Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Identification of errors or anomalous values, collectively considered outliers, assists in exploring data or through removing outliers improves statistical analysis. In biomechanics, outlier detection methods have explored the ‘shape’ of the entire cycles, although exploring fewer points using a ‘moving-window’ may be advantageous. Hence, the aim was to develop a moving-window method for detecting trials with outliers in intra-participant time-series data. Outliers were detected through two stages for the strides (mean 38 cycles) from treadmill running. Cycles were removed in stage 1 for one-dimensional (spatial) outliers at each time point using the median absolute deviation, and in stage 2 for two-dimensional (spatial–temporal) outliers using a moving window standard deviation. Significance levels of the t-statistic were used for scaling. Fewer cycles were removed with smaller scaling and smaller window size, requiring more stringent scaling at stage 1 (mean 3.5 cycles removed for 0.0001 scaling) than at stage 2 (mean 2.6 cycles removed for 0.01 scaling with a window size of 1). Settings in the supplied Matlab code should be customised to each data set, and outliers assessed to justify whether to retain or remove those cycles. The method is effective in identifying trials with outliers in intra-participant time series data.
State politics researchers commonly employ ordinary least squares (OLS) regression or one of its variants to test linear hypotheses. However, OLS is easily influenced by outliers and thus can produce misleading results when the error term distribution has heavy tails. Here we demonstrate that median regression (MR), an alternative to OLS that conditions the median of the dependent variable (rather than the mean) on the independent variables, can be a solution to this problem. Then we propose and validate a hypothesis test that applied researchers can use to select between OLS and MR in a given sample of data. Finally, we present two examples from state politics research in which (1) the test selects MR over OLS and (2) differences in results between the two methods could lead to different substantive inferences. We conclude that MR and the test we propose can improve linear models in state politics research.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This section presents a discussion of the research data. The data was received as secondary data however, it was originally collected using the time study techniques. Data validation is a crucial step in the data analysis process to ensure that the data is accurate, complete, and reliable. Descriptive statistics was used to validate the data. The mean, mode, standard deviation, variance and range determined provides a summary of the data distribution and assists in identifying outliers or unusual patterns. The data presented in the dataset show the measures of central tendency which includes the mean, median and the mode. The mean signifies the average value of each of the factors presented in the tables. This is the balance point of the dataset, the typical value and behaviour of the dataset. The median is the middle value of the dataset for each of the factors presented. This is the point where the dataset is divided into two parts, half of the values lie below this value and the other half lie above this value. This is important for skewed distributions. The mode shows the most common value in the dataset. It was used to describe the most typical observation. These values are important as they describe the central value around which the data is distributed. The mean, mode and median give an indication of a skewed distribution as they are not similar nor are they close to one another. In the dataset, the results and discussion of the results is also presented. This section focuses on the customisation of the DMAIC (Define, Measure, Analyse, Improve, Control) framework to address the specific concerns outlined in the problem statement. To gain a comprehensive understanding of the current process, value stream mapping was employed, which is further enhanced by measuring the factors that contribute to inefficiencies. These factors are then analysed and ranked based on their impact, utilising factor analysis. To mitigate the impact of the most influential factor on project inefficiencies, a solution is proposed using the EOQ (Economic Order Quantity) model. The implementation of the 'CiteOps' software facilitates improved scheduling, monitoring, and task delegation in the construction project through digitalisation. Furthermore, project progress and efficiency are monitored remotely and in real time. In summary, the DMAIC framework was tailored to suit the requirements of the specific project, incorporating techniques from inventory management, project management, and statistics to effectively minimise inefficiencies within the construction project.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The USDA-Agricultural Research Service Central Plains Experimental Range (CPER) is a Long-Term Agroecosystem Research (LTAR) network site located ~20 km northeast of Nunn, in north-central Colorado, USA. In 1939, scientists established the Long-term Grazing Intensity study (LTGI) with four replications of light, moderate, and heavy grazing. Each replication had three 129.5 ha pastures with the grazing intensity treatment randomly assigned. Today, one replication remains. Light grazing occurs in pasture 23W (9.3 Animal Unit Days (AUD)/ha, targeted for 20% utilization of peak growing-season biomass), moderate grazing in pasture 15E (12.5 AUD/ha, 40% utilization), and heavy grazing in pasture 23E (18.6 AUD/ha, 60% utilization). British- and continental-breed yearling cattle graze the pastures season-long from mid-May to October except when forage limitations shorten the grazing season. Individual raw data on cattle entry and exit weights, as well as weights every 28-days during the grazing season are available from 2000 to 2019. Cattle entry and exit weights are included in this dataset. Weight outliers (± 2 SD) are flagged for calculating summary statistics or performing statistical analysis. Resources in this dataset:Resource Title: Data Dictionary for LTGI Cattle weights on CPER (2000-2019). File Name: LTGI_2000-2019_data_dictionary.csvResource Description: Data dictionary for data from USDA ARS Central Plains Experimental Range (CPER) near Nunn, CO cattle weight gains managed with light, moderate and heavy grazing intensities Resource Title: LTGI Cattle weights on CPER (2000-2019). File Name: LTGI_2000-2019_all_weights_published.csvResource Description: Data from USDA ARS Central Plains Experimental Range (CPER) near Nunn, CO cattle weight gains managed with light, moderate and heavy grazing intensities
This dataset provides monthly summaries of evapotranspiration (ET) data from OpenET v2.0 image collections for the period 2008-2023 for all National Watershed Boundary Dataset subwatersheds (12-digit hydrologic unit codes [HUC12s]) in the US that overlap the spatial extent of OpenET datasets. For each HUC12, this dataset contains spatial aggregation statistics (minimum, mean, median, and maximum) for each of the ET variables from each of the publicly available image collections from OpenET for the six available models (DisALEXI, eeMETRIC, geeSEBAL, PT-JPL, SIMS, SSEBop) and the Ensemble image collection, which is a pixel-wise ensemble of all 6 individual models after filtering and removal of outliers according to the median absolute deviation approach (Melton and others, 2022). Data are available in this data release in two different formats: comma-separated values (CSV) and parquet, a high-performance format that is optimized for storage and processing of columnar data. CSV files containing data for each 4-digit HUC are grouped by 2-digit HUCs for easier access of regional data, and the single parquet file provides convenient access to the entire dataset. For each of the ET models (DisALEXI, eeMETRIC, geeSEBAL, PT-JPL, SIMS, SSEBop), variables in the model-specific CSV data files include: -huc12: The 12-digit hydrologic unit code -ET: Actual evapotranspiration (in millimeters) over the HUC12 area in the month calculated as the sum of daily ET interpolated between Landsat overpasses -statistic: Max, mean, median, or min. Statistic used in the spatial aggregation within each HUC12. For example, maximum ET is the maximum monthly pixel ET value occurring within the HUC12 boundary after summing daily ET in the month -year: 4-digit year -month: 2-digit month -count: Number of Landsat overpasses included in the ET calculation in the month -et_coverage_pct: Integer percentage of the HUC12 with ET data, which can be used to determine how representative the ET statistic is of the entire HUC12 -count_coverage_pct: Integer percentage of the HUC12 with count data, which can be different than the et_coverage_pct value because the “count” band in the source image collection extends beyond the “et” band in the eastern portion of the image collection extent For the Ensemble data, these additional variables are included in the CSV files: -et_mad: Ensemble ET value, computed as the mean of the ensemble after filtering outliers using the median absolute deviation (MAD) -et_mad_count: The number of models used to compute the ensemble ET value after filtering for outliers using the MAD -et_mad_max: The maximum value in the ensemble range, after filtering for outliers using the MAD -et_mad_min: The minimum value in the ensemble range, after filtering for outliers using the MAD -et_sam: A simple arithmetic mean (across the 6 models) of actual ET average without outlier removal Below are the locations of each OpenET image collection used in this summary: DisALEXI: https://developers.google.com/earth-engine/datasets/catalog/OpenET_DISALEXI_CONUS_GRIDMET_MONTHLY_v2_0 eeMETRIC: https://developers.google.com/earth-engine/datasets/catalog/OpenET_EEMETRIC_CONUS_GRIDMET_MONTHLY_v2_0 geeSEBAL: https://developers.google.com/earth-engine/datasets/catalog/OpenET_GEESEBAL_CONUS_GRIDMET_MONTHLY_v2_0 PT-JPL: https://developers.google.com/earth-engine/datasets/catalog/OpenET_PTJPL_CONUS_GRIDMET_MONTHLY_v2_0 SIMS: https://developers.google.com/earth-engine/datasets/catalog/OpenET_SIMS_CONUS_GRIDMET_MONTHLY_v2_0 SSEBop: https://developers.google.com/earth-engine/datasets/catalog/OpenET_SSEBOP_CONUS_GRIDMET_MONTHLY_v2_0 Ensemble: https://developers.google.com/earth-engine/datasets/catalog/OpenET_ENSEMBLE_CONUS_GRIDMET_MONTHLY_v2_0
Our target was to predict gender, age and emotion from audio. We found audio labeled datasets on Mozilla and RAVDESS. So by using R programming language 20 statistical features were extracted and then after adding the labels these datasets were formed. Audio files were collected from "Mozilla Common Voice" and “Ryerson AudioVisual Database of Emotional Speech and Song (RAVDESS)”.
Datasets contains 20 feature columns and 1 column for denoting the label. The 20 statistical features were extracted through the Frequency Spectrum Analysis using R programming Language. They are: 1) meanfreq - The mean frequency (in kHz) is a pitch measure, that assesses the center of the distribution of power across frequencies. 2) sd - The standard deviation of frequency is a statistical measure that describes a dataset’s dispersion relative to its mean and is calculated as the variance’s square root. 3) median - The median frequency (in kHz) is the middle number in the sorted, ascending, or descending list of numbers. 4) Q25 - The first quartile (in kHz), referred to as Q1, is the median of the lower half of the data set. This means that about 25 percent of the data set numbers are below Q1, and about 75 percent are above Q1. 5) Q75 - The third quartile (in kHz), referred to as Q3, is the central point between the median and the highest distributions. 6) IQR - The interquartile range (in kHz) is a measure of statistical dispersion, equal to the difference between 75th and 25th percentiles or between upper and lower quartiles. 7) skew - The skewness is the degree of distortion from the normal distribution. It measures the lack of symmetry in the data distribution. 8) kurt - The kurtosis is a statistical measure that determines how much the tails of distribution vary from the tails of a normal distribution. It is actually the measure of outliers present in the data distribution. 9) sp.ent - The spectral entropy is a measure of signal irregularity that sums up the normalized signal’s spectral power. 10) sfm - The spectral flatness or tonality coefficient, also known as Wiener entropy, is a measure used for digital signal processing to characterize an audio spectrum. Spectral flatness is usually measured in decibels, which, instead of being noise-like, offers a way to calculate how tone-like a sound is. 11) mode - The mode frequency is the most frequently observed value in a data set. 12) centroid - The spectral centroid is a metric used to describe a spectrum in digital signal processing. It means where the spectrum’s center of mass is centered. 13) meanfun - The meanfun is the average of the fundamental frequency measured across the acoustic signal. 14) minfun - The minfun is the minimum fundamental frequency measured across the acoustic signal 15) maxfun - The maxfun is the maximum fundamental frequency measured across the acoustic signal. 16) meandom - The meandom is the average of dominant frequency measured across the acoustic signal. 17) mindom - The mindom is the minimum of dominant frequency measured across the acoustic signal. 18) maxdom - The maxdom is the maximum of dominant frequency measured across the acoustic signal 19) dfrange - The dfrange is the range of dominant frequency measured across the acoustic signal. 20) modindx - the modindx is the modulation index, which calculates the degree of frequency modulation expressed numerically as the ratio of the frequency deviation to the frequency of the modulating signal for a pure tone modulation.
Gender and Age Audio Data Souce: Link: https://commonvoice.mozilla.org/en Emotion Audio Data Souce: Link : https://smartlaboratory.org/ravdess/
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The results represent experiments on four datasets based on 20 simulated experiments. The proposed method (NewAlgo) produces the best overall results.
The U.S. Geological Survey (USGS), in cooperation with the Missouri Department of Natural Resources (MDNR), collects data pertaining to the surface-water resources of Missouri. These data are collected as part of the Missouri Ambient Water-Quality Monitoring Network (AWQMN) and are stored and maintained by the USGS National Water Information System (NWIS) database. These data constitute a valuable source of reliable, impartial, and timely information for developing an improved understanding of the water resources of the State. Water-quality data collected between water years 1993 and 2017 were analyzed for long term trends and the network was investigated to identify data gaps or redundant data to assist MDNR on how to optimize the network in the future. This is a companion data release product to the Scientific Investigation Report: Richards, J.M., and Barr, M.N., 2021, General water-quality conditions, long-term trends, and network analysis at selected sites within the Ambient Water-Quality Monitoring Network in Missouri, water years 1993–2017: U.S. Geological Survey Scientific Investigations Report 2021–5079, 75 p., https://doi.org/10.3133/sir20215079. The following selected tables are included in this data release in compressed (.zip) format: AWQMN_EGRET_data.xlsx -- Data retrieved from the USGS National Water Information System database that was quality assured and conditioned for network analysis of the Missouri Ambient Water-Quality Monitoring Network AWQMN_R-QWTREND_data.xlsx -- Data retrieved from the USGS National Water Information System database that was quality assured and conditioned for analysis of flow-weighted trends for selected sites in the Missouri Ambient Water-Quality Monitoring Network AWQMN_R-QWTREND_outliers.xlsx -- Data flagged as outliers during analysis of flow-weighted trends for selected sites in the Missouri Ambient Water-Quality Monitoring Network AWQMN_R-QWTREND_outliers_quarterly.xlsx -- Data flagged as outliers during analysis of flow-weighted trends using a simulated quarterly sampling frequency dataset for selected sites in the Missouri Ambient Water-Quality Monitoring Network AWQMN_descriptive_statistics_WY1993-2017.xlsx -- Descriptive statistics for selected water-quality parameters at selected sites in the Missouri Ambient Water-Quality Monitoring Network The following selected graphics are included in this data release in .pdf format. Also included in this data release are web pages accessible for people with disabilities provided in compressed .zip format. The web pages present the same information as the .pdf files: Annual and seasonal discharge trends.pdf -- Graphics of discharge trends produced from the EGRET software for selected sites in the Missouri Ambient Water-Quality Monitoring Network. Graphics provided to support the interpretations in the Scientific Investigations Report. Annual_and_seasonal_discharge_trends_htm.zip -- Compressed web page presenting graphics of discharge trends produced from the EGRET software for selected sites in the Missouri Ambient Water-Quality Monitoring Network. Graphics provided to support the interpretations in the Scientific Investigations Report. Graphics of simulated quarterly sampling frequency trends.pdf -- Graphics of results of simulated quarterly sampling frequency trends produced by the R-QWTREND software at selected sites in the Missouri Ambient Water-Quality Monitoring Network. Graphics provided to support the interpretations in the Scientific Investigations Report. Graphics_of_simulated_quarterly_sampling_frequency_trends_htm.zip -- Compressed web page presenting graphics of results of simulated quarterly sampling frequency trends produced by the R-QWTREND software at selected sites in the Missouri Ambient Water-Quality Monitoring Network. Graphics provided to support the interpretations in the Scientific Investigations Report. Graphics of median parameter values.pdf -- Graphics of median values for selected parameters at selected sites in the Missouri Ambient Water-Quality Monitoring Network. Graphics provided to support the interpretations in the Scientific Investigations Report. Graphics_of_median_parameter_values_htm.zip -- Compressed web page presenting graphics of median values for selected parameters at selected sites in the Missouri Ambient Water-Quality Monitoring Network. Graphics provided to support the interpretations in the Scientific Investigations Report. Parameter value versus time.pdf -- Scatter plots of the value of selected parameters versus time at selected sites in the Missouri Ambient Water-Quality Monitoring Network. Graphics provided to support the interpretations in the Scientific Investigations Report. Parameter_value_versus_time_htm.zip -- Compressed web page presenting scatter plots of the value of selected parameters versus time at selected sites in the Missouri Ambient Water-Quality Monitoring Network. Graphics provided to support the interpretations in the Scientific Investigations Report. Parameter value versus discharge.pdf -- Scatter plots of the value of selected parameters versus discharge at selected sites in the Missouri Ambient Water-Quality Monitoring Network. Graphics provided to support the interpretations in the Scientific Investigations Report. Parameter_value_versus_discharge_htm.zip -- Compressed web page presenting scatter plots of the value of selected parameters versus discharge at selected sites in the Missouri Ambient Water-Quality Monitoring Network. Graphics provided to support the interpretations in the Scientific Investigations Report. Boxplot of parameter value distribution by season.pdf -- Seasonal boxplots of selected parameters from selected sites in the Missouri Ambient Water-Quality Monitoring Network. Seasons defined as Winter (December, January, and February), Spring (March, April, and May), Summer (June, July, and August), and Fall (September, October, and November). Graphics provided to support the interpretations in the Scientific Investigations Report. Boxplot_of_parameter_value_distribution_by_season_htm.zip -- Compressed web page presenting seasonal boxplots of selected parameters from selected sites in the Missouri Ambient Water-Quality Monitoring Network. Seasons defined as Winter (December, January, and February), Spring (March, April, and May), Summer (June, July, and August), and Fall (September, October, and November). Graphics provided to support the interpretations in the Scientific Investigations Report. Boxplot of sampled discharge compared with mean daily discharge.pdf -- Boxplots of the distribution of discharge collected at the time of sampling of selected parameters compared with the period of record discharge distribution from selected sites in the Missouri Ambient Water-Quality Monitoring Network. Graphics provided to support the interpretations in the Scientific Investigations Report. Boxplot_of_sampled_discharge_compared_with_mean_daily_discharge_htm.zip -- Compressed web page presenting boxplots of the distribution of discharge collected at the time of sampling of selected parameters compared with the period of record discharge distribution from selected sites in the Missouri Ambient Water-Quality Monitoring Network. Graphics provided to support the interpretations in the Scientific Investigations Report. Boxplot of parameter value distribution by month.pdf -- Monthly boxplots of selected parameters from selected sites in the Missouri Ambient Water-Quality Monitoring Network. Graphics provided to support the interpretations in the Scientific Investigations Report. Boxplot_of_parameter_value_distribution_by_month_htm.zip -- Compressed web page presenting monthly boxplots of selected parameters from selected sites in the Missouri Ambient Water-Quality Monitoring Network. Graphics provided to support the interpretations in the Scientific Investigations Report.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data DescriptionWater Quality Parameters: Ammonia, BOD, DO, Orthophosphate, pH, Temperature, Nitrogen, Nitrate.Countries/Regions: United States, Canada, Ireland, England, China.Years Covered: 1940-2023.Data Records: 2.82 million.Definition of ColumnsCountry: Name of the water-body region.Area: Name of the area in the region.Waterbody Type: Type of the water-body source.Date: Date of the sample collection (dd-mm-yyyy).Ammonia (mg/l): Ammonia concentration.Biochemical Oxygen Demand (BOD) (mg/l): Oxygen demand measurement.Dissolved Oxygen (DO) (mg/l): Concentration of dissolved oxygen.Orthophosphate (mg/l): Orthophosphate concentration.pH (pH units): pH level of water.Temperature (°C): Temperature in Celsius.Nitrogen (mg/l): Total nitrogen concentration.Nitrate (mg/l): Nitrate concentration.CCME_Values: Calculated water quality index values using the CCME WQI model.CCME_WQI: Water Quality Index classification based on CCME_Values.Data Directory Description:Category 1: DatasetCombined Data: This folder contains two CSV files: Combined_dataset.csv and Summary.xlsx. The Combined_dataset.csv file includes all eight water quality parameter readings across five countries, with additional data for initial preprocessing steps like missing value handling, outlier detection, and other operations. It also contains the CCME Water Quality Index calculation for empirical analysis and ML-based research. The Summary.xlsx provides a brief description of the datasets, including data distributions (e.g., maximum, minimum, mean, standard deviation).Combined_dataset.csvSummary.xlsxCountry-wise Data: This folder contains separate country-based datasets in CSV files. Each file includes the eight water quality parameters for regional analysis. The Summary_country.xlsx file presents country-wise dataset descriptions with data distributions (e.g., maximum, minimum, mean, standard deviation).England_dataset.csvCanada_dataset.csvUSA_dataset.csvIreland_dataset.csvChina_dataset.csvSummary_country.xlsxCategory 2: CodeData processing and harmonization code (e.g., Language Conversion, Date Conversion, Parameter Naming and Unit Conversion, Missing Value Handling, WQI Measurement and Classification).Data_Processing_Harmonnization.ipynbThe code used for Technical Validation (e.g., assessing the Data Distribution, Outlier Detection, Water Quality Trend Analysis, and Vrifying the Application of the Dataset for the ML Models).Technical_Validation.ipynbCategory 3: Data Collection SourcesThis category includes links to the selected dataset sources, which were used to create the dataset and are provided for further reconstruction or data formation. It contains links to various data collection sources.DataCollectionSources.xlsxOriginal Paper Title: A Comprehensive Dataset of Surface Water Quality Spanning 1940-2023 for Empirical and ML Adopted ResearchAbstractAssessment and monitoring of surface water quality are essential for food security, public health, and ecosystem protection. Although water quality monitoring is a known phenomenon, little effort has been made to offer a comprehensive and harmonized dataset for surface water at the global scale. This study presents a comprehensive surface water quality dataset that preserves spatio-temporal variability, integrity, consistency, and depth of the data to facilitate empirical and data-driven evaluation, prediction, and forecasting. The dataset is assembled from a range of sources, including regional and global water quality databases, water management organizations, and individual research projects from five prominent countries in the world, e.g., the USA, Canada, Ireland, England, and China. The resulting dataset consists of 2.82 million measurements of eight water quality parameters that span 1940 - 2023. This dataset can support meta-analysis of water quality models and can facilitate Machine Learning (ML) based data and model-driven investigation of the spatial and temporal drivers and patterns of surface water quality at a cross-regional to global scale.Note: Cite this repository and the original paper when using this dataset.
This is a panel dataset of monthly price data from a selected sample of rural markets in Rwanda, with data points starting in January 2017 and ending in November 2020.
The dataset includes markets in 21 districts of Rwanda, covering all 4 provinces.
Product (one observation per product per month per market).
Sample survey data [ssd]
Markets were purposively sampled, based on proximity to roads prioritized for rehabilitation by the Government of Rwanda.
Computer Assisted Personal Interview [capi]
2-3 price points were taken per product at each market per month. In order to deal with outliers, prices were logged and averaged to get mean monthly prices, then exponentiated to be interpretable. Where a product was not available, there is no price data. However, there are cases where a product was available but price data was not available.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Basis sets are a crucial but often largely overlooked choice in setting up quantum chemistry calculations. The choice of the basis set can be critical in determining the accuracy and calculation time of your quantum chemistry calculations. Clear recommendations based on thorough benchmarking are essential but not readily available currently. This study investigates the relative quality of basis sets for general properties by benchmarking basis set performance for a diverse set of 139 reactions (from the diet-150-GMTKN55 data set). In our analysis, we find the distributions of errors are often significantly non-Gaussian, meaning that the joint consideration of median errors, mean absolute errors, and outlier statistics is helpful to provide a holistic understanding of basis set performance. Our direct comparison of performance between most modern basis sets provides quantitative evidence for basis set recommendations that broadly align with the established understanding of basis set experts and is evident in the design of modern basis sets. For example, while zeta is a good measure of quality, it is not the only determining factor for an accurate calculation with unpolarized double- and triple-ζ basis sets (like 6-31G and 6-311G) having very poor performance. Appropriate use of polarization functions (e.g., 6-31G*) is essential to obtain the accuracy offered by double- or triple-ζ basis sets. In our study, the best performances for double- and triple-ζ basis sets are 6-31++G** and pcseg-2, respectively. However, the performances of singly polarized double-ζ and doubly polarized triple-ζ basis sets are quite similar with one key exception: the polarized 6-311G basis set family has poor parametrization, which means its performance is more like a double-ζ than a triple-ζ basis set. All versions of the 6-311G basis set family should be avoided entirely for valence chemistry calculations moving forward.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Clinical Examples of the Various Categories of Each Characteristic of Outlier.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Identification of errors or anomalous values, collectively considered outliers, assists in exploring data or through removing outliers improves statistical analysis. In biomechanics, outlier detection methods have explored the ‘shape’ of the entire cycles, although exploring fewer points using a ‘moving-window’ may be advantageous. Hence, the aim was to develop a moving-window method for detecting trials with outliers in intra-participant time-series data. Outliers were detected through two stages for the strides (mean 38 cycles) from treadmill running. Cycles were removed in stage 1 for one-dimensional (spatial) outliers at each time point using the median absolute deviation, and in stage 2 for two-dimensional (spatial–temporal) outliers using a moving window standard deviation. Significance levels of the t-statistic were used for scaling. Fewer cycles were removed with smaller scaling and smaller window size, requiring more stringent scaling at stage 1 (mean 3.5 cycles removed for 0.0001 scaling) than at stage 2 (mean 2.6 cycles removed for 0.01 scaling with a window size of 1). Settings in the supplied Matlab code should be customised to each data set, and outliers assessed to justify whether to retain or remove those cycles. The method is effective in identifying trials with outliers in intra-participant time series data.