Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Alinaghi, N., Giannopoulos, I., Kattenbeck, M., & Raubal, M. (2025). Decoding wayfinding: analyzing wayfinding processes in the outdoor environment. International Journal of Geographical Information Science, 1–31. https://doi.org/10.1080/13658816.2025.2473599
Link to the paper: https://www.tandfonline.com/doi/full/10.1080/13658816.2025.2473599
The folder named “submission” contains the following:
ijgis.yml
: This file lists all the Python libraries and dependencies required to run the code.ijgis.yml
file to create a Python project and environment. Ensure you activate the environment before running the code.pythonProject
folder contains several .py
files and subfolders, each with specific functionality as described below..png
file for each column of the raw gaze and IMU recordings, color-coded with logged events..csv
files.overlapping_sliding_window_loop.py
.plot_labels_comparison(df, save_path, x_label_freq=10, figsize=(15, 5))
in line 116 visualizes the data preparation results. As this visualization is not used in the paper, the line is commented out, but if you want to see visually what has been changed compared to the original data, you can comment out this line..csv
files in the results folder.This part contains three main code blocks:
iii. One for the XGboost code with correct hyperparameter tuning:
Please read the instructions for each block carefully to ensure that the code works smoothly. Regardless of which block you use, you will get the classification results (in the form of scores) for unseen data. The way we empirically test the confidence threshold of
Note: Please read the instructions for each block carefully to ensure that the code works smoothly. Regardless of which block you use, you will get the classification results (in the form of scores) for unseen data. The way we empirically calculated the confidence threshold of the model (explained in the paper in Section 5.2. Part II: Decoding surveillance by sequence analysis) is given in this block in lines 361 to 380.
.csv
file containing inferred labels.The data is licensed under CC-BY, the code is licensed under MIT.
klib library enables us to quickly visualize missing data, perform data cleaning, visualize data distribution plot, visualize correlation plot and visualize categorical column values. klib is a Python library for importing, cleaning, analyzing and preprocessing data. Explanations on key functionalities can be found on Medium / TowardsDataScience in the examples section or on YouTube (Data Professor).
Original Github repo
https://raw.githubusercontent.com/akanz1/klib/main/examples/images/header.png" alt="klib Header">
!pip install klib
import klib
import pandas as pd
df = pd.DataFrame(data)
# klib.describe functions for visualizing datasets
- klib.cat_plot(df) # returns a visualization of the number and frequency of categorical features
- klib.corr_mat(df) # returns a color-encoded correlation matrix
- klib.corr_plot(df) # returns a color-encoded heatmap, ideal for correlations
- klib.dist_plot(df) # returns a distribution plot for every numeric feature
- klib.missingval_plot(df) # returns a figure containing information about missing values
Take a look at this starter notebook.
Further examples, as well as applications of the functions can be found here.
Pull requests and ideas, especially for further functions are welcome. For major changes or feedback, please open an issue first to discuss what you would like to change. Take a look at this Github repo.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundThe Department of Rehabilitation Medicine is key to improving patients’ quality of life. Driven by chronic diseases and an aging population, there is a need to enhance the efficiency and resource allocation of outpatient facilities. This study aims to analyze the treatment preferences of outpatient rehabilitation patients by using data and a grading tool to establish predictive models. The goal is to improve patient visit efficiency and optimize resource allocation through these predictive models.MethodsData were collected from 38 Chinese institutions, including 4,244 patients visiting outpatient rehabilitation clinics. Data processing was conducted using Python software. The pandas library was used for data cleaning and preprocessing, involving 68 categorical and 12 continuous variables. The steps included handling missing values, data normalization, and encoding conversion. The data were divided into 80% training and 20% test sets using the Scikit-learn library to ensure model independence and prevent overfitting. Performance comparisons among XGBoost, random forest, and logistic regression were conducted using metrics, including accuracy and receiver operating characteristic (ROC) curves. The imbalanced learning library’s SMOTE technique was used to address the sample imbalance during model training. The model was optimized using a confusion matrix and feature importance analysis, and partial dependence plots (PDP) were used to analyze the key influencing factors.ResultsXGBoost achieved the highest overall accuracy of 80.21% with high precision and recall in Category 1. random forest showed a similar overall accuracy. Logistic Regression had a significantly lower accuracy, indicating difficulties with nonlinear data. The key influencing factors identified include distance to medical institutions, arrival time, length of hospital stay, and specific diseases, such as cardiovascular, pulmonary, oncological, and orthopedic conditions. The tiered diagnosis and treatment tool effectively helped doctors assess patients’ conditions and recommend suitable medical institutions based on rehabilitation grading.ConclusionThis study confirmed that ensemble learning methods, particularly XGBoost, outperform single models in classification tasks involving complex datasets. Addressing class imbalance and enhancing feature engineering can further improve model performance. Understanding patient preferences and the factors influencing medical institution selection can guide healthcare policies to optimize resource allocation, improve service quality, and enhance patient satisfaction. Tiered diagnosis and treatment tools play a crucial role in helping doctors evaluate patient conditions and make informed recommendations for appropriate medical care.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Part of the dissertation Pitch of Voiced Speech in the Short-Time Fourier Transform: Algorithms, Ground Truths, and Evaluation Methods.© 2020, Bastian Bechtold. All rights reserved. Estimating the fundamental frequency of speech remains an active area of research, with varied applications in speech recognition, speaker identification, and speech compression. A vast number of algorithms for estimatimating this quantity have been proposed over the years, and a number of speech and noise corpora have been developed for evaluating their performance. The present dataset contains estimated fundamental frequency tracks of 25 algorithms, six speech corpora, two noise corpora, at nine signal-to-noise ratios between -20 and 20 dB SNR, as well as an additional evaluation of synthetic harmonic tone complexes in white noise.The dataset also contains pre-calculated performance measures both novel and traditional, in reference to each speech corpus’ ground truth, the algorithms’ own clean-speech estimate, and our own consensus truth. It can thus serve as the basis for a comparison study, or to replicate existing studies from a larger dataset, or as a reference for developing new fundamental frequency estimation algorithms. All source code and data is available to download, and entirely reproducible, albeit requiring about one year of processor-time.Included Code and Data
ground truth data.zip is a JBOF dataset of fundamental frequency estimates and ground truths of all speech files in the following corpora:
CMU-ARCTIC (consensus truth) [1]FDA (corpus truth and consensus truth) [2]KEELE (corpus truth and consensus truth) [3]MOCHA-TIMIT (consensus truth) [4]PTDB-TUG (corpus truth and consensus truth) [5]TIMIT (consensus truth) [6]
noisy speech data.zip is a JBOF datasets of fundamental frequency estimates of speech files mixed with noise from the following corpora:NOISEX [7]QUT-NOISE [8]
synthetic speech data.zip is a JBOF dataset of fundamental frequency estimates of synthetic harmonic tone complexes in white noise.noisy_speech.pkl and synthetic_speech.pkl are pickled Pandas dataframes of performance metrics derived from the above data for the following list of fundamental frequency estimation algorithms:AUTOC [9]AMDF [10]BANA [11]CEP [12]CREPE [13]DIO [14]DNN [15]KALDI [16]MAPSMBSC [17]NLS [18]PEFAC [19]PRAAT [20]RAPT [21]SACC [22]SAFE [23]SHR [24]SIFT [25]SRH [26]STRAIGHT [27]SWIPE [28]YAAPT [29]YIN [30]
noisy speech evaluation.py and synthetic speech evaluation.py are Python programs to calculate the above Pandas dataframes from the above JBOF datasets. They calculate the following performance measures:Gross Pitch Error (GPE), the percentage of pitches where the estimated pitch deviates from the true pitch by more than 20%.Fine Pitch Error (FPE), the mean error of grossly correct estimates.High/Low Octave Pitch Error (OPE), the percentage pitches that are GPEs and happens to be at an integer multiple of the true pitch.Gross Remaining Error (GRE), the percentage of pitches that are GPEs but not OPEs.Fine Remaining Bias (FRB), the median error of GREs.True Positive Rate (TPR), the percentage of true positive voicing estimates.False Positive Rate (FPR), the percentage of false positive voicing estimates.False Negative Rate (FNR), the percentage of false negative voicing estimates.F₁, the harmonic mean of precision and recall of the voicing decision.
Pipfile is a pipenv-compatible pipfile for installing all prerequisites necessary for running the above Python programs.
The Python programs take about an hour to compute on a fast 2019 computer, and require at least 32 Gb of memory.References:
John Kominek and Alan W Black. CMU ARCTIC database for speech synthesis, 2003.Paul C Bagshaw, Steven Hiller, and Mervyn A Jack. Enhanced Pitch Tracking and the Processing of F0 Contours for Computer Aided Intonation Teaching. In EUROSPEECH, 1993.F Plante, Georg F Meyer, and William A Ainsworth. A Pitch Extraction Reference Database. In Fourth European Conference on Speech Communication and Technology, pages 837–840, Madrid, Spain, 1995.Alan Wrench. MOCHA MultiCHannel Articulatory database: English, November 1999.Gregor Pirker, Michael Wohlmayr, Stefan Petrik, and Franz Pernkopf. A Pitch Tracking Corpus with Evaluation on Multipitch Tracking Scenario. page 4, 2011.John S. Garofolo, Lori F. Lamel, William M. Fisher, Jonathan G. Fiscus, David S. Pallett, Nancy L. Dahlgren, and Victor Zue. TIMIT Acoustic-Phonetic Continuous Speech Corpus, 1993.Andrew Varga and Herman J.M. Steeneken. Assessment for automatic speech recognition: II. NOISEX-92: A database and an experiment to study the effect of additive noise on speech recog- nition systems. Speech Communication, 12(3):247–251, July 1993.David B. Dean, Sridha Sridharan, Robert J. Vogt, and Michael W. Mason. The QUT-NOISE-TIMIT corpus for the evaluation of voice activity detection algorithms. Proceedings of Interspeech 2010, 2010.Man Mohan Sondhi. New methods of pitch extraction. Audio and Electroacoustics, IEEE Transactions on, 16(2):262—266, 1968.Myron J. Ross, Harry L. Shaffer, Asaf Cohen, Richard Freudberg, and Harold J. Manley. Average magnitude difference function pitch extractor. Acoustics, Speech and Signal Processing, IEEE Transactions on, 22(5):353—362, 1974.Na Yang, He Ba, Weiyang Cai, Ilker Demirkol, and Wendi Heinzelman. BaNa: A Noise Resilient Fundamental Frequency Detection Algorithm for Speech and Music. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 22(12):1833–1848, December 2014.Michael Noll. Cepstrum Pitch Determination. The Journal of the Acoustical Society of America, 41(2):293–309, 1967.Jong Wook Kim, Justin Salamon, Peter Li, and Juan Pablo Bello. CREPE: A Convolutional Representation for Pitch Estimation. arXiv:1802.06182 [cs, eess, stat], February 2018. arXiv: 1802.06182.Masanori Morise, Fumiya Yokomori, and Kenji Ozawa. WORLD: A Vocoder-Based High-Quality Speech Synthesis System for Real-Time Applications. IEICE Transactions on Information and Systems, E99.D(7):1877–1884, 2016.Kun Han and DeLiang Wang. Neural Network Based Pitch Tracking in Very Noisy Speech. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 22(12):2158–2168, Decem- ber 2014.Pegah Ghahremani, Bagher BabaAli, Daniel Povey, Korbinian Riedhammer, Jan Trmal, and Sanjeev Khudanpur. A pitch extraction algorithm tuned for automatic speech recognition. In Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on, pages 2494–2498. IEEE, 2014.Lee Ngee Tan and Abeer Alwan. Multi-band summary correlogram-based pitch detection for noisy speech. Speech Communication, 55(7-8):841–856, September 2013.Jesper Kjær Nielsen, Tobias Lindstrøm Jensen, Jesper Rindom Jensen, Mads Græsbøll Christensen, and Søren Holdt Jensen. Fast fundamental frequency estimation: Making a statistically efficient estimator computationally efficient. Signal Processing, 135:188–197, June 2017.Sira Gonzalez and Mike Brookes. PEFAC - A Pitch Estimation Algorithm Robust to High Levels of Noise. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 22(2):518—530, February 2014.Paul Boersma. Accurate short-term analysis of the fundamental frequency and the harmonics-to-noise ratio of a sampled sound. In Proceedings of the institute of phonetic sciences, volume 17, page 97—110. Amsterdam, 1993.David Talkin. A robust algorithm for pitch tracking (RAPT). Speech coding and synthesis, 495:518, 1995.Byung Suk Lee and Daniel PW Ellis. Noise robust pitch tracking by subband autocorrelation classification. In Interspeech, pages 707–710, 2012.Wei Chu and Abeer Alwan. SAFE: a statistical algorithm for F0 estimation for both clean and noisy speech. In INTERSPEECH, pages 2590–2593, 2010.Xuejing Sun. Pitch determination and voice quality analysis using subharmonic-to-harmonic ratio. In Acoustics, Speech, and Signal Processing (ICASSP), 2002 IEEE International Conference on, volume 1, page I—333. IEEE, 2002.Markel. The SIFT algorithm for fundamental frequency estimation. IEEE Transactions on Audio and Electroacoustics, 20(5):367—377, December 1972.Thomas Drugman and Abeer Alwan. Joint Robust Voicing Detection and Pitch Estimation Based on Residual Harmonics. In Interspeech, page 1973—1976, 2011.Hideki Kawahara, Masanori Morise, Toru Takahashi, Ryuichi Nisimura, Toshio Irino, and Hideki Banno. TANDEM-STRAIGHT: A temporally stable power spectral representation for periodic signals and applications to interference-free spectrum, F0, and aperiodicity estimation. In Acous- tics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE International Conference on, pages 3933–3936. IEEE, 2008.Arturo Camacho. SWIPE: A sawtooth waveform inspired pitch estimator for speech and music. PhD thesis, University of Florida, 2007.Kavita Kasi and Stephen A. Zahorian. Yet Another Algorithm for Pitch Tracking. In IEEE International Conference on Acoustics Speech and Signal Processing, pages I–361–I–364, Orlando, FL, USA, May 2002. IEEE.Alain de Cheveigné and Hideki Kawahara. YIN, a fundamental frequency estimator for speech and music. The Journal of the Acoustical Society of America, 111(4):1917, 2002.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset features data on over 10,000 films from TMDB, gathered using the TMDB API. It encompasses details such as film identifiers, titles, release dates, average votes, vote counts, overviews, and popularity metrics. The dataset may contain null values where information was not available from the TMDB database. It is particularly useful for new analysts looking to practise handling missing data and for developing film recommendation systems.
id
: Unique identifier for the film.title
: The name of the film.overview
: A brief summary or synopsis of the film.release_date
: The original release date of the film.popularity
: A numerical score indicating the film's popularity.vote_average
: The average vote score received by the film.vote_count
: The total number of votes cast for the film.The dataset contains information on over 10,000 films. The data is typically available in CSV format, structured as a pandas DataFrame. It includes unique identifiers for nearly 10,000 films. Release dates span from 17th April 1902 to 7th September 2022. Popularity scores vary widely, with the majority falling into the lower ranges but some reaching high values. Vote counts also show a broad distribution, and average vote scores range from approximately 5.00 to 8.70. Some fields within the dataset may contain null values.
This dataset is ideal for: * Developing and testing film recommendation systems. * Practising data cleaning and handling of missing values, particularly beneficial for new data analysts. * Exploratory data analysis of film trends and audience reception.
The dataset's coverage is global. It includes films released between 17th April 1902 and 7th September 2022. No specific demographic scope is noted; coverage is based on films available through the TMDB API.
CC0
Original Data Source: TMDB MOVIES DATASET
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
🚀**# BCG Data Science Job Simulation | Forage** This notebook focuses on feature engineering techniques to enhance a dataset for churn prediction modeling. As part of the BCG Data Science Job Simulation, I transformed raw customer data into valuable features to improve predictive performance.
📊 What’s Inside? ✅ Data Cleaning: Removing irrelevant columns to reduce noise ✅ Date-Based Feature Extraction: Converting raw dates into useful insights like activation year, contract length, and renewal month ✅ New Predictive Features:
consumption_trend → Measures if a customer’s last-month usage is increasing or decreasing total_gas_and_elec → Aggregates total energy consumption ✅ Final Processed Dataset: Ready for churn prediction modeling
📂Dataset Used: 📌 clean_data_after_eda.csv → Original dataset after Exploratory Data Analysis (EDA) 📌 clean_data_with_new_features.csv → Final dataset after feature engineering
🛠 Technologies Used: 🔹 Python (Pandas, NumPy) 🔹 Data Preprocessing & Feature Engineering
🌟 Why Feature Engineering? Feature engineering is one of the most critical steps in machine learning. Well-engineered features improve model accuracy and uncover deeper insights into customer behavior.
🚀 This notebook is a great reference for anyone learning data preprocessing, feature selection, and predictive modeling in Data Science!
📩 Connect with Me: 🔗 GitHub Repo: https://github.com/Pavitr-Swain/BCG-Data-Science-Job-Simulation 💼 LinkedIn: https://www.linkedin.com/in/pavitr-kumar-swain-ab708b227/
🔍 Let’s explore churn prediction insights together! 🎯
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
This is a structured, multi-table dataset designed to simulate a hospital management system. It is ideal for practicing data analysis, SQL, machine learning, and healthcare analytics.
Dataset Overview
This dataset includes five CSV files:
patients.csv – Patient demographics, contact details, registration info, and insurance data
doctors.csv – Doctor profiles with specializations, experience, and contact information
appointments.csv – Appointment dates, times, visit reasons, and statuses
treatments.csv – Treatment types, descriptions, dates, and associated costs
billing.csv – Billing amounts, payment methods, and status linked to treatments
📁 Files & Column Descriptions
** patients.csv**
Contains patient demographic and registration details.
Column Description
patient_id -> Unique ID for each patient first_name -> Patient's first name last_name -> Patient's last name gender -> Gender (M/F) date_of_birth -> Date of birth contact_number -> Phone number address -> Address of the patient registration_date -> Date of first registration at the hospital insurance_provider -> Insurance company name insurance_number -> Policy number email -> Email address
** doctors.csv**
Details about the doctors working in the hospital.
Column Description
doctor_id -> Unique ID for each doctor first_name -> Doctor's first name last_name -> Doctor's last name specialization -> Medical field of expertise phone_number -> Contact number years_experience -> Total years of experience hospital_branch -> Branch of hospital where doctor is based email -> Official email address
appointments.csv
Records of scheduled and completed patient appointments.
Column Description
appointment_id -> Unique appointment ID patient_id -> ID of the patient doctor_id -> ID of the attending doctor appointment_date -> Date of the appointment appointment_time -> Time of the appointment reason_for_visit -> Purpose of visit (e.g., checkup) status -> Status (Scheduled, Completed, Cancelled)
treatments.csv
Information about the treatments given during appointments.
Column Description
treatment_id -> Unique ID for each treatment appointment_id -> Associated appointment ID treatment_type -> Type of treatment (e.g., MRI, X-ray) description -> Notes or procedure details cost -> Cost of treatment treatment_date -> Date when treatment was given
** billing.csv**
Billing and payment details for treatments.
Column Description
bill_id -> Unique billing ID patient_id -> ID of the billed patient treatment_id -> ID of the related treatment bill_date -> Date of billing amount -> Total amount billed payment_method -> Mode of payment (Cash, Card, Insurance) payment_status -> Status of payment (Paid, Pending, Failed)
Possible Use Cases
SQL queries and relational database design
Exploratory data analysis (EDA) and dashboarding
Machine learning projects (e.g., cost prediction, no-show analysis)
Feature engineering and data cleaning practice
End-to-end healthcare analytics workflows
Recommended Tools & Resources
SQL (joins, filters, window functions)
Pandas and Matplotlib/Seaborn for EDA
Scikit-learn for ML models
Pandas Profiling for automated EDA
Plotly for interactive visualizations
Please Note that :
All data is synthetically generated for educational and project use. No real patient information is included.
If you find this dataset helpful, consider upvoting or sharing your insights by creating a Kaggle notebook.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Title: 9,565 Top-Rated Movies Dataset
Description:
This dataset offers a comprehensive collection of 9,565 of the highest-rated movies according to audience ratings on the Movie Database (TMDb). The dataset includes detailed information about each movie, such as its title, overview, release date, popularity score, average vote, and vote count. It is designed to be a valuable resource for anyone interested in exploring trends in popular cinema, analyzing factors that contribute to a movie’s success, or building recommendation engines.
Key Features:
- Title: The official title of each movie.
- Overview: A brief synopsis or description of the movie's plot.
- Release Date: The release date of the movie, formatted as YYYY-MM-DD
.
- Popularity: A score indicating the current popularity of the movie on TMDb, which can be used to gauge current interest.
- Vote Average: The average rating of the movie, based on user votes.
- Vote Count: The total number of votes the movie has received.
Data Source:
The data was sourced from the TMDb API, a well-regarded platform for movie information, using the /movie/top_rated
endpoint. The dataset represents a snapshot of the highest-rated movies as of the time of data collection.
Data Collection Process:
- API Access: Data was retrieved programmatically using TMDb’s API.
- Pagination Handling: Multiple API requests were made to cover all pages of top-rated movies, ensuring the dataset’s comprehensiveness.
- Data Aggregation: Collected data was aggregated into a single, unified dataset using the pandas
library.
- Cleaning: Basic data cleaning was performed to remove duplicates and handle missing or malformed data entries.
Potential Uses: - Trend Analysis: Analyze trends in movie ratings over time or compare ratings across different genres. - Recommendation Systems: Build and train models to recommend movies based on user preferences. - Sentiment Analysis: Perform text analysis on movie overviews to understand common themes and sentiments. - Statistical Analysis: Explore the relationship between popularity, vote count, and average ratings.
Data Format: The dataset is provided in a structured tabular format (e.g., CSV), making it easy to load into data analysis tools like Python, R, or Excel.
Usage License: The dataset is shared under [appropriate license], ensuring that it can be used for educational, research, or commercial purposes, with proper attribution to the data source (TMDb).
This description provides a clear and detailed overview, helping potential users understand the dataset's content, origin, and potential applications.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This project focuses on data mapping, integration, and analysis to support the development and enhancement of six UNCDF operational applications: OrgTraveler, Comms Central, Internal Support Hub, Partnership 360, SmartHR, and TimeTrack. These apps streamline workflows for travel claims, internal support, partnership management, and time tracking within UNCDF.Key Features and Tools:Data Mapping for Salesforce CRM Migration: Structured and mapped data flows to ensure compatibility and seamless migration to Salesforce CRM.Python for Data Cleaning and Transformation: Utilized pandas, numpy, and APIs to clean, preprocess, and transform raw datasets into standardized formats.Power BI Dashboards: Designed interactive dashboards to visualize workflows and monitor performance metrics for decision-making.Collaboration Across Platforms: Integrated Google Collab for code collaboration and Microsoft Excel for data validation and analysis.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Research Domain/Project:
This dataset was created for a machine learning experiment aimed at developing a classification model to predict outcomes based on a set of features. The primary research domain is disease prediction in patients. The dataset was used in the context of training, validating, and testing.
Purpose of the Dataset:
The purpose of this dataset is to provide training, validation, and testing data for the development of machine learning models. It includes labeled examples that help train classifiers to recognize patterns in the data and make predictions.
Dataset Creation:
Data preprocessing steps involved cleaning, normalization, and splitting the data into training, validation, and test sets. The data was carefully curated to ensure its quality and relevance to the problem at hand. For any missing values or outliers, appropriate handling techniques were applied (e.g., imputation, removal, etc.).
Structure of the Dataset:
The dataset consists of several files organized into folders by data type:
Training Data: Contains the training dataset used to train the machine learning model.
Validation Data: Used for hyperparameter tuning and model selection.
Test Data: Reserved for final model evaluation.
Each folder contains files with consistent naming conventions for easy navigation, such as train_data.csv
, validation_data.csv
, and test_data.csv
. Each file follows a tabular format with columns representing features and rows representing individual data points.
Software Requirements:
To open and work with this dataset, you need VS Code or Jupyter, which could include tools like:
Python (with libraries such as pandas
, numpy
, scikit-learn
, matplotlib
, etc.)
Reusability:
Users of this dataset should be aware that it is designed for machine learning experiments involving classification tasks. The dataset is already split into training, validation, and test subsets. Any model trained with this dataset should be evaluated using the test set to ensure proper validation.
Limitations:
The dataset may not cover all edge cases, and it might have biases depending on the selection of data sources. It's important to consider these limitations when generalizing model results to real-world applications.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Research Domain:
The dataset is part of a project focused on retail sales forecasting. Specifically, it is designed to predict daily sales for Rossmann, a chain of over 3,000 drug stores operating across seven European countries. The project falls under the broader domain of time series analysis and machine learning applications for business optimization. The goal is to apply machine learning techniques to forecast future sales based on historical data, which includes factors like promotions, competition, holidays, and seasonal trends.
Purpose:
The primary purpose of this dataset is to help Rossmann store managers predict daily sales for up to six weeks in advance. By making accurate sales predictions, Rossmann can improve inventory management, staffing decisions, and promotional strategies. This dataset serves as a training set for machine learning models aimed at reducing forecasting errors and supporting decision-making processes across the company’s large network of stores.
How the Dataset Was Created:
The dataset was compiled from several sources, including historical sales data from Rossmann stores, promotional calendars, holiday schedules, and external factors such as competition. The data is split into multiple features, such as the store's location, promotion details, whether the store was open or closed, and weather information. The dataset is publicly available on platforms like Kaggle and was initially created for the Kaggle Rossmann Store Sales competition. The data is made accessible via an API for further analysis and modeling, and it is structured to help machine learning models predict future sales based on various input variables.
Dataset Structure:
The dataset consists of three main files, each with its specific role:
Train:
This file contains the historical sales data, which is used to train machine learning models. It includes daily sales information for each store, as well as various features that could influence the sales (e.g., promotions, holidays, store type, etc.).
https://handle.test.datacite.org/10.82556/yb6j-jw41
PID: b1c59499-9c6e-42c2-af8f-840181e809db
Test2:
The test dataset mirrors the structure of train.csv
but does not include the actual sales values (i.e., the target variable). This file is used for making predictions using the trained machine learning models. It is used to evaluate the accuracy of predictions when the true sales data is unknown.
https://handle.test.datacite.org/10.82556/jerg-4b84
PID: 7cbb845c-21dd-4b60-b990-afa8754a0dd9
Store:
This file provides metadata about each store, including information such as the store’s location, type, and assortment level. This data is essential for understanding the context in which the sales data is gathered.
https://handle.test.datacite.org/10.82556/nqeg-gy34
PID: 9627ec46-4ee6-4969-b14a-bda555fe34db
Id: A unique identifier for each (Store, Date) combination within the test set.
Store: A unique identifier for each store.
Sales: The daily turnover (target variable) for each store on a specific day (this is what you are predicting).
Customers: The number of customers visiting the store on a given day.
Open: An indicator of whether the store was open (1 = open, 0 = closed).
StateHoliday: Indicates if the day is a state holiday, with values like:
'a' = public holiday,
'b' = Easter holiday,
'c' = Christmas,
'0' = no holiday.
SchoolHoliday: Indicates whether the store is affected by school closures (1 = yes, 0 = no).
StoreType: Differentiates between four types of stores: 'a', 'b', 'c', 'd'.
Assortment: Describes the level of product assortment in the store:
'a' = basic,
'b' = extra,
'c' = extended.
CompetitionDistance: Distance (in meters) to the nearest competitor store.
CompetitionOpenSince[Month/Year]: The month and year when the nearest competitor store opened.
Promo: Indicates whether the store is running a promotion on a particular day (1 = yes, 0 = no).
Promo2: Indicates whether the store is participating in Promo2, a continuing promotion for some stores (1 = participating, 0 = not participating).
Promo2Since[Year/Week]: The year and calendar week when the store started participating in Promo2.
PromoInterval: Describes the months when Promo2 is active, e.g., "Feb,May,Aug,Nov" means the promotion starts in February, May, August, and November.
To work with this dataset, you will need to have specific software installed, including:
DBRepo Authorization: This is required to access the datasets via the DBRepo API. You may need to authenticate with an API key or login credentials to retrieve the datasets.
Python Libraries: Key libraries for working with the dataset include:
pandas
for data manipulation,
numpy
for numerical operations,
matplotlib
and seaborn
for data visualization,
scikit-learn
for machine learning algorithms.
Several additional resources are available for working with the dataset:
Presentation:
A presentation summarizing the exploratory data analysis (EDA), feature engineering process, and key insights from the analysis is provided. This presentation also includes visualizations that help in understanding the dataset’s trends and relationships.
Jupyter Notebook:
A Jupyter notebook, titled Retail_Sales_Prediction_Capstone_Project.ipynb
, is provided, which details the entire machine learning pipeline, from data loading and cleaning to model training and evaluation.
Model Evaluation Results:
The project includes a detailed evaluation of various machine learning models, including their performance metrics like training and testing scores, Mean Absolute Percentage Error (MAPE), and Root Mean Squared Error (RMSE). This allows for a comparison of model effectiveness in forecasting sales.
Trained Models (.pkl files):
The models trained during the project are saved as .pkl
files. These files contain the trained machine learning models (e.g., Random Forest, Linear Regression, etc.) that can be loaded and used to make predictions without retraining the models from scratch.
sample_submission.csv:
This file is a sample submission file that demonstrates the format of predictions expected when using the trained model. The sample_submission.csv
contains predictions made on the test dataset using the trained Random Forest model. It provides an example of how the output should be structured for submission.
These resources provide a comprehensive guide to implementing and analyzing the sales forecasting model, helping you understand the data, methods, and results in greater detail.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ObjectiveThe primary objective of this study was to analyze CpG dinucleotide dynamics in coronaviruses by comparing Wuhan-Hu-1 with its closest and most distant relatives. Heatmaps were generated to visualize CpG counts and O/E ratios across intergenic regions, providing a clear depiction of conserved and divergent CpG patterns.Methods1. Data CollectionSource : The dataset includes CpG counts and O/E ratios for various coronaviruses, extracted from publicly available genomic sequences.Format : Data was compiled into a CSV file containing columns for intergenic regions, CpG counts, and O/E ratios for each virus.2. PreprocessingData Cleaning :Missing values (NaN), infinite values (inf, -inf), and blank entries were handled using Python's pandas library.Missing values were replaced with column means, and infinite values were capped at a large finite value (1e9).Reshaping :The data was reshaped into matrices for CpG counts and O/E ratios using meltpandas[] and pivot[] functions.3. Distance CalculationEuclidean Distance :Pairwise Euclidean distances were calculated between Wuhan-Hu-1 and other viruses using the scipy.spatial.distance.euclidean function.Distances were computed separately for CpG counts and O/E ratios, and the total distance was derived as the sum of both metrics.4. Identification of Closest and Distant RelativesThe virus with the smallest total distance was identified as the closest relative .The virus with the largest total distance was identified as the most distant relative .5. Heatmap GenerationTools :Heatmaps were generated using Python's seaborn library (sns.heatmap) and matplotlib for visualization.Parameters :Heatmaps were annotated with numerical values for clarity.A color gradient (coolwarm) was used to represent varying CpG counts and O/E ratios.Titles and axis labels were added to describe the comparison between Wuhan-Hu-1 and its relatives.ResultsClosest Relative :The closest relative to Wuhan-Hu-1 was identified based on the smallest Euclidean distance.Heatmaps for CpG counts and O/E ratios show high similarity in specific intergenic regions.Most Distant Relative :The most distant relative was identified based on the largest Euclidean distance.Heatmaps reveal significant differences in CpG dynamics compared to Wuhan-Hu-1 .Tools and LibrariesThe following tools and libraries were used in this analysis:Programming Language :Python 3.13Libraries :pandas: For data manipulation and cleaning.numpy: For numerical operations and handling missing/infinite values.scipy.spatial.distance: For calculating Euclidean distances.seaborn: For generating heatmaps.matplotlib: For additional visualization enhancements.File Formats :Input: CSV files containing CpG counts and O/E ratios.Output: PNG images of heatmaps.Files IncludedCSV File :Contains the raw data of CpG counts and O/E ratios for all viruses.Heatmap Images :Heatmaps for CpG counts and O/E ratios comparing Wuhan-Hu-1 with its closest and most distant relatives.Python Script :Full Python code used for data processing, distance calculation, and heatmap generation.Usage NotesResearchers can use this dataset to further explore the evolutionary dynamics of CpG dinucleotides in coronaviruses.The Python script can be adapted to analyze other viral genomes or datasets.Heatmaps provide a visual summary of CpG dynamics, aiding in hypothesis generation and experimental design.AcknowledgmentsSpecial thanks to the open-source community for developing tools like pandas, numpy, seaborn, and matplotlib.This work was conducted as part of an independent research project in molecular biology and bioinformatics.LicenseThis dataset is shared under the CC BY 4.0 License , allowing others to share and adapt the material as long as proper attribution is given.DOI: 10.6084/m9.figshare.28736501
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Alinaghi, N., Giannopoulos, I., Kattenbeck, M., & Raubal, M. (2025). Decoding wayfinding: analyzing wayfinding processes in the outdoor environment. International Journal of Geographical Information Science, 1–31. https://doi.org/10.1080/13658816.2025.2473599
Link to the paper: https://www.tandfonline.com/doi/full/10.1080/13658816.2025.2473599
The folder named “submission” contains the following:
ijgis.yml
: This file lists all the Python libraries and dependencies required to run the code.ijgis.yml
file to create a Python project and environment. Ensure you activate the environment before running the code.pythonProject
folder contains several .py
files and subfolders, each with specific functionality as described below..png
file for each column of the raw gaze and IMU recordings, color-coded with logged events..csv
files.overlapping_sliding_window_loop.py
.plot_labels_comparison(df, save_path, x_label_freq=10, figsize=(15, 5))
in line 116 visualizes the data preparation results. As this visualization is not used in the paper, the line is commented out, but if you want to see visually what has been changed compared to the original data, you can comment out this line..csv
files in the results folder.This part contains three main code blocks:
iii. One for the XGboost code with correct hyperparameter tuning:
Please read the instructions for each block carefully to ensure that the code works smoothly. Regardless of which block you use, you will get the classification results (in the form of scores) for unseen data. The way we empirically test the confidence threshold of
Note: Please read the instructions for each block carefully to ensure that the code works smoothly. Regardless of which block you use, you will get the classification results (in the form of scores) for unseen data. The way we empirically calculated the confidence threshold of the model (explained in the paper in Section 5.2. Part II: Decoding surveillance by sequence analysis) is given in this block in lines 361 to 380.
.csv
file containing inferred labels.The data is licensed under CC-BY, the code is licensed under MIT.