Facebook
TwitterThis statistic shows the biggest cities in Pakistan as of 2023. In 2023, approximately ***** million people lived in Karāchi, making it the biggest city in Pakistan.
Facebook
TwitterMajor Cities in Pakistan by Population
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Actual value and historical data chart for Pakistan Population In Largest City
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Pakistan PK: Population in Largest City data was reported at 15,020,931.000 Person in 2017. This records an increase from the previous number of 14,650,981.000 Person for 2016. Pakistan PK: Population in Largest City data is updated yearly, averaging 6,793,799.000 Person from Dec 1960 (Median) to 2017, with 58 observations. The data reached an all-time high of 15,020,931.000 Person in 2017 and a record low of 1,853,325.000 Person in 1960. Pakistan PK: Population in Largest City data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Pakistan – Table PK.World Bank.WDI: Population and Urbanization Statistics. Population in largest city is the urban population living in the country's largest metropolitan area.; ; United Nations, World Urbanization Prospects.; ;
Facebook
TwitterPakistani Cities and Their Provinces Dataset Description This dataset contains a comprehensive list of cities from Pakistan, along with their corresponding provinces. It serves as a valuable resource for anyone seeking geographical insights into Pakistan’s urban areas. The dataset covers major cities from all provinces, including Sindh, Punjab, Khyber Pakhtunkhwa, and Balochistan, making it suitable for various applications such as urban planning, population studies, and regional analysis.
Key Features:
City Names Province Names Country: Pakistan Potential Use Cases Geographical Analysis: Ideal for researchers and students performing geographical, demographic, or regional studies of Pakistan's urban landscape. Data Science Projects: Can be used for machine learning projects involving geospatial analysis, regional clustering, and city-level modeling. Visualization Projects: Helpful for creating maps, charts, and visual representations of Pakistan’s provinces and cities in tools like Power BI or Tableau. Business Insights: Useful for businesses analyzing market expansion strategies, targeting regional demographics, or performing location-based analysis. Education: A helpful resource for students and educators in geography, data science, and economics to understand the distribution of cities across provinces. Applications Machine Learning (Geospatial data, clustering models) Data Visualization (Map plotting, heatmaps) Policy Making (Urban development, resource allocation) Educational Projects (Geography, demographics) Feel free to download, explore, and incorporate this dataset into your projects. I welcome any feedback or suggestions to improve its utility!
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
A comprehensive dataset of 1,513 Pakistani cities, towns, tehsils, districts and places with latitude/longitude, administrative region, population (when available) and Wikidata IDs — ideal for mapping, geospatial analysis, enrichment, and location-based ML.
Why this dataset is valuable:
Highlights (fetched from the data):
Column definitions (short):
Typical & high-value use cases:
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Pakistan PK: Population in Largest City: as % of Urban Population data was reported at 20.922 % in 2017. This records a decrease from the previous number of 20.928 % for 2016. Pakistan PK: Population in Largest City: as % of Urban Population data is updated yearly, averaging 21.610 % from Dec 1960 (Median) to 2017, with 58 observations. The data reached an all-time high of 23.038 % in 1980 and a record low of 18.670 % in 1960. Pakistan PK: Population in Largest City: as % of Urban Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Pakistan – Table PK.World Bank.WDI: Population and Urbanization Statistics. Population in largest city is the percentage of a country's urban population living in that country's largest metropolitan area.; ; United Nations, World Urbanization Prospects.; Weighted average;
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset provides insights into what is the population of some of the major cities in Pakistan - The dataset is sorted from highest to lowest according to the population of the cities. - This dataset also contains the population count from the census of 1998. - In which province the city is located. - Also the percentage of change in population growth from census 1998 to census 2017.
You can use this dataset in your research and analysis to gain a better understanding of Pakistani Population growth.
Note: Only major cities are included in this dataset not every city/village of Pakistan is included in this.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for Geographical Outreach: Number of Automated Teller Machines (ATMs) in 3 Largest Cities for Pakistan (PAKFCACLNUM) from 2004 to 2015 about ATM, Pakistan, banks, and depository institutions.
Facebook
TwitterMajor Cities Population
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for Geographical Outreach: Number of Branches in 3 Largest Cities, Excluding Headquarters, for Commercial Banks for Pakistan (PAKFCBODCLNUM) from 2004 to 2015 about branches, Pakistan, banks, and depository institutions.
Facebook
TwitterAttribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
This comprehensive dataset provides detailed population statistics for major cities across Pakistan, spanning multiple census years from 1972 to 2023. The dataset includes population figures for each city as recorded in the 1972, 1981, 1998, 2017, and 2023 censuses, along with the percentage change in population between consecutive censuses. The data is organized by city and province, offering valuable insights into urban growth trends, demographic shifts, and regional development over the past five decades.
Features
City: Name of the city.
Pop (2023 Census): Population as per the 2023 census, with percentage change from the 2017 census.
Pop (2017 Census): Population as per the 2017 census, with percentage change from the 1998 census.
Pop (1998 Census): Population as per the 1998 census, with percentage change from the 1981 census.
Pop (1981 Census): The Population as of the 1981 census, with a percentage change from the 1972 census.
Pop (1972 Census): Population as per the 1972 census.
Province: The province or administrative region where the city is located.
Potential Use Cases
Urban Planning: Analyze population growth trends to inform infrastructure development and resource allocation.
Demographic Studies: Study the demographic changes in different regions of Pakistan over time.
Policy Making: Support evidence-based policy decisions related to housing, education, healthcare, and transportation.
Academic Research: Utilize the dataset for research in urban studies, sociology, and economics.
Data Source
This dataset's data was collected and compiled from the Wikipedia page titled "List of cities in Pakistan by population." The information on Wikipedia is based on publicly available census data and government records, which have been aggregated and presented in a structured format. While Wikipedia serves as a secondary source, the original data is derived from official census reports conducted by the Pakistan Bureau of Statistics and other governmental bodies.
Acknowledgments We acknowledge Wikipedia for providing a consolidated and accessible source of information on city-wise population data in Pakistan. Additionally, we extend our gratitude to the Pakistan Bureau of Statistics and other government agencies responsible for conducting and publishing the census data, which forms the foundation of this dataset. Their efforts in collecting and maintaining accurate demographic records have made this dataset possible.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Digital point dataset of Major Cities of Pakistan. This dataset is Basic Vector layer derived from ESRI Map & Data 2001.
Facebook
TwitterThis is a dataset of highly populated cities of pakistan. It contains data of about top 100 cities according to population. I scraped this dataset from wikipedia.
About Dataset: There are 6 columns in this dataset and 100 rows. The column names are ranking, name, population, growth rate, and province name.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for Geographical Outreach: Number of Branches in 3 Largest Cities, Excluding Headquarters, for Deposit Taking Microfinance Institutions (MFIs) for Pakistan (PAKFCBODMFLNUM) from 2004 to 2015 about microfinance, branches, Pakistan, and deposits.
Facebook
TwitterThis statistic shows the population living in cities in Pakistan from 2005 to 2016, arranged by city size. In 2015, there were approximately ***** million inhabitants living in cities with less than *** thousand people in Pakistan.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This horizontal bar chart displays urban population (people) by country using the aggregation sum in Pakistan. The data is about countries per year.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Significant sources of water pollution in Pakistan include industrial waste, agricultural runoff, sewage discharge, and waste dumping Contaminants such as heavy metals, pesticides, and untreated sewage pose a severe threat to human health and the environment Groundwater contamination is also prevalent, largely due to over-extraction and poor waste management practices Air quality:
Industrial emissions, vehicular traffic, construction activities, and the burning of solid waste cause air pollution in Pakistan High levels of particulate matter (PM), sulfur dioxide (SO2), and nitrogen dioxide (NO2) are major concerns in cities such as Lahore, Karachi, and Islamabad Air pollution affects public health, causing respiratory problems, heart disease, and stroke. The lack of proper regulation and enforcement of environmental standards exacerbates the problem. Data was initially taken from Numbeo as an aggregation of user voting.
Air quality varies from 0 (bad quality) to 100 (top good quality)
Water pollution varies from 0 (no pollution) to 100 (extreme pollution)
This dataset is one of the public parts of the City API project data. Need more? Try our full data
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This horizontal bar chart displays ESG score (/ 100) by city using the aggregation average in Pakistan. The data is about companies.
Facebook
TwitterThe major aim of the survey is to collect a set of comprehensive statistics on the various dimensions of country’s civilian labour force as a means to pave the way for skill development, planning, employment generation, assessing the role and importance of the informal sector and, sizing up the volume, characteristics and contours of employment. The broad objectives of the survey are as follows: - To collect data on the socio-demographic characteristics of the total population i.e. age, sex, marital status, level of education, current enrolment and migration etc; - To acquire current information on the dimensions of national labour force; i.e. number of persons employed, unemployed, and underemployed or out of labour market; - To gather descriptive facts on the engagement in major occupational trades and the nature of work undertaken by the institutions/organizations; - To profile statistics on employment status of the individuals, i.e. whether they are employers, own account workers, contributing family workers or paid employees (regular/casual); - To classify non-agricultural enterprises employing household member(s) as formal and informal; - To quantify the hours worked at main/subsidiary occupations; - To provide data on wages and mode of payment for paid employees; - To make an assessment of occupational health and safety of employed persons by causes, type of treatment, conditions that caused the accident/injury and time of recovery; and - To collect data on the characteristics of unemployed persons i.e. age, sex, level of education, previous experience if any, occupation, industry, employment status related to previous job, waiting time invested in the quest for work, their availability for work and expectations for future employment.
National coverage.
The survey covers all urban and rural areas of the four provinces of Pakistan defined as such by1998 Population Census, excluding Federally Administered Tribal Areas (FATA) and military restricted areas. The population of excluded areas constitutes about 2% of the total population.
All sample enumeration blocks in urban areas and mouzas/dehs/villages in rural areas were enumerated except three sample areas (PSUs), due to law & order and recent flood. However, the number of sample households enumerated (36420) is high (equivalent) 99.9% of the total sample size) to the estimated sample size (36464).
The universe for Labour Force Survey consistsed of all urban and rural areas of the four provinces of Pakistan defined as such by 1998 Population Census excluding FATA and military restricted areas. The population of excluded areas constitutes about 2% of the total population. The following groups were also excluded non-settled population, persons living in institutions and foreigners.
Sample survey data [ssd]
Quarterly.
Sample Design: A stratified two-stage sample design is adopted for the survey.
Sampling Frame: Federal Bureau of Statistics (FBS) has developed its own sampling frame for urban areas. Each city/town is divided into enumeration blocks. Each enumeration block is comprised of 200 to 250 households on the average with well-defined boundaries and maps. The list of enumeration blocks as updated through Economic Census 2003 and the list of villages/mouzas/dehs of 1998 Population Census are taken as sampling frames. Enumeration blocks & villages are considered as Primary Sampling Units (PSUs) for urban and rural domains respectively.
Stratification Plan - Urban Domain: Large cities Karachi, Lahore, Gujranwala, Faisalabad, Rawalpindi, Multan, Sialkot, Sargodha, Bahawalpur, Hyderabad, Sukkur, Peshawar, Quetta and Islamabad are considered as large cities. Each of these cities constitutes a separate stratum, further sub-stratified according to low, middle and high income groups based on the information collected in respect of each enumeration block at the time of demarcation/ updating of urban area sampling frame.
Remaining Urban Areas: In all the four provinces after excluding the population of large cities from the population of an administrative division, the remaining urban population is grouped together to form a stratum.
Rural Domain: Each administrative district in the Punjab, Sindh and Khyber Pakhtunkhwa (KP) is considered an independent stratum whereas in Balochistan, each administrative division constitutes a stratum.
Selection of primary sampling units (PSUs): Enumeration blocks in urban domain and mouzas/dehs/villages in rural are taken as Primary Sampling Units (PSUs). In the urban domain, sample PSUs from each ultimate stratum/sub-stratum are selected with probability proportional to size (PPS) method of sampling scheme. In urban domain, the number of households in an enumeration block as updated through Economic Census 2003 and village population of 1998 Census for rural domain is considered as measure of size.
Selection of secondary sampling units (SSUs): The listed households of sample PSUs are taken as Secondary Sampling Units (SSUs). A specified number of households i.e. 12 from each urban sample PSU, 16 from rural sample PSU are selected with equal probability using systematic sampling technique with a random start.
Sample Size and Its Allocation: A sample of 36,464 households is considered appropriate to provide reliable estimates of key labour force characteristics at National/Provincial level. The entire sample of households (SSUs) is drawn from 2580 Primary Sampling Units (PSUs) out of which 1204 are urban and 1376 are rural. The overall sample has been distributed evenly over four quarters independently. As urban population is more heterogeneous therefore, a higher proportion of sample size is allocated to urban domain. To produce reliable estimates, a higher proportion of sample is assigned to Khyber Pk and Balochistan in consideration to their smallness. After fixing the sample size at provincial level, further distribution of sample PSUs to different strata in rural and urban domains in each province is made proportionately.
Face-to-face [f2f]
Structured questionnaire.
Editing and coding is done at headquarter by the subject matter section. Computer edit checks are applied to get even with errors identified at the stage of data entry. The relevant numerical techniques are used to eliminate erroneous data resulting from mistakes made during coding. The survey records are further edited and rectified through a series of computer processing stages.
99.9%
Notwithstanding complete observance of the requisite codes to ensure reliability of data, co-efficient of variations, computed in the backdrop of 5% margin of error exercised for determining sample size, are also given below to affirm the reliability of estimates.
Facebook
TwitterThis statistic shows the biggest cities in Pakistan as of 2023. In 2023, approximately ***** million people lived in Karāchi, making it the biggest city in Pakistan.