and increased security, make it an essential investment for businesses seeking to stay competitive and agile in today's complex and evolving threat landscape. Companies looking to capitalize on this market opportunity must carefully consider these challenges and develop strategies to address them effectively. Cloud computing is a key trend in the market, as cloud-based solutions offer quick deployment, flexibility, and scalability.
What will be the Size of the Anomaly Detection Market during the forecast period?
Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
Request Free Sample
In the dynamic and evolving market, advanced technologies such as resource allocation, linear regression, pattern recognition, and support vector machines are increasingly being adopted for automated decision making. Businesses are leveraging these techniques to enhance customer experience through behavioral analytics, object detection, and sentiment analysis. Machine learning algorithms, including random forests, naive Bayes, decision trees, clustering algorithms, and k-nearest neighbors, are essential tools for risk management and compliance monitoring. AI-powered analytics, time series forecasting, and predictive modeling are revolutionizing business intelligence, while process optimization is achieved through the application of decision support systems, natural language processing, and predictive analytics.
Computer vision, image recognition, logistic regression, and operational efficiency are key areas where principal component analysis and artificial technoogyneural networks contribute significantly. Speech recognition and operational efficiency are also benefiting from these advanced technologies, enabling businesses to streamline processes and improve overall performance.
How is this Anomaly Detection Industry segmented?
The anomaly detection industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Deployment
Cloud
On-premises
Component
Solution
Services
End-user
BFSI
IT and telecom
Retail and e-commerce
Manufacturing
Others
Technology
Big data analytics
AI and ML
Data mining and business intelligence
Geography
North America
US
Canada
Mexico
Europe
France
Germany
Spain
UK
APAC
China
India
Japan
Rest of World (ROW)
By Deployment Insights
The cloud segment is estimated to witness significant growth during the forecast period. The market is witnessing significant growth due to the increasing adoption of advanced technologies such as machine learning models, statistical methods, and real-time monitoring. These technologies enable the identification of anomalous behavior in real-time, thereby enhancing network security and data privacy. Anomaly detection algorithms, including unsupervised learning, reinforcement learning, and deep learning networks, are used to identify outliers and intrusions in large datasets. Data security is a major concern, leading to the adoption of data masking, data pseudonymization, data de-identification, and differential privacy.
Data leakage prevention and incident response are critical components of an effective anomaly detection system. False positive and false negative rates are essential metrics to evaluate the performance of these systems. Time series analysis and concept drift are important techniques used in anomaly detection. Data obfuscation, data suppression, and data aggregation are other strategies employed to maintain data privacy. Companies such as Anodot, Cisco Systems Inc, IBM Corp, and SAS Institute Inc offer both cloud-based and on-premises anomaly detection solutions. These soluti
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundMeta-analysis of gene expression microarray datasets presents significant challenges for statistical analysis. We developed and validated a new bioinformatic method for the identification of genes upregulated in subsets of samples of a given tumour type (‘outlier genes’), a hallmark of potential oncogenes. MethodologyA new statistical method (the gene tissue index, GTI) was developed by modifying and adapting algorithms originally developed for statistical problems in economics. We compared the potential of the GTI to detect outlier genes in meta-datasets with four previously defined statistical methods, COPA, the OS statistic, the t-test and ORT, using simulated data. We demonstrated that the GTI performed equally well to existing methods in a single study simulation. Next, we evaluated the performance of the GTI in the analysis of combined Affymetrix gene expression data from several published studies covering 392 normal samples of tissue from the central nervous system, 74 astrocytomas, and 353 glioblastomas. According to the results, the GTI was better able than most of the previous methods to identify known oncogenic outlier genes. In addition, the GTI identified 29 novel outlier genes in glioblastomas, including TYMS and CDKN2A. The over-expression of these genes was validated in vivo by immunohistochemical staining data from clinical glioblastoma samples. Immunohistochemical data were available for 65% (19 of 29) of these genes, and 17 of these 19 genes (90%) showed a typical outlier staining pattern. Furthermore, raltitrexed, a specific inhibitor of TYMS used in the therapy of tumour types other than glioblastoma, also effectively blocked cell proliferation in glioblastoma cell lines, thus highlighting this outlier gene candidate as a potential therapeutic target. Conclusions/SignificanceTaken together, these results support the GTI as a novel approach to identify potential oncogene outliers and drug targets. The algorithm is implemented in an R package (Text S1).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
We combined each outlier detection method with each estimation approach such that there were nine different appoaches for robust GFR estimation in new application data.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This contains the code and data necessary to rerun the power analysis used in testing BOREALIS.
Borealis is an R library performing outlier analysis for count-based bisulfite sequencing data. It detects outlier methylated CpG sites from bisulfite sequencing (BS-seq). The core of Borealis is modeling Beta-Binomial distributions. This can be useful for rare disease diagnoses.
This dataset was created by fehu.zone
Released under Other (specified in description)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Identification of errors or anomalous values, collectively considered outliers, assists in exploring data or through removing outliers improves statistical analysis. In biomechanics, outlier detection methods have explored the ‘shape’ of the entire cycles, although exploring fewer points using a ‘moving-window’ may be advantageous. Hence, the aim was to develop a moving-window method for detecting trials with outliers in intra-participant time-series data. Outliers were detected through two stages for the strides (mean 38 cycles) from treadmill running. Cycles were removed in stage 1 for one-dimensional (spatial) outliers at each time point using the median absolute deviation, and in stage 2 for two-dimensional (spatial–temporal) outliers using a moving window standard deviation. Significance levels of the t-statistic were used for scaling. Fewer cycles were removed with smaller scaling and smaller window size, requiring more stringent scaling at stage 1 (mean 3.5 cycles removed for 0.0001 scaling) than at stage 2 (mean 2.6 cycles removed for 0.01 scaling with a window size of 1). Settings in the supplied Matlab code should be customised to each data set, and outliers assessed to justify whether to retain or remove those cycles. The method is effective in identifying trials with outliers in intra-participant time series data.