Facebook
TwitterThe documentation covers Enterprise Survey panel datasets that were collected in Slovenia in 2009, 2013 and 2019.
The Slovenia ES 2009 was conducted between 2008 and 2009. The Slovenia ES 2013 was conducted between March 2013 and September 2013. Finally, the Slovenia ES 2019 was conducted between December 2018 and November 2019. The objective of the Enterprise Survey is to gain an understanding of what firms experience in the private sector.
As part of its strategic goal of building a climate for investment, job creation, and sustainable growth, the World Bank has promoted improving the business environment as a key strategy for development, which has led to a systematic effort in collecting enterprise data across countries. The Enterprise Surveys (ES) are an ongoing World Bank project in collecting both objective data based on firms' experiences and enterprises' perception of the environment in which they operate.
National
The primary sampling unit of the study is the establishment. An establishment is a physical location where business is carried out and where industrial operations take place or services are provided. A firm may be composed of one or more establishments. For example, a brewery may have several bottling plants and several establishments for distribution. For the purposes of this survey an establishment must take its own financial decisions and have its own financial statements separate from those of the firm. An establishment must also have its own management and control over its payroll.
As it is standard for the ES, the Slovenia ES was based on the following size stratification: small (5 to 19 employees), medium (20 to 99 employees), and large (100 or more employees).
Sample survey data [ssd]
The sample for Slovenia ES 2009, 2013, 2019 were selected using stratified random sampling, following the methodology explained in the Sampling Manual for Slovenia 2009 ES and for Slovenia 2013 ES, and in the Sampling Note for 2019 Slovenia ES.
Three levels of stratification were used in this country: industry, establishment size, and oblast (region). The original sample designs with specific information of the industries and regions chosen are included in the attached Excel file (Sampling Report.xls.) for Slovenia 2009 ES. For Slovenia 2013 and 2019 ES, specific information of the industries and regions chosen is described in the "The Slovenia 2013 Enterprise Surveys Data Set" and "The Slovenia 2019 Enterprise Surveys Data Set" reports respectively, Appendix E.
For the Slovenia 2009 ES, industry stratification was designed in the way that follows: the universe was stratified into manufacturing industries, services industries, and one residual (core) sector as defined in the sampling manual. Each industry had a target of 90 interviews. For the manufacturing industries sample sizes were inflated by about 17% to account for potential non-response cases when requesting sensitive financial data and also because of likely attrition in future surveys that would affect the construction of a panel. For the other industries (residuals) sample sizes were inflated by about 12% to account for under sampling in firms in service industries.
For Slovenia 2013 ES, industry stratification was designed in the way that follows: the universe was stratified into one manufacturing industry, and two service industries (retail, and other services).
Finally, for Slovenia 2019 ES, three levels of stratification were used in this country: industry, establishment size, and region. The original sample design with specific information of the industries and regions chosen is described in "The Slovenia 2019 Enterprise Surveys Data Set" report, Appendix C. Industry stratification was done as follows: Manufacturing – combining all the relevant activities (ISIC Rev. 4.0 codes 10-33), Retail (ISIC 47), and Other Services (ISIC 41-43, 45, 46, 49-53, 55, 56, 58, 61, 62, 79, 95).
For Slovenia 2009 and 2013 ES, size stratification was defined following the standardized definition for the rollout: small (5 to 19 employees), medium (20 to 99 employees), and large (more than 99 employees). For stratification purposes, the number of employees was defined on the basis of reported permanent full-time workers. This seems to be an appropriate definition of the labor force since seasonal/casual/part-time employment is not a common practice, except in the sectors of construction and agriculture.
For Slovenia 2009 ES, regional stratification was defined in 2 regions. These regions are Vzhodna Slovenija and Zahodna Slovenija. The Slovenia sample contains panel data. The wave 1 panel “Investment Climate Private Enterprise Survey implemented in Slovenia” consisted of 223 establishments interviewed in 2005. A total of 57 establishments have been re-interviewed in the 2008 Business Environment and Enterprise Performance Survey.
For Slovenia 2013 ES, regional stratification was defined in 2 regions (city and the surrounding business area) throughout Slovenia.
Finally, for Slovenia 2019 ES, regional stratification was done across two regions: Eastern Slovenia (NUTS code SI03) and Western Slovenia (SI04).
Computer Assisted Personal Interview [capi]
Questionnaires have common questions (core module) and respectfully additional manufacturing- and services-specific questions. The eligible manufacturing industries have been surveyed using the Manufacturing questionnaire (includes the core module, plus manufacturing specific questions). Retail firms have been interviewed using the Services questionnaire (includes the core module plus retail specific questions) and the residual eligible services have been covered using the Services questionnaire (includes the core module). Each variation of the questionnaire is identified by the index variable, a0.
Survey non-response must be differentiated from item non-response. The former refers to refusals to participate in the survey altogether whereas the latter refers to the refusals to answer some specific questions. Enterprise Surveys suffer from both problems and different strategies were used to address these issues.
Item non-response was addressed by two strategies: a- For sensitive questions that may generate negative reactions from the respondent, such as corruption or tax evasion, enumerators were instructed to collect the refusal to respond as (-8). b- Establishments with incomplete information were re-contacted in order to complete this information, whenever necessary. However, there were clear cases of low response.
For 2009 and 2013 Slovenia ES, the survey non-response was addressed by maximizing efforts to contact establishments that were initially selected for interview. Up to 4 attempts were made to contact the establishment for interview at different times/days of the week before a replacement establishment (with similar strata characteristics) was suggested for interview. Survey non-response did occur but substitutions were made in order to potentially achieve strata-specific goals. Further research is needed on survey non-response in the Enterprise Surveys regarding potential introduction of bias.
For 2009, the number of contacted establishments per realized interview was 6.18. This number is the result of two factors: explicit refusals to participate in the survey, as reflected by the rate of rejection (which includes rejections of the screener and the main survey) and the quality of the sample frame, as represented by the presence of ineligible units. The relatively low ratio of contacted establishments per realized interview (6.18) suggests that the main source of error in estimates in the Slovenia may be selection bias and not frame inaccuracy.
For 2013, the number of realized interviews per contacted establishment was 25%. This number is the result of two factors: explicit refusals to participate in the survey, as reflected by the rate of rejection (which includes rejections of the screener and the main survey) and the quality of the sample frame, as represented by the presence of ineligible units. The number of rejections per contact was 44%.
Finally, for 2019, the number of interviews per contacted establishments was 9.7%. This number is the result of two factors: explicit refusals to participate in the survey, as reflected by the rate of rejection (which includes rejections of the screener and the main survey) and the quality of the sample frame, as represented by the presence of ineligible units. The share of rejections per contact was 75.2%.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Summary : Fuel demand is shown to be influenced by fuel prices, people's income and motorization rates. We explore the effects of electric vehicle's rates in gasoline demand using this panel dataset.
Files : dataset.csv - Panel dimensions are the Brazilian state ( i ) and year ( t ). The other columns are: gasoline sales per capita (ln_Sg_pc), prices of gasoline (ln_Pg) and ethanol (ln_Pe) and their lags, motorization rates of combustion vehicles (ln_Mi_c) and electric vehicles (ln_Mi_e) and GDP per capita (ln_gdp_pc). All variables are all under the natural log function, since we use this to calculate demand elasticities in a regression model.
adjacency.csv - The adjacency matrix used in interaction with electric vehicles' motorization rates to calculate spatial effects. At first, it follows a binary adjacency formula: for each pair of states i and j, the cell (i, j) is 0 if the states are not adjacent and 1 if they are. Then, each row is normalized to have sum equal to one.
regression.do - Series of Stata commands used to estimate the regression models of our study. dataset.csv must be imported to work, see comment section.
dataset_predictions.xlsx - Based on the estimations from Stata, we use this excel file to make average predictions by year and by state. Also, by including years beyond the last panel sample, we also forecast the model into the future and evaluate the effects of different policies that influence gasoline prices (taxation) and EV motorization rates (electrification). This file is primarily used to create images, but can be used to further understand how the forecasting scenarios are set up.
Sources: Fuel prices and sales: ANP (https://www.gov.br/anp/en/access-information/what-is-anp/what-is-anp) State population, GDP and vehicle fleet: IBGE (https://www.ibge.gov.br/en/home-eng.html?lang=en-GB) State EV fleet: Anfavea (https://anfavea.com.br/en/site/anuarios/)
Facebook
TwitterThe documented dataset covers Enterprise Survey (ES) panel data collected in Lesotho in 2009 and 2016, as part of Africa Enterprise Surveys rollout, an initiative of the World Bank. The objective of the Enterprise Survey is to obtain feedback from enterprises on the state of the private sector as well as to help in building a panel of enterprise data that will make it possible to track changes in the business environment over time, thus allowing, for example, impact assessments of reforms.
Enterprise Surveys target a sample consisting of longitudinal (panel) observations and new cross-sectional data. Panel firms are prioritized in the sample selection, comprising up to 50% of the sample in the current wave. For all panel firms, regardless of the sample, current eligibility or operating status is determined and included in panel datasets.
Lesotho ES 2009 was conducted from September 2008 to February 2009, Lesotho ES 2016 was carried out in June - August 2016. Stratified random sampling was used to select the surveyed businesses. Data was collected using face-to-face interviews.
Data from 301 establishments was analyzed: 90 businesses were from 2009 only, 89 - from 2016 only, and 122 firms were from 2009 and 2016.
The standard Enterprise Survey topics include firm characteristics, gender participation, access to finance, annual sales, costs of inputs and labor, workforce composition, bribery, licensing, infrastructure, trade, crime, competition, capacity utilization, land and permits, taxation, informality, business-government relations, innovation and technology, and performance measures. Over 90 percent of the questions objectively measure characteristics of a country’s business environment. The remaining questions assess the survey respondents’ opinions on what are the obstacles to firm growth and performance.
National
The primary sampling unit of the study is an establishment. An establishment is a physical location where business is carried out and where industrial operations take place or services are provided. A firm may be composed of one or more establishments. For example, a brewery may have several bottling plants and several establishments for distribution. For the purposes of this survey an establishment must make its own financial decisions and have its own financial statements separate from those of the firm. An establishment must also have its own management and control over its payroll.
The whole population, or the universe, covered in the Enterprise Surveys is the non-agricultural private economy. It comprises: all manufacturing sectors according to the ISIC Revision 3.1 group classification (group D), construction sector (group F), services sector (groups G and H), and transport, storage, and communications sector (group I). Note that this population definition excludes the following sectors: financial intermediation (group J), real estate and renting activities (group K, except sub-sector 72, IT, which was added to the population under study), and all public or utilities sectors. Companies with 100% government ownership are not eligible to participate in the Enterprise Surveys.
Sample survey data [ssd]
Two levels of stratification were used in this country: industry and establishment size.
Industry stratification was designed as follows: the universe was stratified as into manufacturing and services industries - Manufacturing (ISIC Rev. 3.1 codes 15 - 37), and Services (ISIC codes 45, 50-52, 55, 60-64, and 72).
For the Lesotho ES, size stratification was defined as follows: small (5 to 19 employees), medium (20 to 99 employees), and large (100 or more employees). Regional stratification did not take place for the Lesotho ES.
In 2009, it was not possible to obtain a single usable frame for Lesotho. Instead frames were obtained from two government branches: the Chamber of Commerce and the Ministry of Trade, Industry, Cooperatives and Marketing. Those frames were merged and duplicates removed to provide the frame used for the survey.
In 2016 ES, the sample frame consisted of listings of firms from two sources: for panel firms the list of 151 firms from the Lesotho 2009 ES was used and for fresh firms (i.e., firms not covered in 2009) firm data from Lesotho Bureau of Statistics Business Register, published in August 2015, was used.
Face-to-face [f2f]
The following survey instruments were used for Lesotho ES: - Manufacturing Module Questionnaire - Services Module Questionnaire
The survey is fielded via manufacturing or services questionnaires in order not to ask questions that are irrelevant to specific types of firms, e.g. a question that relates to production and nonproduction workers should not be asked of a retail firm. In addition to questions that are asked across countries, all surveys are customized and contain country-specific questions. An example of customization would be including tourism-related questions that are asked in certain countries when tourism is an existing or potential sector of economic growth. There is a skip pattern in the Service Module Questionnaire for questions that apply only to retail firms.
Data entry and quality controls are implemented by the contractor and data is delivered to the World Bank in batches (typically 10%, 50% and 100%). These data deliveries are checked for logical consistency, out of range values, skip patterns, and duplicate entries. Problems are flagged by the World Bank and corrected by the implementing contractor through data checks, callbacks, and revisiting establishments.
Survey non-response must be differentiated from item non-response. The former refers to refusals to participate in the survey altogether whereas the latter refers to the refusals to answer some specific questions. Enterprise Surveys suffer from both problems and different strategies were used to address these issues.
Item non-response was addressed by two strategies: a- For sensitive questions that may generate negative reactions from the respondent, such as corruption or tax evasion, enumerators were instructed to collect "Refusal to respond" (-8) as a different option from "Don't know" (-9). b- Establishments with incomplete information were re-contacted in order to complete this information, whenever necessary.
Survey non-response was addressed by maximizing efforts to contact establishments that were initially selected for interview. Attempts were made to contact the establishment for interview at different times/days of the week before a replacement establishment (with similar strata characteristics) was suggested for interview. Survey non-response did occur but substitutions were made in order to potentially achieve strata-specific goals.
Facebook
TwitterPanel data possess several advantages over conventional cross-sectional and time-series data, including their power to isolate the effects of specific actions, treatments, and general policies often at the core of large-scale econometric development studies. While the concept of panel data alone provides the capacity for modeling the complexities of human behavior, the notion of universal panel data – in which time- and situation-driven variances leading to variations in tools, and thus results, are mitigated – can further enhance exploitation of the richness of panel information.
This Basic Information Document (BID) provides a brief overview of the Tanzania National Panel Survey (NPS), but focuses primarily on the theoretical development and application of panel data, as well as key elements of the universal panel survey instrument and datasets generated by the four rounds of the NPS. As this Basic Information Document (BID) for the UPD does not describe in detail the background, development, or use of the NPS itself, the round-specific NPS BIDs should supplement the information provided here.
The NPS Uniform Panel Dataset (UPD) consists of both survey instruments and datasets, meticulously aligned and engineered with the aim of facilitating the use of and improving access to the wealth of panel data offered by the NPS. The NPS-UPD provides a consistent and straightforward means of conducting not only user-driven analyses using convenient, standardized tools, but also for monitoring MKUKUTA, FYDP II, and other national level development indicators reported by the NPS.
The design of the NPS-UPD combines the four completed rounds of the NPS – NPS 2008/09 (R1), NPS 2010/11 (R2), NPS 2012/13 (R3), and NPS 2014/15 (R4) – into pooled, module-specific survey instruments and datasets. The panel survey instruments offer the ease of comparability over time, with modifications and variances easily identifiable as well as those aspects of the questionnaire which have remained identical and offer consistent information. By providing all module-specific data over time within compact, pooled datasets, panel datasets eliminate the need for user-generated merges between rounds and present data in a clear, logical format, increasing both the usability and comprehension of complex data.
Designed for analysis of key indicators at four primary domains of inference, namely: Dar es Salaam, other urban, rural, Zanzibar.
The universe includes all households and individuals in Tanzania with the exception of those residing in military barracks or other institutions.
Sample survey data [ssd]
While the same sample of respondents was maintained over the first three rounds of the NPS, longitudinal surveys tend to suffer from bias introduced by households leaving the survey over time; i.e. attrition. Although the NPS maintains a highly successful recapture rate (roughly 96% retention at the household level), minimizing the escalation of this selection bias, a refresh of longitudinal cohorts was done for the NPS 2014/15 to ensure proper representativeness of estimates while maintaining a sufficient primary sample to maintain cohesion within panel analysis. A newly completed Population and Housing Census (PHC) in 2012, providing updated population figures along with changes in administrative boundaries, emboldened the opportunity to realign the NPS sample and abate collective bias potentially introduced through attrition.
To maintain the panel concept of the NPS, the sample design for NPS 2014/2015 consisted of a combination of the original NPS sample and a new NPS sample. A nationally representative sub-sample was selected to continue as part of the “Extended Panel” while an entirely new sample, “Refresh Panel”, was selected to represent national and sub-national domains. Similar to the sample in NPS 2008/2009, the sample design for the “Refresh Panel” allows analysis at four primary domains of inference, namely: Dar es Salaam, other urban areas on mainland Tanzania, rural mainland Tanzania, and Zanzibar. This new cohort in NPS 2014/2015 will be maintained and tracked in all future rounds between national censuses.
Face-to-face [f2f]
The format of the NPS-UPD survey instrument is similar to previously disseminated NPS survey instruments. Each module has a questionnaire and clearly identifies if the module collects information at the individual or household level. Within each module-specific questionnaire of the NPS-UPD survey instrument, there are five distinct sections, arranged vertically: (1) the UPD - “U” on the survey instrument, (2) R4, (3), R3, (4) R2, and (5) R1 – the latter 4 sections presenting each questionnaire in its original form at time of its respective dissemination.
The uppermost section of each module’s questionnaire (“U”) represents the model universal panel questionnaire, with questions generated from the comprehensive listing of questions across all four rounds of the NPS and codes generated from the comprehensive collection of codes. The following sections are arranged vertically by round, considering R4 as most recent. While not all rounds will have data reported for each question in the UPD and not each question will have reports for each of the UPD codes listed, the NPS-UPD survey instrument represents the visual, all-inclusive set of information collected by the NPS over time.
The four round-specific sections (R4, R3, R2, R1) are aligned with their UPD-equivalent question, visually presenting their contribution to compatibility with the UPD. Each round-specific section includes the original round-specific variable names, response codes and skip patterns (corresponding to their respective round-specific NPS data sets, and despite their variance from other rounds or from the comprehensive UPD code listing)4.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
We include Stata syntax (dummy_dataset_create.do) that creates a panel dataset for negative binomial time series regression analyses, as described in our paper "Examining methodology to identify patterns of consulting in primary care for different groups of patients before a diagnosis of cancer: an exemplar applied to oesophagogastric cancer". We also include a sample dataset for clarity (dummy_dataset.dta), and a sample of that data in a spreadsheet (Appendix 2).
The variables contained therein are defined as follows:
case: binary variable for case or control status (takes a value of 0 for controls and 1 for cases).
patid: a unique patient identifier.
time_period: A count variable denoting the time period. In this example, 0 denotes 10 months before diagnosis with cancer, and 9 denotes the month of diagnosis with cancer,
ncons: number of consultations per month.
period0 to period9: 10 unique inflection point variables (one for each month before diagnosis). These are used to test which aggregation period includes the inflection point.
burden: binary variable denoting membership of one of two multimorbidity burden groups.
We also include two Stata do-files for analysing the consultation rate, stratified by burden group, using the Maximum likelihood method (1_menbregpaper.do and 2_menbregpaper_bs.do).
Note: In this example, for demonstration purposes we create a dataset for 10 months leading up to diagnosis. In the paper, we analyse 24 months before diagnosis. Here, we study consultation rates over time, but the method could be used to study any countable event, such as number of prescriptions.
Facebook
TwitterThe documented dataset covers Enterprise Survey (ES) panel data collected in Malawi in 2009 and 2014, as part of Africa Enterprise Surveys roll-out, an initiative of the World Bank.
New Enterprise Surveys target a sample consisting of longitudinal (panel) observations and new cross-sectional data. Panel firms are prioritized in the sample selection, comprising up to 50% of the sample in the current wave. For all panel firms, regardless of the sample, current eligibility or operating status is determined and included in panel datasets.
Malawi ES 2014 was conducted between April 2014 and February 2015, Malawi ES 2009 was carried out in May - July 2009. The objective of the Enterprise Survey is to obtain feedback from enterprises on the state of the private sector as well as to help in building a panel of enterprise data that will make it possible to track changes in the business environment over time, thus allowing, for example, impact assessments of reforms. Through interviews with firms in the manufacturing and services sectors, the survey assesses the constraints to private sector growth and creates statistically significant business environment indicators that are comparable across countries.
Stratified random sampling was used to select the surveyed businesses. The data was collected using face-to-face interviews.
Data from 673 establishments was analyzed: 436 businesses were from 2014 ES only, 63 - from 2009 ES only, and 174 firms were from both 2009 and 2014 panels.
The standard Enterprise Survey topics include firm characteristics, gender participation, access to finance, annual sales, costs of inputs and labor, workforce composition, bribery, licensing, infrastructure, trade, crime, competition, capacity utilization, land and permits, taxation, informality, business-government relations, innovation and technology, and performance measures. Over 90 percent of the questions objectively measure characteristics of a country’s business environment. The remaining questions assess the survey respondents’ opinions on what are the obstacles to firm growth and performance.
National
The primary sampling unit of the study is an establishment. An establishment is a physical location where business is carried out and where industrial operations take place or services are provided. A firm may be composed of one or more establishments. For example, a brewery may have several bottling plants and several establishments for distribution. For the purposes of this survey an establishment must make its own financial decisions and have its own financial statements separate from those of the firm. An establishment must also have its own management and control over its payroll.
The whole population, or the universe, covered in the Enterprise Surveys is the non-agricultural private economy. It comprises: all manufacturing sectors according to the ISIC Revision 3.1 group classification (group D), construction sector (group F), services sector (groups G and H), and transport, storage, and communications sector (group I). Note that this population definition excludes the following sectors: financial intermediation (group J), real estate and renting activities (group K, except sub-sector 72, IT, which was added to the population under study), and all public or utilities sectors. Companies with 100% government ownership are not eligible to participate in the Enterprise Surveys.
Sample survey data [ssd]
For the Malawi ES, multiple sample frames were used: a sample frame was built using data compiled from local and municipal business registries. Due to the fact that the previous round of surveys utilized different stratification criteria in the 2009 survey sample, the presence of panel firms was limited to a maximum of 50% of the achieved interviews in each stratum. That sample is referred to as the panel.
Face-to-face [f2f]
The following survey instruments were used for Malawi ES 2009 and 2014: - Manufacturing Module Questionnaire - Services Module Questionnaire
The survey is fielded via manufacturing or services questionnaires in order not to ask questions that are irrelevant to specific types of firms, e.g. a question that relates to production and nonproduction workers should not be asked of a retail firm. In addition to questions that are asked across countries, all surveys are customized and contain country-specific questions. An example of customization would be including tourism-related questions that are asked in certain countries when tourism is an existing or potential sector of economic growth. There is a skip pattern in the Service Module Questionnaire for questions that apply only to retail firms.
Data entry and quality controls are implemented by the contractor and data is delivered to the World Bank in batches (typically 10%, 50% and 100%). These data deliveries are checked for logical consistency, out of range values, skip patterns, and duplicate entries. Problems are flagged by the World Bank and corrected by the implementing contractor through data checks, callbacks, and revisiting establishments.
Survey non-response must be differentiated from item non-response. The former refers to refusals to participate in the survey altogether whereas the latter refers to the refusals to answer some specific questions. Enterprise Surveys suffer from both problems and different strategies were used to address these issues.
Item non-response was addressed by two strategies: a- For sensitive questions that may generate negative reactions from the respondent, such as corruption or tax evasion, enumerators were instructed to collect "Refusal to respond" (-8) as a different option from "Don't know" (-9). b- Establishments with incomplete information were re-contacted in order to complete this information, whenever necessary.
Survey non-response was addressed by maximizing efforts to contact establishments that were initially selected for interview. Attempts were made to contact the establishment for interview at different times/days of the week before a replacement establishment (with similar strata characteristics) was suggested for interview. Survey non-response did occur but substitutions were made in order to potentially achieve strata-specific goals.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This is the replication file for 'Bayesian Sensitivity Analysis for Unmeasured Confounding in Causal Panel Data Models', including the package that implements the proposed method, as well as replication code for Monte Carlo studies, simulated example and empirical analysis.
Facebook
Twitterhttps://www.icpsr.umich.edu/web/ICPSR/studies/9054/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/9054/terms
The 1975-1981 TIME USE LONGITUDINAL PANEL STUDY dataset combines a round of data collected in 1981 with the principal investigators' earlier TIME USE IN ECONOMIC AND SOCIAL ACCOUNTS, 1975-1976 (ICPSR 7580), collected by F. Thomas Juster, Paul Courant, et al. This combined data collection consists of data from 620 respondents, their spouses if they were married at the time of first contact, and up to three children between the ages of three and seventeen living in the household. The key features which characterized the 1975 time use study were repeated in 1981. In both of the data collection years, adult individuals provided four time diaries as well as extensive information related to their time use in the four waves of data collection. Information pertaining to the household was collected, as well as identical measures from respondents and spouses for all person-specific information. Selected children provided two time diary reports (one for a school day and one non-school day), an academic achievement measure, and survey measures pertaining to school and family life. In addition, teacher ratings were obtained. For each adult individual who remained in the sample through the 1981 study, a time budget was constructed from his or her time diaries containing the number of minutes per week spent in each of some 223 mutually exclusive and exhaustive activities. These measures provide a description of how the sample individuals were currently allocating their time and are comparable to the 87 activity measures created from their 1975 diaries. In addition, respondent and spouse time aggregates were converted to parent time aggregates for mothers and fathers of children in the sample. To facilitate analyses on spouses, a merged data file was created for 868 couples in which both husband and wife had complete Wave I data in either 1975-1976 or 1981.
Facebook
TwitterThe documented dataset covers Enterprise Survey (ES) panel data collected in Peru in 2006, 2010 and 2017, as part of the Enterprise Survey initiative of the World Bank. An Indicator Survey is similar to an Enterprise Survey; it is implemented for smaller economies where the sampling strategies inherent in an Enterprise Survey are often not applicable due to the limited universe of firms.
The objective of the 2006-2017 Enterprise Survey is to obtain feedback from enterprises in client countries on the state of the private sector as well as to build a panel of enterprise data that will make it possible to track changes in the business environment over time and allow, for example, impact assessments of reforms. Through interviews with firms in the manufacturing and services sectors, the Indicator Survey data provides information on the constraints to private sector growth and is used to create statistically significant business environment indicators that are comparable across countries.
As part of its strategic goal of building a climate for investment, job creation, and sustainable growth, the World Bank has promoted improving the business environment as a key strategy for development, which has led to a systematic effort in collecting enterprise data across countries. The Enterprise Surveys (ES) are an ongoing World Bank project in collecting both objective data based on firms' experiences and enterprises' perception of the environment in which they operate.
National
The primary sampling unit of the study is the establishment. An establishment is a physical location where business is carried out and where industrial operations take place or services are provided. A firm may be composed of one or more establishments. For example, a brewery may have several bottling plants and several establishments for distribution. For the purposes of this survey an establishment must make its own financial decisions and have its own financial statements separate from those of the firm. An establishment must also have its own management and control over its payroll.
The whole population, or the universe, covered in the Enterprise Surveys is the non-agricultural economy. It comprises: all manufacturing sectors according to the ISIC Revision 3.1 group classification (group D), construction sector (group F), services sector (groups G and H), and transport, storage, and communications sector (group I). Note that this population definition excludes the following sectors: financial intermediation (group J), real estate and renting activities (group K, except sub-sector 72, IT, which was added to the population under study), and all public or utilities-sectors.
Sample survey data [ssd]
The sample for the 2006-2017 Peru Enterprise Survey (ES) was selected using stratified random sampling, following the methodology explained in the Sampling Manual. Stratified random sampling was preferred over simple random sampling for several reasons: - To obtain unbiased estimates for different subdivisions of the population with some known level of precision. - To obtain unbiased estimates for the whole population. The whole population, or universe of the study, is the non-agricultural economy. It comprises: all manufacturing sectors (group D), construction (group F), services (groups G and H), and transport, storage, and communications (group I). Groups are defined following ISIC revision 3.1. Note that this definition excludes the following sectors: financial intermediation (group J), real estate and renting activities (group K, excluding sub-sector 72, IT, which was added to the population under study), and all public or utilities-sectors. - To make sure that the final total sample includes establishments from all different sectors and that it is not concentrated in one or two of industries/sizes/regions. - To exploit the benefits of stratified sampling where population estimates, in most cases, will be more precise than using a simple random sampling method (i.e., lower standard errors, other things being equal.)
Three levels of stratification were used in every country: industry, establishment size, and region.
Industry stratification was designed in the following way: In small economies the population was stratified into 3 manufacturing industries, one services industry - retail-, and one residual sector as defined in the sampling manual. Each industry had a target of 120 interviews. In middle size economies the population was stratified into 4 manufacturing industries, 2 services industries -retail and IT-, and one residual sector. For the manufacturing industries sample sizes were inflated by 25% to account for potential non-response in the financing data.
For the Peru ES, size stratification was defined following the standardized definition for the rollout: small (5 to 19 employees), medium (20 to 99 employees), and large (more than 99 employees). For stratification purposed, the number of employees was defined on the basis of reported permanent full-time workers. This resulted in some difficulties in certain countries where seasonal/casual/part-time labor is common.
Face-to-face [f2f]
The current survey instruments are available: - Core Questionnaire + Manufacturing Module [ISIC Rev.3.1: 15-37] - Core Questionnaire + Retail Module [ISIC Rev.3.1: 52] - Core Questionnaire [ISIC Rev.3.1: 45, 50, 51, 55, 60-64, 72] - Screener Questionnaire.
The "Core Questionnaire" is the heart of the Enterprise Survey and contains the survey questions asked of all firms across the world. There are also two other survey instruments - the "Core Questionnaire + Manufacturing Module" and the "Core Questionnaire + Retail Module." The survey is fielded via three instruments in order to not ask questions that are irrelevant to specific types of firms, e.g. a question that relates to production and nonproduction workers should not be asked of a retail firm. In addition to questions that are asked across countries, all surveys are customized and contain country-specific questions. An example of customization would be including tourism-related questions that are asked in certain countries when tourism is an existing or potential sector of economic growth.
The standard Enterprise Survey topics include firm characteristics, gender participation, access to finance, annual sales, costs of inputs/labor, workforce composition, bribery, licensing, infrastructure, trade, crime, competition, capacity utilization, land and permits, taxation, informality, business-government relations, innovation and technology, and performance measures.
Data entry and quality controls are implemented by the contractor and data is delivered to the World Bank in batches (typically 10%, 50% and 100%). These data deliveries are checked for logical consistency, out of range values, skip patterns, and duplicate entries. Problems are flagged by the World Bank and corrected by the implementing contractor through data checks, callbacks, and revisiting establishments.
Survey non-response must be differentiated from item non-response. The former refers to refusals to participate in the survey altogether whereas the latter refers to the refusals to answer some specific questions. Enterprise Surveys suffer from both problems and different strategies were used to address these issues.
Item non-response was addressed by two strategies:
a- For sensitive questions that may generate negative reactions from the respondent, such as corruption or tax evasion, enumerators were instructed to collect the refusal to respond (-8) as a different option from don’t know (-9).
b- Establishments with incomplete information were re-contacted in order to complete this information, whenever necessary. However, there were clear cases of low response. The following graph shows non-response rates for the sales variable, d2, by sector. Please, note that for this specific question, refusals were not separately identified from “Don’t know” responses.
Survey non-response was addressed by maximizing efforts to contact establishments that were initially selected for interview. Attempts were made to contact the establishment for interview at different times/days of the week before a replacement establishment (with similar strata characteristics) was suggested for interview. Survey non-response did occur but substitutions were made in order to potentially achieve strata-specific goals; whenever this was done, strict rules were followed to ensure replacements were randomly selected within the same stratum. Further research is needed on survey non-response in the Enterprise Surveys regarding potential introduction of bias.
Facebook
Twitteranalyze the health and retirement study (hrs) with r the hrs is the one and only longitudinal survey of american seniors. with a panel starting its third decade, the current pool of respondents includes older folks who have been interviewed every two years as far back as 1992. unlike cross-sectional or shorter panel surveys, respondents keep responding until, well, death d o us part. paid for by the national institute on aging and administered by the university of michigan's institute for social research, if you apply for an interviewer job with them, i hope you like werther's original. figuring out how to analyze this data set might trigger your fight-or-flight synapses if you just start clicking arou nd on michigan's website. instead, read pages numbered 10-17 (pdf pages 12-19) of this introduction pdf and don't touch the data until you understand figure a-3 on that last page. if you start enjoying yourself, here's the whole book. after that, it's time to register for access to the (free) data. keep your username and password handy, you'll need it for the top of the download automation r script. next, look at this data flowchart to get an idea of why the data download page is such a righteous jungle. but wait, good news: umich recently farmed out its data management to the rand corporation, who promptly constructed a giant consolidated file with one record per respondent across the whole panel. oh so beautiful. the rand hrs files make much of the older data and syntax examples obsolete, so when you come across stuff like instructions on how to merge years, you can happily ignore them - rand has done it for you. the health and retirement study only includes noninstitutionalized adults when new respondents get added to the panel (as they were in 1992, 1993, 1998, 2004, and 2010) but once they're in, they're in - respondents have a weight of zero for interview waves when they were nursing home residents; but they're still responding and will continue to contribute to your statistics so long as you're generalizing about a population from a previous wave (for example: it's possible to compute "among all americans who were 50+ years old in 1998, x% lived in nursing homes by 2010"). my source for that 411? page 13 of the design doc. wicked. this new github repository contains five scripts: 1992 - 2010 download HRS microdata.R loop through every year and every file, download, then unzip everything in one big party impor t longitudinal RAND contributed files.R create a SQLite database (.db) on the local disk load the rand, rand-cams, and both rand-family files into the database (.db) in chunks (to prevent overloading ram) longitudinal RAND - analysis examples.R connect to the sql database created by the 'import longitudinal RAND contributed files' program create tw o database-backed complex sample survey object, using a taylor-series linearization design perform a mountain of analysis examples with wave weights from two different points in the panel import example HRS file.R load a fixed-width file using only the sas importation script directly into ram with < a href="http://blog.revolutionanalytics.com/2012/07/importing-public-data-with-sas-instructions-into-r.html">SAScii parse through the IF block at the bottom of the sas importation script, blank out a number of variables save the file as an R data file (.rda) for fast loading later replicate 2002 regression.R connect to the sql database created by the 'import longitudinal RAND contributed files' program create a database-backed complex sample survey object, using a taylor-series linearization design exactly match the final regression shown in this document provided by analysts at RAND as an update of the regression on pdf page B76 of this document . click here to view these five scripts for more detail about the health and retirement study (hrs), visit: michigan's hrs homepage rand's hrs homepage the hrs wikipedia page a running list of publications using hrs notes: exemplary work making it this far. as a reward, here's the detailed codebook for the main rand hrs file. note that rand also creates 'flat files' for every survey wave, but really, most every analysis you c an think of is possible using just the four files imported with the rand importation script above. if you must work with the non-rand files, there's an example of how to import a single hrs (umich-created) file, but if you wish to import more than one, you'll have to write some for loops yourself. confidential to sas, spss, stata, and sudaan users: a tidal wave is coming. you can get water up your nose and be dragged out to sea, or you can grab a surf board. time to transition to r. :D
Facebook
TwitterThe documentation covers Enterprise Survey panel datasets that were collected in Chad in 2009 and 2018. The Enterprise Survey is a firm-level survey of a representative sample of an economy's private sector. The surveys cover a broad range of business environment topics including access to finance, corruption, infrastructure, crime, competition, and performance measures. The objective of the Enterprise Survey is to gain an understanding of what firms experience in the private sector.
As part of its strategic goal of building a climate for investment, job creation, and sustainable growth, the World Bank has promoted improving the business environment as a key strategy for development, which has led to a systematic effort in collecting enterprise data across countries. The Enterprise Surveys (ES) are an ongoing World Bank project in collecting both objective data based on firms' experiences and enterprises' perception of the environment in which they operate.
National coverage
The primary sampling unit of the study is the establishment. An establishment is a physical location where business is carried out and where industrial operations take place or services are provided. A firm may be composed of one or more establishments. For example, a brewery may have several bottling plants and several establishments for distribution. For the purposes of this survey an establishment must make its own financial decisions and have its own financial statements separate from those of the firm. An establishment must also have its own management and control over its payroll.
The whole population, or universe of the study, is the non-agricultural economy. It comprises: all manufacturing sectors according to the group classification of ISIC Revision 3.1: (group D), construction sector (group F), services sector (groups G and H), and transport, storage, and communications sector (group I). Note that this definition excludes the following sectors: financial intermediation (group J), real estate and renting activities (group K, except sub-sector 72, IT, which was added to the population under study), and all public or utilities-sectors.
Sample survey data [ssd]
The samples for 2009 and 2018 Chad Enterprise Surveys were selected using stratified random sampling, following the methodology explained in the Sampling Note.
Two levels of stratification were used in the Chad 2009 ES sample: firm sector and firm size. The Industry stratification was designed as follows: the universe was stratified into manufacturing and services industries. The initial sample design had a target of 75 interviews in manufacturing and 75 interviews in services.
In 2018 Chad ES, three levels of stratification were used: industry, establishment size, and region. The industry stratification was designed in the way that follows: the universe was stratified as into manufacturing and services industries- Manufacturing (ISIC Rev. 3.1 codes 15 - 37), and Services (ISIC codes 45, 50-52, 55, 60-64, and 72). Regional stratification did not take place for the Chad ES.
Face-to-face [f2f]
Two questionnaires - Manufacturing amd Services were used to collect the survey data.
The Questionnaires have common questions (core module) and respectfully additional manufacturing- and services-specific questions. The eligible manufacturing industries have been surveyed using the Manufacturing questionnaire (includes the core module, plus manufacturing specific questions). Retail firms have been interviewed using the Services questionnaire (includes the core module plus retail specific questions) and the residual eligible services have been covered using the Services questionnaire (includes the core module).
Facebook
TwitterThis paper discusses the estimation of a class of nonlinear state space models including nonlinear panel data models with autoregressive error components. A health economics example illustrates the usefulness of such models. For the approximation of the likelihood function, nonlinear filtering algorithms developed in the time-series literature are considered. Because of the relatively simple structure of these models, a straightforward algorithm based on sequential Gaussian quadrature is suggested. It performs very well both in the empirical application and a Monte Carlo study for ordered logit and binary probit models with an AR(1) error component.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Fixed effects estimators are frequently used to limit selection bias. For example, it is well-known that with panel data, fixed effects models eliminate time-invariant confounding, estimating an independent variable's effect using only within-unit variation. When researchers interpret the results of fixed effects models, they should therefore consider hypothetical changes in the independent variable (counterfactuals) that could plausibly occur within units to avoid overstating the substantive importance of the variable's effect. In this article, we replicate several recent studies which used fixed effects estimators to show how descriptions of the substantive significance of results can be improved by precisely characterizing the variation being studied and presenting plausible counterfactuals. We provide a checklist for the interpretation of fixed effects regression results to help avoid these interpretative pitfalls.
Facebook
TwitterIn 2001, the World Bank in co-operation with the Republika Srpska Institute of Statistics (RSIS), the Federal Institute of Statistics (FOS) and the Agency for Statistics of BiH (BHAS), carried out a Living Standards Measurement Survey (LSMS). The Living Standard Measurement Survey LSMS, in addition to collecting the information necessary to obtain a comprehensive as possible measure of the basic dimensions of household living standards, has three basic objectives, as follows:
To provide the public sector, government, the business community, scientific institutions, international donor organizations and social organizations with information on different indicators of the population's living conditions, as well as on available resources for satisfying basic needs.
To provide information for the evaluation of the results of different forms of government policy and programs developed with the aim to improve the population's living standard. The survey will enable the analysis of the relations between and among different aspects of living standards (housing, consumption, education, health, labor) at a given time, as well as within a household.
To provide key contributions for development of government's Poverty Reduction Strategy Paper, based on analyzed data.
The Department for International Development, UK (DFID) contributed funding to the LSMS and provided funding for a further two years of data collection for a panel survey, known as the Household Survey Panel Series (HSPS). Birks Sinclair & Associates Ltd. were responsible for the management of the HSPS with technical advice and support provided by the Institute for Social and Economic Research (ISER), University of Essex, UK. The panel survey provides longitudinal data through re-interviewing approximately half the LSMS respondents for two years following the LSMS, in the autumn of 2002 and 2003. The LSMS constitutes Wave 1 of the panel survey so there are three years of panel data available for analysis. For the purposes of this documentation we are using the following convention to describe the different rounds of the panel survey: - Wave 1 LSMS conducted in 2001 forms the baseline survey for the panel - Wave 2 Second interview of 50% of LSMS respondents in Autumn/ Winter 2002 - Wave 3 Third interview with sub-sample respondents in Autumn/ Winter 2003
The panel data allows the analysis of key transitions and events over this period such as labour market or geographical mobility and observe the consequent outcomes for the well-being of individuals and households in the survey. The panel data provides information on income and labour market dynamics within FBiH and RS. A key policy area is developing strategies for the reduction of poverty within FBiH and RS. The panel will provide information on the extent to which continuous poverty is experienced by different types of households and individuals over the three year period. And most importantly, the co-variates associated with moves into and out of poverty and the relative risks of poverty for different people can be assessed. As such, the panel aims to provide data, which will inform the policy debates within FBiH and RS at a time of social reform and rapid change. KIND OF DATA
National coverage. Domains: Urban/rural/mixed; Federation; Republic
Households
Sample survey data [ssd]
The Wave 3 sample consisted of 2878 households who had been interviewed at Wave 2 and a further 73 households who were interviewed at Wave 1 but were non-contact at Wave 2 were issued. A total of 2951 households (1301 in the RS and 1650 in FBiH) were issued for Wave 3. As at Wave 2, the sample could not be replaced with any other households.
Panel design
Eligibility for inclusion
The household and household membership definitions are the same standard definitions as a Wave 2. While the sample membership status and eligibility for interview are as follows: i) All members of households interviewed at Wave 2 have been designated as original sample members (OSMs). OSMs include children within households even if they are too young for interview. ii) Any new members joining a household containing at least one OSM, are eligible for inclusion and are designated as new sample members (NSMs). iii) At each wave, all OSMs and NSMs are eligible for inclusion, apart from those who move outof-scope (see discussion below). iv) All household members aged 15 or over are eligible for interview, including OSMs and NSMs.
Following rules
The panel design means that sample members who move from their previous wave address must be traced and followed to their new address for interview. In some cases the whole household will move together but in others an individual member may move away from their previous wave household and form a new split-off household of their own. All sample members, OSMs and NSMs, are followed at each wave and an interview attempted. This method has the benefit of maintaining the maximum number of respondents within the panel and being relatively straightforward to implement in the field.
Definition of 'out-of-scope'
It is important to maintain movers within the sample to maintain sample sizes and reduce attrition and also for substantive research on patterns of geographical mobility and migration. The rules for determining when a respondent is 'out-of-scope' are as follows:
i. Movers out of the country altogether i.e. outside FBiH and RS. This category of mover is clear. Sample members moving to another country outside FBiH and RS will be out-of-scope for that year of the survey and not eligible for interview.
ii. Movers between entities Respondents moving between entities are followed for interview. The personal details of the respondent are passed between the statistical institutes and a new interviewer assigned in that entity.
iii. Movers into institutions Although institutional addresses were not included in the original LSMS sample, Wave 3 individuals who have subsequently moved into some institutions are followed. The definitions for which institutions are included are found in the Supervisor Instructions.
iv. Movers into the district of Brcko are followed for interview. When coding entity Brcko is treated as the entity from which the household who moved into Brcko originated.
Face-to-face [f2f]
Data entry
As at Wave 2 CSPro was the chosen data entry software. The CSPro program consists of two main features to reduce to number of keying errors and to reduce the editing required following data entry: - Data entry screens that included all skip patterns. - Range checks for each question (allowing three exceptions for inappropriate, don't know and missing codes). The Wave 3 data entry program had more checks than at Wave 2 and DE staff were instructed to get all anomalies cleared by SIG fieldwork. The program was extensively tested prior to DE. Ten computer staff were employed in each Field Office and as all had worked on Wave 2 training was not undertaken.
Editing
Editing Instructions were compiled (Annex G) and sent to Supervisors. For Wave 3 Supervisors were asked to take more time to edit every questionnaire returned by their interviewers. The FBTSA examined the work twelve of the twenty-two Supervisors. All Supervisors made occasional errors with the Control Form so a further 100% check of Control Forms and Module 1 was undertaken by the FBTSA and SIG members.
The panel survey has enjoyed high response rates throughout the three years of data collection with the wave 3 response rates being slightly higher than those achieved at wave 2. At wave 3, 1650 households in the FBiH and 1300 households in the RS were issued for interview. Since there may be new households created from split-off movers it is possible for the number of households to increase during fieldwork. A similar number of new households were formed in each entity; 62 in the FBiH and 63 in the RS. This means that 3073 households were identified during fieldwork. Of these, 3003 were eligible for interview, 70 households having either moved out of BiH, institutionalised or deceased (34 in the RS and 36 in the FBiH).
Interviews were achieved in 96% of eligible households, an extremely high response rate by international standards for a survey of this type.
In total, 8712 individuals (including children) were enumerated within the sample households (4796 in the FBiH and 3916 in the RS). Within in the 3003 eligible households, 7781 individuals aged 15 or over were eligible for interview with 7346 (94.4%) being successfully interviewed. Within cooperating households (where there was at least one interview) the interview rate was higher (98.8%).
A very important measure in longitudinal surveys is the annual individual re-interview rate. This is because a high attrition rate, where large numbers of respondents drop out of the survey over time, can call into question the quality of the data collected. In BiH the individual re-interview rates have been high for the survey. The individual re-interview rate is the proportion of people who gave an interview at time t-1 who also give an interview at t. Of those who gave a full interview at wave 2, 6653 also gave a full interview at wave 3. This represents a re-interview rate of 97.9% - which is extremely high by international standards. When we look at those respondents who have been interviewed at all three years of the survey there are 6409 cases which are available for longitudinal analysis, 2881 in the RS and 3528 in the FBiH. This represents 82.8% of the responding wave 1 sample, a
Facebook
TwitterThe Associated Press is sharing data from the COVID Impact Survey, which provides statistics about physical health, mental health, economic security and social dynamics related to the coronavirus pandemic in the United States.
Conducted by NORC at the University of Chicago for the Data Foundation, the probability-based survey provides estimates for the United States as a whole, as well as in 10 states (California, Colorado, Florida, Louisiana, Minnesota, Missouri, Montana, New York, Oregon and Texas) and eight metropolitan areas (Atlanta, Baltimore, Birmingham, Chicago, Cleveland, Columbus, Phoenix and Pittsburgh).
The survey is designed to allow for an ongoing gauge of public perception, health and economic status to see what is shifting during the pandemic. When multiple sets of data are available, it will allow for the tracking of how issues ranging from COVID-19 symptoms to economic status change over time.
The survey is focused on three core areas of research:
Instead, use our queries linked below or statistical software such as R or SPSS to weight the data.
If you'd like to create a table to see how people nationally or in your state or city feel about a topic in the survey, use the survey questionnaire and codebook to match a question (the variable label) to a variable name. For instance, "How often have you felt lonely in the past 7 days?" is variable "soc5c".
Nationally: Go to this query and enter soc5c as the variable. Hit the blue Run Query button in the upper right hand corner.
Local or State: To find figures for that response in a specific state, go to this query and type in a state name and soc5c as the variable, and then hit the blue Run Query button in the upper right hand corner.
The resulting sentence you could write out of these queries is: "People in some states are less likely to report loneliness than others. For example, 66% of Louisianans report feeling lonely on none of the last seven days, compared with 52% of Californians. Nationally, 60% of people said they hadn't felt lonely."
The margin of error for the national and regional surveys is found in the attached methods statement. You will need the margin of error to determine if the comparisons are statistically significant. If the difference is:
The survey data will be provided under embargo in both comma-delimited and statistical formats.
Each set of survey data will be numbered and have the date the embargo lifts in front of it in the format of: 01_April_30_covid_impact_survey. The survey has been organized by the Data Foundation, a non-profit non-partisan think tank, and is sponsored by the Federal Reserve Bank of Minneapolis and the Packard Foundation. It is conducted by NORC at the University of Chicago, a non-partisan research organization. (NORC is not an abbreviation, it part of the organization's formal name.)
Data for the national estimates are collected using the AmeriSpeak Panel, NORC’s probability-based panel designed to be representative of the U.S. household population. Interviews are conducted with adults age 18 and over representing the 50 states and the District of Columbia. Panel members are randomly drawn from AmeriSpeak with a target of achieving 2,000 interviews in each survey. Invited panel members may complete the survey online or by telephone with an NORC telephone interviewer.
Once all the study data have been made final, an iterative raking process is used to adjust for any survey nonresponse as well as any noncoverage or under and oversampling resulting from the study specific sample design. Raking variables include age, gender, census division, race/ethnicity, education, and county groupings based on county level counts of the number of COVID-19 deaths. Demographic weighting variables were obtained from the 2020 Current Population Survey. The count of COVID-19 deaths by county was obtained from USA Facts. The weighted data reflect the U.S. population of adults age 18 and over.
Data for the regional estimates are collected using a multi-mode address-based (ABS) approach that allows residents of each area to complete the interview via web or with an NORC telephone interviewer. All sampled households are mailed a postcard inviting them to complete the survey either online using a unique PIN or via telephone by calling a toll-free number. Interviews are conducted with adults age 18 and over with a target of achieving 400 interviews in each region in each survey.Additional details on the survey methodology and the survey questionnaire are attached below or can be found at https://www.covid-impact.org.
Results should be credited to the COVID Impact Survey, conducted by NORC at the University of Chicago for the Data Foundation.
To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
{# General information# The script runs with R (Version 3.1.1; 2014-07-10) and packages plyr (Version 1.8.1), XLConnect (Version 0.2-9), utilsMPIO (Version 0.0.25), sp (Version 1.0-15), rgdal (Version 0.8-16), tools (Version 3.1.1) and lattice (Version 0.20-29)# --------------------------------------------------------------------------------------------------------# Questions can be directed to: Martin Bulla (bulla.mar@gmail.com)# -------------------------------------------------------------------------------------------------------- # Data collection and how the individual variables were derived is described in: #Steiger, S.S., et al., When the sun never sets: diverse activity rhythms under continuous daylight in free-living arctic-breeding birds. Proceedings of the Royal Society B: Biological Sciences, 2013. 280(1764): p. 20131016-20131016. # Dale, J., et al., The effects of life history and sexual selection on male and female plumage colouration. Nature, 2015. # Data are available as Rdata file # Missing values are NA. # --------------------------------------------------------------------------------------------------------# For better readability the subsections of the script can be collapsed # --------------------------------------------------------------------------------------------------------}{# Description of the method # 1 - data are visualized in an interactive actogram with time of day on x-axis and one panel for each day of data # 2 - red rectangle indicates the active field, clicking with the mouse in that field on the depicted light signal generates a data point that is automatically (via custom made function) saved in the csv file. For this data extraction I recommend, to click always on the bottom line of the red rectangle, as there is always data available due to a dummy variable ("lin") that creates continuous data at the bottom of the active panel. The data are captured only if greenish vertical bar appears and if new line of data appears in R console). # 3 - to extract incubation bouts, first click in the new plot has to be start of incubation, then next click depict end of incubation and the click on the same stop start of the incubation for the other sex. If the end and start of incubation are at different times, the data will be still extracted, but the sex, logger and bird_ID will be wrong. These need to be changed manually in the csv file. Similarly, the first bout for a given plot will be always assigned to male (if no data are present in the csv file) or based on previous data. Hence, whenever a data from a new plot are extracted, at a first mouse click it is worth checking whether the sex, logger and bird_ID information is correct and if not adjust it manually. # 4 - if all information from one day (panel) is extracted, right-click on the plot and choose "stop". This will activate the following day (panel) for extraction. # 5 - If you wish to end extraction before going through all the rectangles, just press "escape". }{# Annotations of data-files from turnstone_2009_Barrow_nest-t401_transmitter.RData dfr-- contains raw data on signal strength from radio tag attached to the rump of female and male, and information about when the birds where captured and incubation stage of the nest1. who: identifies whether the recording refers to female, male, capture or start of hatching2. datetime_: date and time of each recording3. logger: unique identity of the radio tag 4. signal_: signal strength of the radio tag5. sex: sex of the bird (f = female, m = male)6. nest: unique identity of the nest7. day: datetime_ variable truncated to year-month-day format8. time: time of day in hours9. datetime_utc: date and time of each recording, but in UTC time10. cols: colors assigned to "who"--------------------------------------------------------------------------------------------------------m-- contains metadata for a given nest1. sp: identifies species (RUTU = Ruddy turnstone)2. nest: unique identity of the nest3. year_: year of observation4. IDfemale: unique identity of the female5. IDmale: unique identity of the male6. lat: latitude coordinate of the nest7. lon: longitude coordinate of the nest8. hatch_start: date and time when the hatching of the eggs started 9. scinam: scientific name of the species10. breeding_site: unique identity of the breeding site (barr = Barrow, Alaska)11. logger: type of device used to record incubation (IT - radio tag)12. sampling: mean incubation sampling interval in seconds--------------------------------------------------------------------------------------------------------s-- contains metadata for the incubating parents1. year_: year of capture2. species: identifies species (RUTU = Ruddy turnstone)3. author: identifies the author who measured the bird4. nest: unique identity of the nest5. caught_date_time: date and time when the bird was captured6. recapture: was the bird capture before? (0 - no, 1 - yes)7. sex: sex of the bird (f = female, m = male)8. bird_ID: unique identity of the bird9. logger: unique identity of the radio tag --------------------------------------------------------------------------------------------------------}
Facebook
TwitterThe document dataset covers the Enterprise Survey (ES) panel data collected in North Macedonia in 2009, 2013 and 2019.
Macedonia ES 2009 was conducted in 2008 and 2009, while Macedonia ES 2013 was conducted between November 2012 and May 2013, and North Macedonia ES 2019 was conducted between December 2018 and October 2019. The objective of the Enterprise Survey is to gain an understanding of what firms experience in the private sector.
As part of its strategic goal of building a climate for investment, job creation, and sustainable growth, the World Bank has promoted improving the business environment as a key strategy for development, which has led to a systematic effort in collecting enterprise data across countries. The Enterprise Surveys (ES) are an ongoing World Bank project in collecting both objective data based on firms’ experiences and enterprises’ perception of the environment in which they operate.
National
Regions covered are selected based on the number of establishments, contribution to employment, and value added. In most cases these regions are metropolitan areas and reflect the largest centers of economic activity in a country.
The primary sampling unit of the study is the establishment. An establishment is a physical location where business is carried out and where industrial operations take place or services are provided. A firm may be composed of one or more establishments. For example, a brewery may have several bottling plants and several establishments for distribution. For the purposes of this survey an establishment must make its own financial decisions and have its own financial statements separate from those of the firm. An establishment must also have its own management and control over its payroll.
The whole population, or universe of the study, is the non-agricultural economy. It comprises: all manufacturing sectors according to the group classification of ISIC Revision 3.1: (group D), construction sector (group F), services sector (groups G and H), and transport, storage, and communications sector (group I). Note that this definition excludes the following sectors: financial intermediation (group J), real estate and renting activities (group K, except sub-sector 72, IT, which was added to the population under study), and all public or utilities-sectors.
Sample survey data [ssd]
The sample for Macedonia 2009 ES, Macedonia 2013 ES and of 2019 North Macedonia ES were selected using stratified random sampling, following the methodology explained in the Sampling Manual for Macedonia 2009 ES and for Macedonia 2013 ES, and in the Sampling Note for 2019 North Macedonia ES. Stratified random sampling was preferred over simple random sampling for several reasons:
a. To obtain unbiased estimates for different subdivisions of the population with some known level of precision. b. To obtain unbiased estimates for the whole population. The whole population, or universe of the study, is the non-agricultural economy. It comprises: all manufacturing sectors according to the group classification of ISIC Revision 3.1: (group D), construction sector (group F), services sector (groups G and H), and transport, storage, and communications sector (group I). Note that this definition excludes the following sectors: financial intermediation (group J), real estate and renting activities (group K, except sub-sector 72, IT, which was added to the population under study), and all public or utilities-sectors. c. To make sure that the final total sample includes establishments from all different sectors and that it is not concentrated in one or two of industries/sizes/regions. d. To exploit the benefits of stratified sampling where population estimates, in most cases, will be more precise than using a simple random sampling method (i.e., lower standard errors, other things being equal.) e. Stratification may produce a smaller bound on the error of estimation than would be produced by a simple random sample of the same size. This result is particularly true if measurements within strata are homogeneous. f. The cost per observation in the survey may be reduced by stratification of the population elements into convenient groupings.
Three levels of stratification were used in this country: industry, establishment size, and region. The original sample design with specific information of the industries and regions chosen is described in Appendix C of the North Macedonia 2019 ES Implementation Report and in Appendix E of the Macedonia 2013 Implementation Report.
Industry stratification was done as follows: Manufacturing – combining all the relevant activities (ISIC Rev. 3.1 codes 15-37), Retail (ISIC 52), and Other Services (ISIC 45, 50, 51, 55, 60-64, 72).
As it is standard for the ES, the North Macedonia ES was based on the following size stratification: small (5 to 19 employees), medium (20 to 99 employees), and large (100 or more employees).
Regional stratification for North Macedonia ES 2019 was done across three regions: Skopje; Eastern Macedonia comprising Northeastern, Eastern, Southeastern, and Vardar regions; and Western Macedonia comprising Polog, Southwestern and Pelagonia regions. For Macedonia 2013 ES, regional stratification was defined in 4 regions (city and the surrounding business area) throughout Macedonia. And for Macedonia ES 2009, regional stratification was defined in 4 regions which are Eastern, North- West & West, Skopje, and South.
Computer Assisted Personal Interview [capi]
Questionnaires have common questions (core module) and respectfully additional manufacturing- and services-specific questions. The eligible manufacturing industries have been surveyed using the Manufacturing questionnaire (includes the core module, plus manufacturing specific questions). Retail firms have been interviewed using the Services questionnaire (includes the core module plus retail specific questions) and the residual eligible services have been covered using the Services questionnaire (includes the core module). Each variation of the questionnaire is identified by the index variable, a0.
Survey non-response must be differentiated from item non-response. The former refers to refusals to participate in the survey altogether whereas the latter refers to the refusals to answer some specific questions. Enterprise Surveys suffer from both problems and different strategies were used to address these issues.
Item non-response was addressed by two strategies:
a- For sensitive questions that may generate negative reactions from the respondent, such as corruption or tax evasion, enumerators were instructed to collect the refusal to respond (-8) as a different option from don’t know (-9).
b- Establishments with incomplete information were re-contacted in order to complete this information, whenever necessary. However, there were clear cases of low response. The following graph shows non-response rates for the sales variable, d2, by sector. Please, note that for this specific question, refusals were not separately identified from “Don’t know” responses.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The use of multilevel regression models is prevalent in policy analysis to estimate the effect of group level policies on individual outcomes. In order to allow for the time varying effect of group heterogeneity and the group specific impact of time effects, we propose a group interactive fixed effects approach that employs interaction terms of group factor loadings and common factors in this model. For this approach, we consider the least squares estimator and associated inference procedure. We examine their properties under the large n and fixed T asymptotics. The number of groups, G, is allowed to grow but at a slower rate. We also propose a test for the level of grouping to specify group factor loadings, and a GMM approach to address policy endogeneity with respect to idiosyncratic errors. Finally, we provide empirical illustrations of the proposed approach using two empirical examples.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Panel data, also known as longitudinal data, consist of a collection of time series. Each time series, which could itself be multivariate, comprises a sequence of measurements taken on a distinct unit. Mechanistic modeling involves writing down scientifically motivated equations describing the collection of dynamic systems giving rise to the observations on each unit. A defining characteristic of panel systems is that the dynamic interaction between units should be negligible. Panel models therefore consist of a collection of independent stochastic processes, generally linked through shared parameters while also having unit-specific parameters. To give the scientist flexibility in model specification, we are motivated to develop a framework for inference on panel data permitting the consideration of arbitrary nonlinear, partially observed panel models. We build on iterated filtering techniques that provide likelihood-based inference on nonlinear partially observed Markov process models for time series data. Our methodology depends on the latent Markov process only through simulation; this plug-and-play property ensures applicability to a large class of models. We demonstrate our methodology on a toy example and two epidemiological case studies. We address inferential and computational issues arising due to the combination of model complexity and dataset size. Supplementary materials for this article are available online.
Facebook
TwitterThe Ghana Socioeconomic panel household survey is a joint effort between the Economic Growth Center at Yale University and the Institute of Statistical, Social and Economic Research at Legon (Accra, Ghana). The survey is meant to remedy a major constraint on the understanding of development in low-income countries - the absence of detailed, multi-level and long-term scientific data that follows individuals over time and describes both the natural and built environment in which the individuals reside. Most data collection efforts are short-term - carried out a one point in time; are limited in scope - collecting information on only a few aspects of the lives of the persons in the study; and when there are multiple rounds of data collection, individuals who leave the study area are dropped. This latter means that the most mobile people are not included in existing surveys and studies, perhaps substantially biasing inferences about who benefits from and who bears the cost of the development process. The goal of this project, which aims to follow all individuals, or a random subset, over time using a comprehensive set of survey instruments is thus to shed new light on long-run processes of economic development.
The data from the second wave of the Ghana Socioeconomic Panel Survey covered a sample of 4,774 households containing 16,356 household members. The second wave was unique in the sense that it tracked movement of households as well as individual within a household. Thus increasing the number of households in the Panel Study due to the nature of the design; tracking wholly moved and split households. A total of 5484 households were selected for the survey comprising of 5009 households from the baseline survey and 475 households from split of households created of which 4774 households were successfully interviewed.
The survey provides regionally representative data for the 10 regions of Ghana.
Households and individuals
Sample survey data
Face-to-face Interviews
The Household Questionnaire for the survey was in two parts, A and B. Questionnaire Part A collected data on household members and Questionnaire Part B collected data on the household and dwelling.
Facebook
TwitterThe documentation covers Enterprise Survey panel datasets that were collected in Slovenia in 2009, 2013 and 2019.
The Slovenia ES 2009 was conducted between 2008 and 2009. The Slovenia ES 2013 was conducted between March 2013 and September 2013. Finally, the Slovenia ES 2019 was conducted between December 2018 and November 2019. The objective of the Enterprise Survey is to gain an understanding of what firms experience in the private sector.
As part of its strategic goal of building a climate for investment, job creation, and sustainable growth, the World Bank has promoted improving the business environment as a key strategy for development, which has led to a systematic effort in collecting enterprise data across countries. The Enterprise Surveys (ES) are an ongoing World Bank project in collecting both objective data based on firms' experiences and enterprises' perception of the environment in which they operate.
National
The primary sampling unit of the study is the establishment. An establishment is a physical location where business is carried out and where industrial operations take place or services are provided. A firm may be composed of one or more establishments. For example, a brewery may have several bottling plants and several establishments for distribution. For the purposes of this survey an establishment must take its own financial decisions and have its own financial statements separate from those of the firm. An establishment must also have its own management and control over its payroll.
As it is standard for the ES, the Slovenia ES was based on the following size stratification: small (5 to 19 employees), medium (20 to 99 employees), and large (100 or more employees).
Sample survey data [ssd]
The sample for Slovenia ES 2009, 2013, 2019 were selected using stratified random sampling, following the methodology explained in the Sampling Manual for Slovenia 2009 ES and for Slovenia 2013 ES, and in the Sampling Note for 2019 Slovenia ES.
Three levels of stratification were used in this country: industry, establishment size, and oblast (region). The original sample designs with specific information of the industries and regions chosen are included in the attached Excel file (Sampling Report.xls.) for Slovenia 2009 ES. For Slovenia 2013 and 2019 ES, specific information of the industries and regions chosen is described in the "The Slovenia 2013 Enterprise Surveys Data Set" and "The Slovenia 2019 Enterprise Surveys Data Set" reports respectively, Appendix E.
For the Slovenia 2009 ES, industry stratification was designed in the way that follows: the universe was stratified into manufacturing industries, services industries, and one residual (core) sector as defined in the sampling manual. Each industry had a target of 90 interviews. For the manufacturing industries sample sizes were inflated by about 17% to account for potential non-response cases when requesting sensitive financial data and also because of likely attrition in future surveys that would affect the construction of a panel. For the other industries (residuals) sample sizes were inflated by about 12% to account for under sampling in firms in service industries.
For Slovenia 2013 ES, industry stratification was designed in the way that follows: the universe was stratified into one manufacturing industry, and two service industries (retail, and other services).
Finally, for Slovenia 2019 ES, three levels of stratification were used in this country: industry, establishment size, and region. The original sample design with specific information of the industries and regions chosen is described in "The Slovenia 2019 Enterprise Surveys Data Set" report, Appendix C. Industry stratification was done as follows: Manufacturing – combining all the relevant activities (ISIC Rev. 4.0 codes 10-33), Retail (ISIC 47), and Other Services (ISIC 41-43, 45, 46, 49-53, 55, 56, 58, 61, 62, 79, 95).
For Slovenia 2009 and 2013 ES, size stratification was defined following the standardized definition for the rollout: small (5 to 19 employees), medium (20 to 99 employees), and large (more than 99 employees). For stratification purposes, the number of employees was defined on the basis of reported permanent full-time workers. This seems to be an appropriate definition of the labor force since seasonal/casual/part-time employment is not a common practice, except in the sectors of construction and agriculture.
For Slovenia 2009 ES, regional stratification was defined in 2 regions. These regions are Vzhodna Slovenija and Zahodna Slovenija. The Slovenia sample contains panel data. The wave 1 panel “Investment Climate Private Enterprise Survey implemented in Slovenia” consisted of 223 establishments interviewed in 2005. A total of 57 establishments have been re-interviewed in the 2008 Business Environment and Enterprise Performance Survey.
For Slovenia 2013 ES, regional stratification was defined in 2 regions (city and the surrounding business area) throughout Slovenia.
Finally, for Slovenia 2019 ES, regional stratification was done across two regions: Eastern Slovenia (NUTS code SI03) and Western Slovenia (SI04).
Computer Assisted Personal Interview [capi]
Questionnaires have common questions (core module) and respectfully additional manufacturing- and services-specific questions. The eligible manufacturing industries have been surveyed using the Manufacturing questionnaire (includes the core module, plus manufacturing specific questions). Retail firms have been interviewed using the Services questionnaire (includes the core module plus retail specific questions) and the residual eligible services have been covered using the Services questionnaire (includes the core module). Each variation of the questionnaire is identified by the index variable, a0.
Survey non-response must be differentiated from item non-response. The former refers to refusals to participate in the survey altogether whereas the latter refers to the refusals to answer some specific questions. Enterprise Surveys suffer from both problems and different strategies were used to address these issues.
Item non-response was addressed by two strategies: a- For sensitive questions that may generate negative reactions from the respondent, such as corruption or tax evasion, enumerators were instructed to collect the refusal to respond as (-8). b- Establishments with incomplete information were re-contacted in order to complete this information, whenever necessary. However, there were clear cases of low response.
For 2009 and 2013 Slovenia ES, the survey non-response was addressed by maximizing efforts to contact establishments that were initially selected for interview. Up to 4 attempts were made to contact the establishment for interview at different times/days of the week before a replacement establishment (with similar strata characteristics) was suggested for interview. Survey non-response did occur but substitutions were made in order to potentially achieve strata-specific goals. Further research is needed on survey non-response in the Enterprise Surveys regarding potential introduction of bias.
For 2009, the number of contacted establishments per realized interview was 6.18. This number is the result of two factors: explicit refusals to participate in the survey, as reflected by the rate of rejection (which includes rejections of the screener and the main survey) and the quality of the sample frame, as represented by the presence of ineligible units. The relatively low ratio of contacted establishments per realized interview (6.18) suggests that the main source of error in estimates in the Slovenia may be selection bias and not frame inaccuracy.
For 2013, the number of realized interviews per contacted establishment was 25%. This number is the result of two factors: explicit refusals to participate in the survey, as reflected by the rate of rejection (which includes rejections of the screener and the main survey) and the quality of the sample frame, as represented by the presence of ineligible units. The number of rejections per contact was 44%.
Finally, for 2019, the number of interviews per contacted establishments was 9.7%. This number is the result of two factors: explicit refusals to participate in the survey, as reflected by the rate of rejection (which includes rejections of the screener and the main survey) and the quality of the sample frame, as represented by the presence of ineligible units. The share of rejections per contact was 75.2%.