19 datasets found
  1. India & Pak Migration and Population Trends

    • kaggle.com
    zip
    Updated Dec 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ayushmaan03 (2024). India & Pak Migration and Population Trends [Dataset]. https://www.kaggle.com/datasets/ayushmaan03/india-and-pak-migration-and-population-trends/code
    Explore at:
    zip(1581 bytes)Available download formats
    Dataset updated
    Dec 11, 2024
    Authors
    Ayushmaan03
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    India, Pakistan
    Description

    Dataset

    This dataset was created by Ayushmaan03

    Released under MIT

    Contents

  2. Population and Net Migration Dataset World Bank

    • kaggle.com
    zip
    Updated Nov 16, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Muhammad Aammar Tufail (2024). Population and Net Migration Dataset World Bank [Dataset]. https://www.kaggle.com/datasets/muhammadaammartufail/population-and-net-migration-dataset-world-bank
    Explore at:
    zip(4147 bytes)Available download formats
    Dataset updated
    Nov 16, 2024
    Authors
    Muhammad Aammar Tufail
    License

    https://www.worldbank.org/en/about/legal/terms-of-use-for-datasetshttps://www.worldbank.org/en/about/legal/terms-of-use-for-datasets

    Description

    This dataset provides a comprehensive look at population and migration trends in five South Asian countries: Afghanistan, Bangladesh, India, Pakistan, and Sri Lanka, covering the years 1960 to 2023. The data is sourced directly from the World Bank API and contains detailed statistics on total population and net migration for each year.

    This dataset is ideal for:

    • Time-series analysis to study population trends over six decades.
    • Migration studies to assess policy impacts and demographic shifts.
    • Data visualization for dashboards and presentations.
    • Machine learning applications in predictive analytics.

    Columns: - Country: Name of the country. - Year: Year of the recorded data. - Total Population: The total population of the country. - Net Migration: Net migration balance (positive for immigration surplus, negative for emigration surplus).

    Key Insights: - Afghanistan: Significant migration shifts due to conflicts and crises. - India: Continuous population growth with varying migration trends. - Bangladesh: A history of large emigration and its impact on demographics. - Pakistan: Migration surpluses in some years and large outflows in others. - Sri Lanka: Gradual population growth and consistent emigration patterns.

  3. d

    Year and State wise Density of Population

    • dataful.in
    Updated Nov 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataful (Factly) (2025). Year and State wise Density of Population [Dataset]. https://dataful.in/datasets/21433
    Explore at:
    csv, xlsx, application/x-parquetAvailable download formats
    Dataset updated
    Nov 20, 2025
    Dataset authored and provided by
    Dataful (Factly)
    License

    https://dataful.in/terms-and-conditionshttps://dataful.in/terms-and-conditions

    Area covered
    States of India
    Variables measured
    Population Density
    Description

    The dataset contains Year and State wise Density of Population

    Note: 1. The 1981 Census could not be held in Assam. Total Population for 1981 has been worked out by Interpolation. 2. Includes estimated population of Paomata, Mao Maram and Purul sub-divisions of Senapati District of Manipur for 2001. 3. For working out the density of India and Jammu & Kashmir for 1991,2001, the entire area and population of those portions of Jammu & Kashmir which are under illegal occupation of Pakistan and China have not been taken into account.

  4. world_population

    • kaggle.com
    zip
    Updated Feb 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    farzam ajili (2023). world_population [Dataset]. https://www.kaggle.com/datasets/farzamajili/world-population
    Explore at:
    zip(16061 bytes)Available download formats
    Dataset updated
    Feb 8, 2023
    Authors
    farzam ajili
    Area covered
    World
    Description

    Context The current US Census Bureau world population estimate in June 2019 shows that the current global population is 7,577,130,400 people on earth, which far exceeds the world population of 7.2 billion in 2015. Our own estimate based on UN data shows the world's population surpassing 7.7 billion.

    China is the most populous country in the world with a population exceeding 1.4 billion. It is one of just two countries with a population of more than 1 billion, with India being the second. As of 2018, India has a population of over 1.355 billion people, and its population growth is expected to continue through at least 2050. By the year 2030, the country of India is expected to become the most populous country in the world. This is because India’s population will grow, while China is projected to see a loss in population.

    The following 11 countries that are the most populous in the world each have populations exceeding 100 million. These include the United States, Indonesia, Brazil, Pakistan, Nigeria, Bangladesh, Russia, Mexico, Japan, Ethiopia, and the Philippines. Of these nations, all are expected to continue to grow except Russia and Japan, which will see their populations drop by 2030 before falling again significantly by 2050.

    Many other nations have populations of at least one million, while there are also countries that have just thousands. The smallest population in the world can be found in Vatican City, where only 801 people reside.

    In 2018, the world’s population growth rate was 1.12%. Every five years since the 1970s, the population growth rate has continued to fall. The world’s population is expected to continue to grow larger but at a much slower pace. By 2030, the population will exceed 8 billion. In 2040, this number will grow to more than 9 billion. In 2055, the number will rise to over 10 billion, and another billion people won’t be added until near the end of the century. The current annual population growth estimates from the United Nations are in the millions - estimating that over 80 million new lives are added each year.

    This population growth will be significantly impacted by nine specific countries which are situated to contribute to the population growing more quickly than other nations. These nations include the Democratic Republic of the Congo, Ethiopia, India, Indonesia, Nigeria, Pakistan, Uganda, the United Republic of Tanzania, and the United States of America. Particularly of interest, India is on track to overtake China's position as the most populous country by 2030. Additionally, multiple nations within Africa are expected to double their populations before fertility rates begin to slow entirely.

    Content In this Dataset, we have Historical Population data for every Country/Territory in the world by different parameters like Area Size of the Country/Territory, Name of the Continent, Name of the Capital, Density, Population Growth Rate, Ranking based on Population, World Population Percentage, etc.

  5. A

    Regional Bloc for Pakistan & India_42: High Resolution Population Density...

    • data.amerigeoss.org
    zipped csv +1
    Updated Apr 22, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN Humanitarian Data Exchange (2020). Regional Bloc for Pakistan & India_42: High Resolution Population Density Maps [Dataset]. https://data.amerigeoss.org/id/dataset/southasia_as42-high-resolution-population-density-maps
    Explore at:
    zipped csv(105984743), zipped geotiff(66802262)Available download formats
    Dataset updated
    Apr 22, 2020
    Dataset provided by
    UN Humanitarian Data Exchange
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    India
    Description

    The territories of Pakistan and India are mostly covered by the non-political blocks AS42 through AS50, going roughly from West to East. Please see the attached map of these non-political boundary blocks.

  6. d

    Decade and State wise Urban, Rural, Total Population and Decadal Growth Rate...

    • dataful.in
    Updated Nov 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataful (Factly) (2025). Decade and State wise Urban, Rural, Total Population and Decadal Growth Rate [Dataset]. https://dataful.in/datasets/21431
    Explore at:
    application/x-parquet, xlsx, csvAvailable download formats
    Dataset updated
    Nov 20, 2025
    Dataset authored and provided by
    Dataful (Factly)
    License

    https://dataful.in/terms-and-conditionshttps://dataful.in/terms-and-conditions

    Area covered
    India
    Variables measured
    Population
    Description

    The dataset contains Decade and State wise Urban, Rural, Total Population and Decadal Growth Rate

    Note: 1. The Population figures exclude population of areas under unlawful occupation of Pakistan and China, where Census could not be taken. 2. In Arunachal Pradesh, the census was conducted for the first time in 1961. 3. Population data of Assam include Union Territory of Mizoram, which was carved out of Assam after the 1971. 4. The 1981 Census could not be held in Assam. Total Population for 1981 has been worked out by Interpolation. 5. The 1991 Census could not be held in Jammu & Kashmir. Total Population for 1991 has been worked out by Interpolation. 6. India and Manipur figures include estimated Population for those of the three sub-divisions viz., Mao Maram,Paomata and Purul of Senapati district of Manipur as census result of 2001 in these three sub-divisions were cancelled due to technical and administrative reasons

  7. Rule of Thumb for correlation coefficients.

    • plos.figshare.com
    xls
    Updated May 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Xiuling Guo; Muhammad Islam (2025). Rule of Thumb for correlation coefficients. [Dataset]. http://doi.org/10.1371/journal.pone.0324231.t004
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 21, 2025
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Xiuling Guo; Muhammad Islam
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Rising global food insecurity driven by population growth needs urgent measure for universal access to food. This research employs Comparative Performance Analysis (CPA) to evaluate the Global Food Security Index (GFSI), its components [Affordability (AF), Availability (AV), Quality & Safety (Q&S) and Sustainability & Adaptation (S&A)] in tandem with Annual Population Change (APC) for world’s five most populous countries (India, China, USA, Indonesia and Pakistan) using dataset spanning from 2012 to 2022. CPA is applied using descriptive analysis, correlation analysis, Rule of Thumb (RoT) and testing of hypothesis etc. RoT is used with a new analytical approach by applying the significance measures for correlation coefficients. The study suggests that India should enhance its GFSI rank by addressing AF and mitigating the adverse effects of APC on GFSI with a particular focus on Q&S and S&A. China needs to reduce the impact of APC on GFSI by prioritizing AV and S&A. The USA is managing its GFSI well, but focused efforts are still required to reduce APC’s impact on Q&S and S&A. Indonesia should improve across all sectors with a particular focus on APC reduction and mitigating its adverse effects on AF, AV, and S&A. Pakistan should intensify efforts to boost its rank and enhance all sectors with reducing APC. There is statistically significant and negative relation between GFSI and APC for China, Indonesia and found insignificant for others countries. This study holds promise for providing crucial policy recommendations to enhance food security by tackling its underlying factors.

  8. d

    Loudoun County 2020 Census Population Patterns by Race and Hispanic or...

    • catalog.data.gov
    • data.virginia.gov
    • +2more
    Updated Nov 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Loudoun County GIS (2025). Loudoun County 2020 Census Population Patterns by Race and Hispanic or Latino Ethnicity [Dataset]. https://catalog.data.gov/dataset/loudoun-county-2020-census-population-patterns-by-race-and-hispanic-or-latino-ethnicity
    Explore at:
    Dataset updated
    Nov 15, 2025
    Dataset provided by
    Loudoun County GIS
    Area covered
    Loudoun County
    Description

    Use this application to view the pattern of concentrations of people by race and Hispanic or Latino ethnicity. Data are provided at the U.S. Census block group level, one of the smallest Census geographies, to provide a detailed picture of these patterns. The data is sourced from the U.S Census Bureau, 2020 Census Redistricting Data (Public Law 94-171) Summary File. Definitions: Definitions of the Census Bureau’s categories are provided below. This interactive map shows patterns for all categories except American Indian or Alaska Native and Native Hawaiian or Other Pacific Islander. The total population countywide for these two categories is small (1,582 and 263 respectively). The Census Bureau uses the following race categories:Population by RaceWhite – A person having origins in any of the original peoples of Europe, the Middle East, or North Africa.Black or African American – A person having origins in any of the Black racial groups of Africa.American Indian or Alaska Native – A person having origins in any of the original peoples of North and South America (including Central America) and who maintains tribal affiliation or community attachment.Asian – A person having origins in any of the original peoples of the Far East, Southeast Asia, or the Indian subcontinent including, for example, Cambodia, China, India, Japan, Korea, Malaysia, Pakistan, the Philippine Islands, Thailand, and Vietnam.Native Hawaiian or Other Pacific Islander – A person having origins in any of the original peoples of Hawaii, Guam, Samoa, or other Pacific Islands.Some Other Race - this category is chosen by people who do not identify with any of the categories listed above. People can identify with more than one race. These people are included in the Two or More Races Hispanic or Latino PopulationThe Hispanic/Latino population is an ethnic group. Hispanic/Latino people may be of any race.Other layers provided in this tool included the Loudoun County Census block groups, towns and Dulles airport, and the Loudoun County 2021 aerial imagery.

  9. f

    The incidence of pregnancy hypertension in India, Pakistan, Mozambique, and...

    • datasetcatalog.nlm.nih.gov
    • plos.figshare.com
    Updated Apr 12, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    von Dadelszen, Peter; Macuacua, Salécio E.; Bellad, Mrutynjaya B.; Payne, Beth A.; Valá, Anifa; Shennan, Andrew H.; Sharma, Sumedha; Sevene, Esperança; Adetoro, Olalekan O.; Lee, Tang; Goudar, Shivaprasad; Qureshi, Rahat; Sotunsa, John; Nathan, Hannah L.; Vidler, Marianne; Mallapur, Ashalata; Bhutta, Zulfiqar A.; Magee, Laura A. (2019). The incidence of pregnancy hypertension in India, Pakistan, Mozambique, and Nigeria: A prospective population-level analysis [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0000152975
    Explore at:
    Dataset updated
    Apr 12, 2019
    Authors
    von Dadelszen, Peter; Macuacua, Salécio E.; Bellad, Mrutynjaya B.; Payne, Beth A.; Valá, Anifa; Shennan, Andrew H.; Sharma, Sumedha; Sevene, Esperança; Adetoro, Olalekan O.; Lee, Tang; Goudar, Shivaprasad; Qureshi, Rahat; Sotunsa, John; Nathan, Hannah L.; Vidler, Marianne; Mallapur, Ashalata; Bhutta, Zulfiqar A.; Magee, Laura A.
    Area covered
    Mozambique, Nigeria, India, Pakistan
    Description

    BackgroundMost pregnancy hypertension estimates in less-developed countries are from cross-sectional hospital surveys and are considered overestimates. We estimated population-based rates by standardised methods in 27 intervention clusters of the Community-Level Interventions for Pre-eclampsia (CLIP) cluster randomised trials.Methods and findingsCLIP-eligible pregnant women identified in their homes or local primary health centres (2013–2017). Included here are women who had delivered by trial end and received a visit from a community health worker trained to provide supplementary hypertension-oriented care, including standardised blood pressure (BP) measurement. Hypertension (BP ≥ 140/90 mm Hg) was defined as chronic (first detected at <20 weeks gestation) or gestational (≥20 weeks); pre-eclampsia was gestational hypertension plus proteinuria or a pre-eclampsia-defining complication. A multi-level regression model compared hypertension rates and types between countries (p < 0.05 considered significant). In 28,420 pregnancies studied, women were usually young (median age 23–28 years), parous (53.7%–77.3%), with singletons (≥97.5%), and enrolled at a median gestational age of 10.4 (India) to 25.9 weeks (Mozambique). Basic education varied (22.8% in Pakistan to 57.9% in India). Pregnancy hypertension incidence was lower in Pakistan (9.3%) than India (10.3%), Mozambique (10.9%), or Nigeria (10.2%) (p = 0.001). Most hypertension was diastolic only (46.4% in India, 72.7% in Pakistan, 61.3% in Mozambique, and 63.3% in Nigeria). At first presentation with elevated BP, gestational hypertension was most common diagnosis (particularly in Mozambique [8.4%] versus India [6.9%], Pakistan [6.5%], and Nigeria [7.1%]; p < 0.001), followed by pre-eclampsia (India [3.8%], Nigeria [3.0%], Pakistan [2.4%], and Mozambique [2.3%]; p < 0.001) and chronic hypertension (especially in Mozambique [2.5%] and Nigeria [2.8%], compared with India [1.2%] and Pakistan [1.5%]; p < 0.001). Inclusion of additional diagnoses of hypertension and related complications, from household surveys or facility record review (unavailable in Nigeria), revealed higher hypertension incidence: 14.0% in India, 11.6% in Pakistan, and 16.8% in Mozambique; eclampsia was rare (<0.5%).ConclusionsPregnancy hypertension is common in less-developed settings. Most women in this study presented with gestational hypertension amenable to surveillance and timed delivery to improve outcomes.Trial registrationThis study is a secondary analysis of a clinical trial - ClinicalTrials.gov registration number NCT01911494.

  10. T

    Global population survey data set (1950-2018)

    • data.tpdc.ac.cn
    • tpdc.ac.cn
    zip
    Updated Sep 3, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wen DONG (2020). Global population survey data set (1950-2018) [Dataset]. https://data.tpdc.ac.cn/en/data/ece5509f-2a2c-4a11-976e-8d939a419a6c
    Explore at:
    zipAvailable download formats
    Dataset updated
    Sep 3, 2020
    Dataset provided by
    TPDC
    Authors
    Wen DONG
    Area covered
    Description

    "Total population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship. The values shown are midyear estimates.This dataset includes demographic data of 22 countries from 1960 to 2018, including Sri Lanka, Bangladesh, Pakistan, India, Maldives, etc. Data fields include: country, year, population ratio, male ratio, female ratio, population density (km). Source: ( 1 ) United Nations Population Division. World Population Prospects: 2019 Revision. ( 2 ) Census reports and other statistical publications from national statistical offices, ( 3 ) Eurostat: Demographic Statistics, ( 4 ) United Nations Statistical Division. Population and Vital Statistics Reprot ( various years ), ( 5 ) U.S. Census Bureau: International Database, and ( 6 ) Secretariat of the Pacific Community: Statistics and Demography Programme. Periodicity: Annual Statistical Concept and Methodology: Population estimates are usually based on national population censuses. Estimates for the years before and after the census are interpolations or extrapolations based on demographic models. Errors and undercounting occur even in high-income countries. In developing countries errors may be substantial because of limits in the transport, communications, and other resources required to conduct and analyze a full census. The quality and reliability of official demographic data are also affected by public trust in the government, government commitment to full and accurate enumeration, confidentiality and protection against misuse of census data, and census agencies' independence from political influence. Moreover, comparability of population indicators is limited by differences in the concepts, definitions, collection procedures, and estimation methods used by national statistical agencies and other organizations that collect the data. The currentness of a census and the availability of complementary data from surveys or registration systems are objective ways to judge demographic data quality. Some European countries' registration systems offer complete information on population in the absence of a census. The United Nations Statistics Division monitors the completeness of vital registration systems. Some developing countries have made progress over the last 60 years, but others still have deficiencies in civil registration systems. International migration is the only other factor besides birth and death rates that directly determines a country's population growth. Estimating migration is difficult. At any time many people are located outside their home country as tourists, workers, or refugees or for other reasons. Standards for the duration and purpose of international moves that qualify as migration vary, and estimates require information on flows into and out of countries that is difficult to collect. Population projections, starting from a base year are projected forward using assumptions of mortality, fertility, and migration by age and sex through 2050, based on the UN Population Division's World Population Prospects database medium variant."

  11. World Population Live Dataset 2022

    • kaggle.com
    zip
    Updated Sep 10, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aman Chauhan (2022). World Population Live Dataset 2022 [Dataset]. https://www.kaggle.com/datasets/whenamancodes/world-population-live-dataset/code
    Explore at:
    zip(10169 bytes)Available download formats
    Dataset updated
    Sep 10, 2022
    Authors
    Aman Chauhan
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    World
    Description

    The current US Census Bureau world population estimate in June 2019 shows that the current global population is 7,577,130,400 people on earth, which far exceeds the world population of 7.2 billion from 2015. Our own estimate based on UN data shows the world's population surpassing 7.7 billion.

    China is the most populous country in the world with a population exceeding 1.4 billion. It is one of just two countries with a population of more than 1 billion, with India being the second. As of 2018, India has a population of over 1.355 billion people, and its population growth is expected to continue through at least 2050. By the year 2030, the country of India is expected to become the most populous country in the world. This is because India’s population will grow, while China is projected to see a loss in population.

    The next 11 countries that are the most populous in the world each have populations exceeding 100 million. These include the United States, Indonesia, Brazil, Pakistan, Nigeria, Bangladesh, Russia, Mexico, Japan, Ethiopia, and the Philippines. Of these nations, all are expected to continue to grow except Russia and Japan, which will see their populations drop by 2030 before falling again significantly by 2050.

    Many other nations have populations of at least one million, while there are also countries that have just thousands. The smallest population in the world can be found in Vatican City, where only 801 people reside.

    In 2018, the world’s population growth rate was 1.12%. Every five years since the 1970s, the population growth rate has continued to fall. The world’s population is expected to continue to grow larger but at a much slower pace. By 2030, the population will exceed 8 billion. In 2040, this number will grow to more than 9 billion. In 2055, the number will rise to over 10 billion, and another billion people won’t be added until near the end of the century. The current annual population growth estimates from the United Nations are in the millions - estimating that over 80 million new lives are added each year.

    This population growth will be significantly impacted by nine specific countries which are situated to contribute to the population growth more quickly than other nations. These nations include the Democratic Republic of the Congo, Ethiopia, India, Indonesia, Nigeria, Pakistan, Uganda, the United Republic of Tanzania, and the United States of America. Particularly of interest, India is on track to overtake China's position as the most populous country by the year 2030. Additionally, multiple nations within Africa are expected to double their populations before fertility rates begin to slow entirely.

    Global life expectancy has also improved in recent years, increasing the overall population life expectancy at birth to just over 70 years of age. The projected global life expectancy is only expected to continue to improve - reaching nearly 77 years of age by the year 2050. Significant factors impacting the data on life expectancy include the projections of the ability to reduce AIDS/HIV impact, as well as reducing the rates of infectious and non-communicable diseases.

    Population aging has a massive impact on the ability of the population to maintain what is called a support ratio. One key finding from 2017 is that the majority of the world is going to face considerable growth in the 60 plus age bracket. This will put enormous strain on the younger age groups as the elderly population is becoming so vast without the number of births to maintain a healthy support ratio.

    Although the number given above seems very precise, it is important to remember that it is just an estimate. It simply isn't possible to be sure exactly how many people there are on the earth at any one time, and there are conflicting estimates of the global population in 2016.

    Some, including the UN, believe that a population of 7 billion was reached in October 2011. Others, including the US Census Bureau and World Bank, believe that the total population of the world reached 7 billion in 2012, around March or April.

    ColumnsDescription
    CCA33 Digit Country/Territories Code
    NameName of the Country/Territories
    2022Population of the Country/Territories in the year 2022.
    2020Population of the Country/Territories in the year 2020.
    2015Population of the Country/Territories in the year 2015.
    2010Population of the Country/Territories in the year 2010.
    2000Population of the Country/Territories in the year 2000.
    1990Population of the Country/Territories in the year 1990.
    1980Population of the Country/Territories in the year 1980.
    1970Population of the Country/Territories in the year 1970.
    Area (km²)Area size of the Country/Territories in square kilometer.
    Density (per km²)Population Density per square kilometer.
    Grow...
  12. k

    International Macroeconomic Dataset (2015 Base)

    • datasource.kapsarc.org
    Updated Oct 26, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). International Macroeconomic Dataset (2015 Base) [Dataset]. https://datasource.kapsarc.org/explore/dataset/international-macroeconomic-data-set-2015/
    Explore at:
    Dataset updated
    Oct 26, 2025
    Description

    TThe ERS International Macroeconomic Data Set provides historical and projected data for 181 countries that account for more than 99 percent of the world economy. These data and projections are assembled explicitly to serve as underlying assumptions for the annual USDA agricultural supply and demand projections, which provide a 10-year outlook on U.S. and global agriculture. The macroeconomic projections describe the long-term, 10-year scenario that is used as a benchmark for analyzing the impacts of alternative scenarios and macroeconomic shocks.

    Explore the International Macroeconomic Data Set 2015 for annual growth rates, consumer price indices, real GDP per capita, exchange rates, and more. Get detailed projections and forecasts for countries worldwide.

    Annual growth rates, Consumer price indices (CPI), Real GDP per capita, Real exchange rates, Population, GDP deflator, Real gross domestic product (GDP), Real GDP shares, GDP, projections, Forecast, Real Estate, Per capita, Deflator, share, Exchange Rates, CPI

    Afghanistan, Albania, Algeria, Angola, Antigua and Barbuda, Argentina, Armenia, Australia, Austria, Azerbaijan, Bahamas, Bahrain, Bangladesh, Barbados, Belarus, Belgium, Belize, Benin, Bhutan, Bolivia, Bosnia and Herzegovina, Botswana, Brazil, Brunei, Bulgaria, Burkina Faso, Burundi, Côte d'Ivoire, Cabo Verde, Cambodia, Cameroon, Canada, Central African Republic, Chad, Chile, China, Colombia, Congo, Costa Rica, Croatia, Cuba, Cyprus, Denmark, Djibouti, Dominica, Dominican Republic, Ecuador, Egypt, El Salvador, Equatorial Guinea, Eritrea, Estonia, Eswatini, Ethiopia, Fiji, Finland, France, Gabon, Gambia, Georgia, Germany, Ghana, Greece, Grenada, Guatemala, Guinea, Guinea-Bissau, Guyana, Haiti, Honduras, Hungary, Iceland, India, Indonesia, Iran, Iraq, Ireland, Israel, Italy, Jamaica, Japan, Jordan, Kazakhstan, Kenya, Kuwait, Kyrgyzstan, Laos, Latvia, Lebanon, Lesotho, Liberia, Libya, Lithuania, Luxembourg, Madagascar, Malawi, Malaysia, Maldives, Mali, Malta, Mauritania, Mauritius, Mexico, Moldova, Mongolia, Morocco, Mozambique, Myanmar, Namibia, Nepal, Netherlands, New Zealand, Nicaragua, Niger, Nigeria, Norway, Oman, Pakistan, Panama, Papua New Guinea, Paraguay, Peru, Philippines, Poland, Portugal, Qatar, Romania, Russia, Rwanda, Samoa, Saudi Arabia, Senegal, Serbia, Seychelles, Sierra Leone, Singapore, Slovakia, Slovenia, Solomon Islands, South Africa, Spain, Sri Lanka, Sudan, Suriname, Sweden, Switzerland, Syria, Tajikistan, Tanzania, Thailand, Togo, Tonga, Trinidad and Tobago, Tunisia, Turkey, Turkmenistan, Uganda, Ukraine, United Arab Emirates, United Kingdom, Uruguay, Uzbekistan, Vanuatu, Venezuela, Vietnam, Yemen, Zambia, Zimbabwe, WORLD Follow data.kapsarc.org for timely data to advance energy economics research. Notes:

    Developed countries/1 Australia, New Zealand, Japan, Other Western Europe, European Union 27, North America

    Developed countries less USA/2 Australia, New Zealand, Japan, Other Western Europe, European Union 27, Canada

    Developing countries/3 Africa, Middle East, Other Oceania, Asia less Japan, Latin America;

    Low-income developing countries/4 Haiti, Afghanistan, Nepal, Benin, Burkina Faso, Burundi, Central African Republic, Chad, Democratic Republic of Congo, Eritrea, Ethiopia, Gambia, Guinea, Guinea-Bissau, Liberia, Madagascar, Malawi, Mali, Mozambique, Niger, Rwanda, Senegal, Sierra Leone, Somalia, Tanzania, Togo, Uganda, Zimbabwe;

    Emerging markets/5 Mexico, Brazil, Chile, Czech Republic, Hungary, Poland, Slovakia, Russia, China, India, Korea, Taiwan, Indonesia, Malaysia, Philippines, Thailand, Vietnam, Singapore

    BRIICs/5 Brazil, Russia, India, Indonesia, China; Former Centrally Planned Economies

    Former centrally planned economies/7 Cyprus, Malta, Recently acceded countries, Other Central Europe, Former Soviet Union

    USMCA/8 Canada, Mexico, United States

    Europe and Central Asia/9 Europe, Former Soviet Union

    Middle East and North Africa/10 Middle East and North Africa

    Other Southeast Asia outlook/11 Malaysia, Philippines, Thailand, Vietnam

    Other South America outlook/12 Chile, Colombia, Peru, Bolivia, Paraguay, Uruguay

    Indicator Source

    Real gross domestic product (GDP) World Bank World Development Indicators, IHS Global Insight, Oxford Economics Forecasting, as well as estimated and projected values developed by the Economic Research Service all converted to a 2015 base year.

    Real GDP per capita U.S. Department of Agriculture, Economic Research Service, Macroeconomic Data Set, GDP table and Population table.

    GDP deflator World Bank World Development Indicators, IHS Global Insight, Oxford Economics Forecasting, as well as estimated and projected values developed by the Economic Research Service, all converted to a 2015 base year.

    Real GDP shares U.S. Department of Agriculture, Economic Research Service, Macroeconomic Data Set, GDP table.

    Real exchange rates U.S. Department of Agriculture, Economic Research Service, Macroeconomic Data Set, CPI table, and Nominal XR and Trade Weights tables developed by the Economic Research Service.

    Consumer price indices (CPI) International Financial Statistics International Monetary Fund, IHS Global Insight, Oxford Economics Forecasting, as well as estimated and projected values developed by the Economic Research Service, all converted to a 2015 base year.

    Population Department of Commerce, Bureau of the Census, U.S. Department of Agriculture, Economic Research Service, International Data Base.

  13. Statewise Distribution of Population-2011

    • kaggle.com
    zip
    Updated Aug 3, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Diya Santhosh (2022). Statewise Distribution of Population-2011 [Dataset]. https://www.kaggle.com/datasets/diyasanthosh/statewise-distribution-of-population2011
    Explore at:
    zip(11867 bytes)Available download formats
    Dataset updated
    Aug 3, 2022
    Authors
    Diya Santhosh
    Description

    The Dataset consist of distribution of population across different states. The dataset also gives information regarding the area of the state, urban-rural distribution of population, population density, sex ratio and literacy rates in different states with reference from 2011 census. The dataset helps in analysis of population distribution of India.

    Note: *Disputed area of 13 km^2 between Puducherry and Andhra Pradesh is included in neither. *The shortfall of 7 km^2 area of Madhya Pradesh and 3 km^2 area of Chhattisgarh is yet to be resolved by the Survey of India. *Area figures do not include the areas claimed by India that are in Pakistani or Chinese administrative control. This includes 78,114 km^2 of area in Azad Kashmir and Gilgit-Baltistan under Pakistani administration, 5,180 km^2 of area in Shaksgam Valley ceded to China by Pakistan and 37,555 km^2 of area in Aksai Chin under Chinese administration totaling to 120,849 km^2.

  14. Aqueduct Global Flood Risk Country Rankings - Datasets - Data | World...

    • old-datasets.wri.org
    Updated Mar 4, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    wri.org (2015). Aqueduct Global Flood Risk Country Rankings - Datasets - Data | World Resources Institute [Dataset]. https://old-datasets.wri.org/dataset/aqueduct-global-flood-risk-country-rankings
    Explore at:
    Dataset updated
    Mar 4, 2015
    Dataset provided by
    World Resources Institutehttps://www.wri.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Approximately, 21 million people worldwide could be affected by river floods on average each year, and the 15 countries with the most people exposed, including India, Bangladesh, China, Vietnam, Pakistan, Indonesia, Egypt, Myanmar, Afghanistan, Nigeria, Brazil, Thailand, Democratic Republic of Congo, Iraq, and Cambodia, account for nearly 80 percent of the total population affected in an average year. Summary The Aqueduct Global Flood Risk Country Ranking ranks 163 countries by their current annual average population affected by river floods using the Aqueduct Global Flood Analyzer. Approximately, 21 million people worldwide could be affected by river floods on average each year, and the 15 countries with the most people exposed, including India, Bangladesh, China, Vietnam, Pakistan, Indonesia, Egypt, Myanmar, Afghanistan, Nigeria, Brazil, Thailand, Democratic Republic of Congo, Iraq, and Cambodia, account for nearly 80 percent of the total population affected in an average year. A country-wide estimated average flood protection level was given to each country based on its income level. Cautions Assumption: We assigned a country-wide average flood protection level for each country based on its income level (World Bank). 1) For low-income countries, we assume 10-year flood protection; 2) for lower-middle income countries, we assume 25-year flood protection; 3) for upper-middle income countries, we assume 50-year flood protection; 4) for high-income countries, we assume 100-year flood protection; and 5) for the Netherlands, we assume a 1000-year flood protection. Citation

  15. T

    A 1km population dataset of South Asia from 640 to 2020

    • tpdc.ac.cn
    zip
    Updated Apr 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shicheng LI; Yanqiao HUANG (2025). A 1km population dataset of South Asia from 640 to 2020 [Dataset]. http://doi.org/10.11888/HumanNat.tpdc.302031
    Explore at:
    zipAvailable download formats
    Dataset updated
    Apr 10, 2025
    Dataset provided by
    TPDC
    Authors
    Shicheng LI; Yanqiao HUANG
    Area covered
    Description

    South Asia is one of the most densely populated regions in the world. This dataset comprehensively collects historical materials related to the population of South Asia and previous research results (see data description documents and references for details), carefully examines and estimates the population of South Asia (now India, Pakistan, Nepal, Bangladesh) from 640 to 1801 AD, and connects it with the population census data of British India from 1871 to 1941 (Nepal's data comes from Nepal's census data) and the United Nations World Population Prospects data from 1950 to 2020, obtaining the population of South Asia for a total of 22 periods (640, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1595, 1750, 1801, 1871, 1901, 1921, 1941, 1960, 1980, 2000, 2010, 2020) from 640 to 2020. Next, based on geographic detectors, select the dominant environmental factors that affect the spatial distribution of population, collect historical data on the distribution of residential areas (see data description document and references for details), and use a random forest regression model to spatialize the population size. On the basis of excluding uninhabited areas such as water bodies, glaciers, and bare/unused land, and determining the maximum historical population distribution range, a 1km resolution population dataset for South Asia from 640 to 2020 was developed. The leave one method was used to test the model, and the variance explained was 0.81, indicating good model accuracy. Compared with the existing HYDE historical population dataset, this study incorporates more historical materials and the latest research results in estimating the historical population; In using random forest regression for historical population spatial simulation, this study considers the changes in South Asian settlements over the past millennium, while the HYDE dataset only considers natural elements and considers them stable and unchanged. Therefore, this dataset is more reliable than the HYDE dataset and can more reasonably reveal the spatiotemporal characteristics of population changes in South Asia during historical periods. It is the basic data for the long-term evolution of human land relations, climate change attribution, and ecological protection research in South Asia.

  16. T

    A 1 km cropland dataset of South Asia from 640 to 2016

    • data.tpdc.ac.cn
    zip
    Updated Apr 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shicheng LI; Xin LIU (2025). A 1 km cropland dataset of South Asia from 640 to 2016 [Dataset]. http://doi.org/10.11888/HumanNat.tpdc.302027
    Explore at:
    zipAvailable download formats
    Dataset updated
    Apr 10, 2025
    Dataset provided by
    TPDC
    Authors
    Shicheng LI; Xin LIU
    Area covered
    Description

    Based on a large number of historical records and previous studies, we first estimated the historical population of South Asia (including India, Pakistan, Nepal, and Bangladesh) for AD 640-1871, and then calculated the per capita cropland area of South Asia from 640 to 1871 through some reliable historical archives at several time points. Then, by multiplying the historical per capita cropland area by the number of people, the cropland area from 640 to 1871 AD was estimated, and it was connected with the official cropland area statistics from 1900 to 2016 to obtain the cropland area in South Asia from 640 to 2016. Finally, according to the topography, soil and climate characteristics of South Asia, we evaluated the land suitability for cultivation and constructed the spatial reconstruction model of historical cropland in South Asia, and the estimated cropland area was input into the model, and the 1km cropland dataset from 640 to 2016 in South Asia was obtained. Compared with the global historical land use datasets HYDE and KK10, this dataset can more realistically reflect the history of cropland change in South Asia, and can be used to explore the impact of cropland change in South Asia on carbon emissions, climate change, biodiversity and ecosystem services changes in the past millennium.

  17. k

    Penn World Table 10.01

    • data.kapsarc.org
    • datasource.kapsarc.org
    Updated Oct 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Penn World Table 10.01 [Dataset]. https://data.kapsarc.org/explore/dataset/penn-world-table-90/?flg=ar-001
    Explore at:
    Dataset updated
    Oct 29, 2024
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Explore the Penn World Table dataset featuring key economic indicators like real GDP, population, human capital index, and more. Access detailed information and analysis for various countries.

    Expenditure, GDP, PPP, output, Population, working hours, Index, Household, Consumption, Capital , IRR, prices

    Albania, Algeria, Angola, Antigua and Barbuda, Argentina, Armenia, Australia, Austria, Azerbaijan, Bahamas, Bahrain, Bangladesh, Barbados, Belarus, Belgium, Belize, Benin, Bhutan, Bolivia, Bosnia and Herzegovina, Botswana, Brazil, Brunei, Bulgaria, Burkina Faso, Burundi, Côte d'Ivoire, Cabo Verde, Cambodia, Cameroon, Canada, Central African Republic, Chad, Chile, China, Colombia, Comoros, Congo, Costa Rica, Croatia, Cyprus, Denmark, Djibouti, Dominica, Dominican Republic, Ecuador, Egypt, El Salvador, Equatorial Guinea, Estonia, Eswatini, Ethiopia, Fiji, Finland, France, Gabon, Gambia, Georgia, Germany, Ghana, Greece, Grenada, Guatemala, Guinea, Guinea-Bissau, Guyana, Haiti, Honduras, Hungary, Iceland, India, Indonesia, Iran, Iraq, Ireland, Israel, Italy, Jamaica, Japan, Jordan, Kazakhstan, Kenya, Kuwait, Kyrgyzstan, Latvia, Lebanon, Lesotho, Liberia, Lithuania, Luxembourg, Madagascar, Malawi, Malaysia, Maldives, Mali, Malta, Mauritania, Mauritius, Mexico, Moldova, Mongolia, Montenegro, Morocco, Mozambique, Myanmar, Namibia, Nepal, Netherlands, New Zealand, Nicaragua, Niger, Nigeria, North Macedonia, Norway, Oman, Pakistan, Panama, Paraguay, Peru, Philippines, Poland, Portugal, Qatar, Romania, Russia, Rwanda, Saint Kitts and Nevis, Saint Lucia, Sao Tome and Principe, Saudi Arabia, Senegal, Serbia, Seychelles, Sierra Leone, Singapore, Slovakia, Slovenia, South Africa, Spain, Sri Lanka, Sudan, Suriname, Sweden, Switzerland, Syria, Tajikistan, Tanzania, Thailand, Togo, Trinidad and Tobago, Tunisia, Turkey, Turkmenistan, Uganda, Ukraine, United Arab Emirates, United Kingdom, Uruguay, Uzbekistan, Venezuela, Yemen, Zambia, Zimbabwe, World Follow data.kapsarc.org for timely data to advance energy economics research. When using these data, please refer to the following paper:Feenstra, Robert C., Robert Inklaar and Marcel P. Timmer (2015), "The Next Generation of the Penn World Table" American Economic Review, 105(10), 3150-3182, available for download at www.ggdc.net/pwt

  18. Linearized FST distances between Mauritius and the different South Asian...

    • plos.figshare.com
    • datasetcatalog.nlm.nih.gov
    xls
    Updated Jun 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rosa Fregel; Krish Seetah; Eva Betancor; Nicolás M. Suárez; Diego Calaon; Saša Čaval; Anwar Janoo; Jose Pestano (2023). Linearized FST distances between Mauritius and the different South Asian sub-regions (MAU  =  Mauritius; PWI  =  Pakistan and West India; SWI  =  Southwest India; NI  =  North India; SEI  =  Southeast India; BEI  =  Bangladesh and East India). [Dataset]. http://doi.org/10.1371/journal.pone.0093294.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 4, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Rosa Fregel; Krish Seetah; Eva Betancor; Nicolás M. Suárez; Diego Calaon; Saša Čaval; Anwar Janoo; Jose Pestano
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    India, Western India, Pakistan, Bangladesh, Mauritius
    Description

    Linearized FST distances between Mauritius and the different South Asian sub-regions (MAU  =  Mauritius; PWI  =  Pakistan and West India; SWI  =  Southwest India; NI  =  North India; SEI  =  Southeast India; BEI  =  Bangladesh and East India).

  19. Asian Growth & Development

    • kaggle.com
    zip
    Updated Nov 11, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    willian oliveira (2024). Asian Growth & Development [Dataset]. https://www.kaggle.com/datasets/willianoliveiragibin/asian-growth-and-development/suggestions
    Explore at:
    zip(8727 bytes)Available download formats
    Dataset updated
    Nov 11, 2024
    Authors
    willian oliveira
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    This dataset provides a detailed view of South Asian countries' socio-economic, environmental, and governance metrics from 2000 to 2023. It compiles key indicators like GDP, unemployment, literacy rates, energy use, governance measures, and more to facilitate a comprehensive analysis of each country’s growth, stability, and development trends over the years. The data covers Bangladesh, Bhutan, India, Pakistan, Nepal, Sri Lanka, Afghanistan, and Maldives.

    Key Indicators Economic Metrics: Includes GDP (both total and per capita in USD), annual GDP growth rates, inflation, and foreign direct investment. These metrics offer insight into economic health, growth rate, and international investment trends across the region. Employment and Trade: Tracks unemployment rates as a percentage of the labor force and trade (as a percentage of GDP), helping assess workforce stability and international commerce engagement. Income and Poverty: Features the Gini index (for income inequality) and poverty headcount ratio at $2.15/day, showing income distribution and poverty levels. These indicators reveal disparities and poverty within each country. Population Statistics: Includes total population, annual population growth, and urban population percentage, capturing demographic trends and urbanization rates. Social Indicators: Covers literacy rates, school enrollment in primary education, life expectancy at birth, infant mortality rates, and access to electricity, basic water, and sanitation services. These data points help measure the population’s health, education levels, and access to essential services. Environmental and Energy Metrics: Tracks CO2 emissions, PM2.5 air pollution, renewable energy consumption, and forest area. This environmental data is crucial for analyzing air quality, sustainable energy use, and forest coverage trends. Governance Indicators: Includes metrics such as control of corruption, political stability, regulatory quality, rule of law, and voice and accountability. These indicators reflect each country’s governance quality and institutional stability. Digital and Technological Growth: Measures internet usage rates, research and development spending, and high-technology exports. These statistics indicate digital access, innovation, and technological progress. This dataset, sourced from the World Bank DataBank, provides a robust foundation for studying South Asia's socio-economic, environmental, and governance progress. By analyzing these diverse indicators, researchers and policymakers can gain a deeper understanding of the region’s development path and identify areas that need improvement.

  20. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Ayushmaan03 (2024). India & Pak Migration and Population Trends [Dataset]. https://www.kaggle.com/datasets/ayushmaan03/india-and-pak-migration-and-population-trends/code
Organization logo

India & Pak Migration and Population Trends

Explore at:
zip(1581 bytes)Available download formats
Dataset updated
Dec 11, 2024
Authors
Ayushmaan03
License

MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically

Area covered
India, Pakistan
Description

Dataset

This dataset was created by Ayushmaan03

Released under MIT

Contents

Search
Clear search
Close search
Google apps
Main menu