Facebook
TwitterThis statistic shows the biggest cities in Pakistan as of 2023. In 2023, approximately ***** million people lived in Karāchi, making it the biggest city in Pakistan.
Facebook
TwitterMajor Cities in Pakistan by Population
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Actual value and historical data chart for Pakistan Population In Largest City
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Pakistan PK: Population in Largest City data was reported at 15,020,931.000 Person in 2017. This records an increase from the previous number of 14,650,981.000 Person for 2016. Pakistan PK: Population in Largest City data is updated yearly, averaging 6,793,799.000 Person from Dec 1960 (Median) to 2017, with 58 observations. The data reached an all-time high of 15,020,931.000 Person in 2017 and a record low of 1,853,325.000 Person in 1960. Pakistan PK: Population in Largest City data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Pakistan – Table PK.World Bank.WDI: Population and Urbanization Statistics. Population in largest city is the urban population living in the country's largest metropolitan area.; ; United Nations, World Urbanization Prospects.; ;
Facebook
TwitterPakistani Cities and Their Provinces Dataset Description This dataset contains a comprehensive list of cities from Pakistan, along with their corresponding provinces. It serves as a valuable resource for anyone seeking geographical insights into Pakistan’s urban areas. The dataset covers major cities from all provinces, including Sindh, Punjab, Khyber Pakhtunkhwa, and Balochistan, making it suitable for various applications such as urban planning, population studies, and regional analysis.
Key Features:
City Names Province Names Country: Pakistan Potential Use Cases Geographical Analysis: Ideal for researchers and students performing geographical, demographic, or regional studies of Pakistan's urban landscape. Data Science Projects: Can be used for machine learning projects involving geospatial analysis, regional clustering, and city-level modeling. Visualization Projects: Helpful for creating maps, charts, and visual representations of Pakistan’s provinces and cities in tools like Power BI or Tableau. Business Insights: Useful for businesses analyzing market expansion strategies, targeting regional demographics, or performing location-based analysis. Education: A helpful resource for students and educators in geography, data science, and economics to understand the distribution of cities across provinces. Applications Machine Learning (Geospatial data, clustering models) Data Visualization (Map plotting, heatmaps) Policy Making (Urban development, resource allocation) Educational Projects (Geography, demographics) Feel free to download, explore, and incorporate this dataset into your projects. I welcome any feedback or suggestions to improve its utility!
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
A comprehensive dataset of 1,513 Pakistani cities, towns, tehsils, districts and places with latitude/longitude, administrative region, population (when available) and Wikidata IDs — ideal for mapping, geospatial analysis, enrichment, and location-based ML.
Why this dataset is valuable:
Highlights (fetched from the data):
Column definitions (short):
Typical & high-value use cases:
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Pakistan PK: Population in Largest City: as % of Urban Population data was reported at 20.922 % in 2017. This records a decrease from the previous number of 20.928 % for 2016. Pakistan PK: Population in Largest City: as % of Urban Population data is updated yearly, averaging 21.610 % from Dec 1960 (Median) to 2017, with 58 observations. The data reached an all-time high of 23.038 % in 1980 and a record low of 18.670 % in 1960. Pakistan PK: Population in Largest City: as % of Urban Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Pakistan – Table PK.World Bank.WDI: Population and Urbanization Statistics. Population in largest city is the percentage of a country's urban population living in that country's largest metropolitan area.; ; United Nations, World Urbanization Prospects.; Weighted average;
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset provides insights into what is the population of some of the major cities in Pakistan - The dataset is sorted from highest to lowest according to the population of the cities. - This dataset also contains the population count from the census of 1998. - In which province the city is located. - Also the percentage of change in population growth from census 1998 to census 2017.
You can use this dataset in your research and analysis to gain a better understanding of Pakistani Population growth.
Note: Only major cities are included in this dataset not every city/village of Pakistan is included in this.
Facebook
TwitterMajor Cities Population
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Significant sources of water pollution in Pakistan include industrial waste, agricultural runoff, sewage discharge, and waste dumping Contaminants such as heavy metals, pesticides, and untreated sewage pose a severe threat to human health and the environment Groundwater contamination is also prevalent, largely due to over-extraction and poor waste management practices Air quality:
Industrial emissions, vehicular traffic, construction activities, and the burning of solid waste cause air pollution in Pakistan High levels of particulate matter (PM), sulfur dioxide (SO2), and nitrogen dioxide (NO2) are major concerns in cities such as Lahore, Karachi, and Islamabad Air pollution affects public health, causing respiratory problems, heart disease, and stroke. The lack of proper regulation and enforcement of environmental standards exacerbates the problem. Data was initially taken from Numbeo as an aggregation of user voting.
Air quality varies from 0 (bad quality) to 100 (top good quality)
Water pollution varies from 0 (no pollution) to 100 (extreme pollution)
This dataset is one of the public parts of the City API project data. Need more? Try our full data
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for Geographical Outreach: Number of Automated Teller Machines (ATMs) in 3 Largest Cities for Pakistan (PAKFCACLNUM) from 2004 to 2015 about ATM, Pakistan, banks, and depository institutions.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Digital point dataset of Major Cities of Pakistan. This dataset is Basic Vector layer derived from ESRI Map & Data 2001.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for Geographical Outreach: Number of Branches in 3 Largest Cities, Excluding Headquarters, for Commercial Banks for Pakistan (PAKFCBODCLNUM) from 2004 to 2015 about branches, Pakistan, banks, and depository institutions.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for Geographical Outreach: Number of Branches in 3 Largest Cities, Excluding Headquarters, for Deposit Taking Microfinance Institutions (MFIs) for Pakistan (PAKFCBODMFLNUM) from 2004 to 2015 about microfinance, branches, Pakistan, and deposits.
Facebook
TwitterThis dataset was created by Waqas Ahmed
Facebook
TwitterOpen Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
The current population of Pakistan is 229,160,509 as of Wednesday, June 8, 2022, based on Worldometer elaboration of the latest United Nations data. This three datasets contain population data of Pakistan (2020 and historical), population forecast and population in major cities.
Link : https://www.worldometers.info/world-population/pakistan-population/
Link : https://www.kaggle.com/anandhuh/datasets
If you find it useful, please support by upvoting ❤️
Facebook
TwitterThis data set has details about the vehicles that are available for purchase in some of the major cities of Pakistan.
It contains the information like car name, location, price, registration year, mileage, engine type, transmission, registration city, colour, assembly, engine power, body type and update date of the car post.
The dataset is very diversified as it contains the data of cars with various engine types i.e. petrol, diesel, hybrid, electric. All sorts of body types and colour as well.
A few questions below, which can be answered with this data to get in the head of buying/selling car market of Pakistan.
Facebook
TwitterThe Pakistan Social and Living Standards Measurement Survey (PSLM) 2005-06 is aimed to provide detailed outcome indicators on Education, Health, Population Welfare, Water & Sanitation and Income & Expenditure. The data provided by this survey is used by the government in formulating the policies in social sector initiated under Poverty Reduction Strategy Paper (PRSP) and Medium Term Development Framework (MTDF) in the overall context of MDGs.
National Coverage
Households and Individuals.
The universe of this survey consists of all urban and rural areas of the four provinces and Islamabad excluding military restricted areas
Sample survey data [ssd]
Sampling Frame:
The Federal Bureau of Statistics (FBS) has developed its own urban area frame, which was up-dated in 2003. Each city/town has been divided into enumeration blocks consisting of 200- 250 households identifiable through sketch map. Each enumeration block has been classified into three categories of income groups i.e. low, middle and high keeping in view the living standard of the majority of the people. List of villages published by Population Census Organization obtained as a consequence of Population Census 1998 has been taken as rural frame.
Stratification Plan:
A. Urban Domain: Islamabad, Lahore, Gujranwala, Faisalabad, Rawalpindi, Multan, Bahawalpur, Sargodha, Sialkot, Karachi, Hyderabad, Sukkur, Peshawar and Quetta, have been considered as large sized cities. Each of these cities constitute a separate stratum and has further been sub-stratified according to low, middle and high-income groups. After excluding population of large sized city (s), the remaining urban population in each defunct Division in all the provinces has been grouped together to form a stratum.
B. Rural Domain: Each district in the Punjab, Sindh and NWFP provinces has been grouped together to constitute a stratum. Whereas defunct administrative Division has been treated as stratum in Balochistan province.
Sample Size and Its Allocation: Keeping in view the objectives of the survey the sample size for the four provinces has been fixed at 15453 households comprising 1109 sample village/ enumeration blocks, which is expected to produce reliable results.
Sample Design: A two-stage stratified sample design has been adopted in this survey.
Selection of Primary Sampling Units (PSUs): Villages and enumeration blocks in urban and rural areas respectively have been taken as Primary Sampling Units (PSUs). Sample PSUs have been selected from strata/sub-strata with PPS method of sampling technique.
Selection of Secondary Sampling Units (SSUs): Households within sample PSUs have been taken as Secondary Sampling Units (SSUs). A specified number of households i.e. 16 and 12 from each sample PSU of rural & urban area have been selected respectively using systematic sampling technique with a random start.
Face-to-face [f2f]
At both individual and household level, the PSLM Survey collects information on a wide range of topics using an integrated questionnaire. The questionnaire comprises a number of different sections, each of which looks at a particular aspect of household behavior or welfare. Data collected under Round II include education, diarrhea, immunization, reproductive health, pregnancy history, maternity history, family planning, pre and post-natal care and access to basic services.
Data quality in PSLM Survey has been ensured through built in system of checking of field work by the supervisors in the field as well as teams from the headquarters. Regional/ Field offices ensured the data quality through preliminary editing at their office level. The entire data entry was carried at the FBS headquarter Islamabad and the data entry programme used had a number of in built consistency checks.
To determine the reliability of the estimates, Coefficient of Variation (CV’s) and confidence Limit of important key indicators have been worked out and are attached as Appendix - C of the survey report (provided under Related Materials).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
PK:最大城市人口占城市总人口的百分比在12-01-2017达20.922%,相较于12-01-2016的20.928%有所下降。PK:最大城市人口占城市总人口的百分比数据按年更新,12-01-1960至12-01-2017期间平均值为21.610%,共58份观测结果。该数据的历史最高值出现于12-01-1980,达23.038%,而历史最低值则出现于12-01-1960,为18.670%。CEIC提供的PK:最大城市人口占城市总人口的百分比数据处于定期更新的状态,数据来源于World Bank,数据归类于全球数据库的巴基斯坦 – 表 PK.世行.WDI:人口和城市化进程统计。
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset provides a comprehensive overview of various hunger-related metrics in Pakistan from 2020 to 2023. It includes critical indicators such as the percentage of the population living under poverty, malnutrition rates, food insecurity levels, access to clean water, food production index, and the rate of underweight children. These metrics are essential for understanding the current state of hunger and nutritional challenges faced by the population in Pakistan.
Key Features:
Year:The year of data collection (2020-2023).
Population_Under_Poverty: The percentage of the population living below the poverty line.
Malnutrition_Rate:The percentage of the population suffering from malnutrition.
Food_Insecurity: The percentage of the population experiencing food insecurity.
Access_to_Clean_Water: The percentage of the population with access to clean water.
Food_Production_Index: An index value representing the level of food production.
Children_Underweight:The percentage of children underweight for their age.
Use Cases: This dataset is useful for analyzing trends in hunger and nutrition over recent years in Pakistan. It can support research in areas such as public health, economic development, and food security. The data is valuable for policymakers, researchers, and organizations focused on addressing hunger and improving nutritional outcomes.
Facebook
TwitterThis statistic shows the biggest cities in Pakistan as of 2023. In 2023, approximately ***** million people lived in Karāchi, making it the biggest city in Pakistan.