100+ datasets found
  1. w

    National Panel Survey 2008-2015, Uniform Panel Dataset - Tanzania

    • microdata.worldbank.org
    • datacatalog.ihsn.org
    • +1more
    Updated Mar 17, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Bureau of Statistics (2021). National Panel Survey 2008-2015, Uniform Panel Dataset - Tanzania [Dataset]. https://microdata.worldbank.org/index.php/catalog/3814
    Explore at:
    Dataset updated
    Mar 17, 2021
    Dataset authored and provided by
    National Bureau of Statistics
    Time period covered
    2008 - 2015
    Area covered
    Tanzania
    Description

    Abstract

    Panel data possess several advantages over conventional cross-sectional and time-series data, including their power to isolate the effects of specific actions, treatments, and general policies often at the core of large-scale econometric development studies. While the concept of panel data alone provides the capacity for modeling the complexities of human behavior, the notion of universal panel data – in which time- and situation-driven variances leading to variations in tools, and thus results, are mitigated – can further enhance exploitation of the richness of panel information.

    This Basic Information Document (BID) provides a brief overview of the Tanzania National Panel Survey (NPS), but focuses primarily on the theoretical development and application of panel data, as well as key elements of the universal panel survey instrument and datasets generated by the four rounds of the NPS. As this Basic Information Document (BID) for the UPD does not describe in detail the background, development, or use of the NPS itself, the round-specific NPS BIDs should supplement the information provided here.

    The NPS Uniform Panel Dataset (UPD) consists of both survey instruments and datasets, meticulously aligned and engineered with the aim of facilitating the use of and improving access to the wealth of panel data offered by the NPS. The NPS-UPD provides a consistent and straightforward means of conducting not only user-driven analyses using convenient, standardized tools, but also for monitoring MKUKUTA, FYDP II, and other national level development indicators reported by the NPS.

    The design of the NPS-UPD combines the four completed rounds of the NPS – NPS 2008/09 (R1), NPS 2010/11 (R2), NPS 2012/13 (R3), and NPS 2014/15 (R4) – into pooled, module-specific survey instruments and datasets. The panel survey instruments offer the ease of comparability over time, with modifications and variances easily identifiable as well as those aspects of the questionnaire which have remained identical and offer consistent information. By providing all module-specific data over time within compact, pooled datasets, panel datasets eliminate the need for user-generated merges between rounds and present data in a clear, logical format, increasing both the usability and comprehension of complex data.

    Geographic coverage

    Designed for analysis of key indicators at four primary domains of inference, namely: Dar es Salaam, other urban, rural, Zanzibar.

    Analysis unit

    • Households
    • Individuals

    Universe

    The universe includes all households and individuals in Tanzania with the exception of those residing in military barracks or other institutions.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    While the same sample of respondents was maintained over the first three rounds of the NPS, longitudinal surveys tend to suffer from bias introduced by households leaving the survey over time; i.e. attrition. Although the NPS maintains a highly successful recapture rate (roughly 96% retention at the household level), minimizing the escalation of this selection bias, a refresh of longitudinal cohorts was done for the NPS 2014/15 to ensure proper representativeness of estimates while maintaining a sufficient primary sample to maintain cohesion within panel analysis. A newly completed Population and Housing Census (PHC) in 2012, providing updated population figures along with changes in administrative boundaries, emboldened the opportunity to realign the NPS sample and abate collective bias potentially introduced through attrition.

    To maintain the panel concept of the NPS, the sample design for NPS 2014/2015 consisted of a combination of the original NPS sample and a new NPS sample. A nationally representative sub-sample was selected to continue as part of the “Extended Panel” while an entirely new sample, “Refresh Panel”, was selected to represent national and sub-national domains. Similar to the sample in NPS 2008/2009, the sample design for the “Refresh Panel” allows analysis at four primary domains of inference, namely: Dar es Salaam, other urban areas on mainland Tanzania, rural mainland Tanzania, and Zanzibar. This new cohort in NPS 2014/2015 will be maintained and tracked in all future rounds between national censuses.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The format of the NPS-UPD survey instrument is similar to previously disseminated NPS survey instruments. Each module has a questionnaire and clearly identifies if the module collects information at the individual or household level. Within each module-specific questionnaire of the NPS-UPD survey instrument, there are five distinct sections, arranged vertically: (1) the UPD - “U” on the survey instrument, (2) R4, (3), R3, (4) R2, and (5) R1 – the latter 4 sections presenting each questionnaire in its original form at time of its respective dissemination.

    The uppermost section of each module’s questionnaire (“U”) represents the model universal panel questionnaire, with questions generated from the comprehensive listing of questions across all four rounds of the NPS and codes generated from the comprehensive collection of codes. The following sections are arranged vertically by round, considering R4 as most recent. While not all rounds will have data reported for each question in the UPD and not each question will have reports for each of the UPD codes listed, the NPS-UPD survey instrument represents the visual, all-inclusive set of information collected by the NPS over time.

    The four round-specific sections (R4, R3, R2, R1) are aligned with their UPD-equivalent question, visually presenting their contribution to compatibility with the UPD. Each round-specific section includes the original round-specific variable names, response codes and skip patterns (corresponding to their respective round-specific NPS data sets, and despite their variance from other rounds or from the comprehensive UPD code listing)4.

  2. m

    Panel dataset on Brazilian fuel demand

    • data.mendeley.com
    Updated Oct 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sergio Prolo (2024). Panel dataset on Brazilian fuel demand [Dataset]. http://doi.org/10.17632/hzpwbp7j22.1
    Explore at:
    Dataset updated
    Oct 7, 2024
    Authors
    Sergio Prolo
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Brazil
    Description

    Summary : Fuel demand is shown to be influenced by fuel prices, people's income and motorization rates. We explore the effects of electric vehicle's rates in gasoline demand using this panel dataset.

    Files : dataset.csv - Panel dimensions are the Brazilian state ( i ) and year ( t ). The other columns are: gasoline sales per capita (ln_Sg_pc), prices of gasoline (ln_Pg) and ethanol (ln_Pe) and their lags, motorization rates of combustion vehicles (ln_Mi_c) and electric vehicles (ln_Mi_e) and GDP per capita (ln_gdp_pc). All variables are all under the natural log function, since we use this to calculate demand elasticities in a regression model.

    adjacency.csv - The adjacency matrix used in interaction with electric vehicles' motorization rates to calculate spatial effects. At first, it follows a binary adjacency formula: for each pair of states i and j, the cell (i, j) is 0 if the states are not adjacent and 1 if they are. Then, each row is normalized to have sum equal to one.

    regression.do - Series of Stata commands used to estimate the regression models of our study. dataset.csv must be imported to work, see comment section.

    dataset_predictions.xlsx - Based on the estimations from Stata, we use this excel file to make average predictions by year and by state. Also, by including years beyond the last panel sample, we also forecast the model into the future and evaluate the effects of different policies that influence gasoline prices (taxation) and EV motorization rates (electrification). This file is primarily used to create images, but can be used to further understand how the forecasting scenarios are set up.

    Sources: Fuel prices and sales: ANP (https://www.gov.br/anp/en/access-information/what-is-anp/what-is-anp) State population, GDP and vehicle fleet: IBGE (https://www.ibge.gov.br/en/home-eng.html?lang=en-GB) State EV fleet: Anfavea (https://anfavea.com.br/en/site/anuarios/)

  3. Enterprise Survey 2009-2019, Panel Data - Slovenia

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Aug 6, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank Group (WBG) (2020). Enterprise Survey 2009-2019, Panel Data - Slovenia [Dataset]. https://microdata.worldbank.org/index.php/catalog/3762
    Explore at:
    Dataset updated
    Aug 6, 2020
    Dataset provided by
    World Bank Grouphttp://www.worldbank.org/
    European Investment Bankhttp://eib.org/
    European Bank for Reconstruction and Developmenthttp://ebrd.com/
    Time period covered
    2008 - 2019
    Area covered
    Slovenia
    Description

    Abstract

    The documentation covers Enterprise Survey panel datasets that were collected in Slovenia in 2009, 2013 and 2019.

    The Slovenia ES 2009 was conducted between 2008 and 2009. The Slovenia ES 2013 was conducted between March 2013 and September 2013. Finally, the Slovenia ES 2019 was conducted between December 2018 and November 2019. The objective of the Enterprise Survey is to gain an understanding of what firms experience in the private sector.

    As part of its strategic goal of building a climate for investment, job creation, and sustainable growth, the World Bank has promoted improving the business environment as a key strategy for development, which has led to a systematic effort in collecting enterprise data across countries. The Enterprise Surveys (ES) are an ongoing World Bank project in collecting both objective data based on firms' experiences and enterprises' perception of the environment in which they operate.

    Geographic coverage

    National

    Analysis unit

    The primary sampling unit of the study is the establishment. An establishment is a physical location where business is carried out and where industrial operations take place or services are provided. A firm may be composed of one or more establishments. For example, a brewery may have several bottling plants and several establishments for distribution. For the purposes of this survey an establishment must take its own financial decisions and have its own financial statements separate from those of the firm. An establishment must also have its own management and control over its payroll.

    Universe

    As it is standard for the ES, the Slovenia ES was based on the following size stratification: small (5 to 19 employees), medium (20 to 99 employees), and large (100 or more employees).

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sample for Slovenia ES 2009, 2013, 2019 were selected using stratified random sampling, following the methodology explained in the Sampling Manual for Slovenia 2009 ES and for Slovenia 2013 ES, and in the Sampling Note for 2019 Slovenia ES.

    Three levels of stratification were used in this country: industry, establishment size, and oblast (region). The original sample designs with specific information of the industries and regions chosen are included in the attached Excel file (Sampling Report.xls.) for Slovenia 2009 ES. For Slovenia 2013 and 2019 ES, specific information of the industries and regions chosen is described in the "The Slovenia 2013 Enterprise Surveys Data Set" and "The Slovenia 2019 Enterprise Surveys Data Set" reports respectively, Appendix E.

    For the Slovenia 2009 ES, industry stratification was designed in the way that follows: the universe was stratified into manufacturing industries, services industries, and one residual (core) sector as defined in the sampling manual. Each industry had a target of 90 interviews. For the manufacturing industries sample sizes were inflated by about 17% to account for potential non-response cases when requesting sensitive financial data and also because of likely attrition in future surveys that would affect the construction of a panel. For the other industries (residuals) sample sizes were inflated by about 12% to account for under sampling in firms in service industries.

    For Slovenia 2013 ES, industry stratification was designed in the way that follows: the universe was stratified into one manufacturing industry, and two service industries (retail, and other services).

    Finally, for Slovenia 2019 ES, three levels of stratification were used in this country: industry, establishment size, and region. The original sample design with specific information of the industries and regions chosen is described in "The Slovenia 2019 Enterprise Surveys Data Set" report, Appendix C. Industry stratification was done as follows: Manufacturing – combining all the relevant activities (ISIC Rev. 4.0 codes 10-33), Retail (ISIC 47), and Other Services (ISIC 41-43, 45, 46, 49-53, 55, 56, 58, 61, 62, 79, 95).

    For Slovenia 2009 and 2013 ES, size stratification was defined following the standardized definition for the rollout: small (5 to 19 employees), medium (20 to 99 employees), and large (more than 99 employees). For stratification purposes, the number of employees was defined on the basis of reported permanent full-time workers. This seems to be an appropriate definition of the labor force since seasonal/casual/part-time employment is not a common practice, except in the sectors of construction and agriculture.

    For Slovenia 2009 ES, regional stratification was defined in 2 regions. These regions are Vzhodna Slovenija and Zahodna Slovenija. The Slovenia sample contains panel data. The wave 1 panel “Investment Climate Private Enterprise Survey implemented in Slovenia” consisted of 223 establishments interviewed in 2005. A total of 57 establishments have been re-interviewed in the 2008 Business Environment and Enterprise Performance Survey.

    For Slovenia 2013 ES, regional stratification was defined in 2 regions (city and the surrounding business area) throughout Slovenia.

    Finally, for Slovenia 2019 ES, regional stratification was done across two regions: Eastern Slovenia (NUTS code SI03) and Western Slovenia (SI04).

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Research instrument

    Questionnaires have common questions (core module) and respectfully additional manufacturing- and services-specific questions. The eligible manufacturing industries have been surveyed using the Manufacturing questionnaire (includes the core module, plus manufacturing specific questions). Retail firms have been interviewed using the Services questionnaire (includes the core module plus retail specific questions) and the residual eligible services have been covered using the Services questionnaire (includes the core module). Each variation of the questionnaire is identified by the index variable, a0.

    Response rate

    Survey non-response must be differentiated from item non-response. The former refers to refusals to participate in the survey altogether whereas the latter refers to the refusals to answer some specific questions. Enterprise Surveys suffer from both problems and different strategies were used to address these issues.

    Item non-response was addressed by two strategies: a- For sensitive questions that may generate negative reactions from the respondent, such as corruption or tax evasion, enumerators were instructed to collect the refusal to respond as (-8). b- Establishments with incomplete information were re-contacted in order to complete this information, whenever necessary. However, there were clear cases of low response.

    For 2009 and 2013 Slovenia ES, the survey non-response was addressed by maximizing efforts to contact establishments that were initially selected for interview. Up to 4 attempts were made to contact the establishment for interview at different times/days of the week before a replacement establishment (with similar strata characteristics) was suggested for interview. Survey non-response did occur but substitutions were made in order to potentially achieve strata-specific goals. Further research is needed on survey non-response in the Enterprise Surveys regarding potential introduction of bias.

    For 2009, the number of contacted establishments per realized interview was 6.18. This number is the result of two factors: explicit refusals to participate in the survey, as reflected by the rate of rejection (which includes rejections of the screener and the main survey) and the quality of the sample frame, as represented by the presence of ineligible units. The relatively low ratio of contacted establishments per realized interview (6.18) suggests that the main source of error in estimates in the Slovenia may be selection bias and not frame inaccuracy.

    For 2013, the number of realized interviews per contacted establishment was 25%. This number is the result of two factors: explicit refusals to participate in the survey, as reflected by the rate of rejection (which includes rejections of the screener and the main survey) and the quality of the sample frame, as represented by the presence of ineligible units. The number of rejections per contact was 44%.

    Finally, for 2019, the number of interviews per contacted establishments was 9.7%. This number is the result of two factors: explicit refusals to participate in the survey, as reflected by the rate of rejection (which includes rejections of the screener and the main survey) and the quality of the sample frame, as represented by the presence of ineligible units. The share of rejections per contact was 75.2%.

  4. m

    Example Stata syntax and data construction for negative binomial time series...

    • data.mendeley.com
    Updated Nov 2, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sarah Price (2022). Example Stata syntax and data construction for negative binomial time series regression [Dataset]. http://doi.org/10.17632/3mj526hgzx.2
    Explore at:
    Dataset updated
    Nov 2, 2022
    Authors
    Sarah Price
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    We include Stata syntax (dummy_dataset_create.do) that creates a panel dataset for negative binomial time series regression analyses, as described in our paper "Examining methodology to identify patterns of consulting in primary care for different groups of patients before a diagnosis of cancer: an exemplar applied to oesophagogastric cancer". We also include a sample dataset for clarity (dummy_dataset.dta), and a sample of that data in a spreadsheet (Appendix 2).

    The variables contained therein are defined as follows:

    case: binary variable for case or control status (takes a value of 0 for controls and 1 for cases).

    patid: a unique patient identifier.

    time_period: A count variable denoting the time period. In this example, 0 denotes 10 months before diagnosis with cancer, and 9 denotes the month of diagnosis with cancer,

    ncons: number of consultations per month.

    period0 to period9: 10 unique inflection point variables (one for each month before diagnosis). These are used to test which aggregation period includes the inflection point.

    burden: binary variable denoting membership of one of two multimorbidity burden groups.

    We also include two Stata do-files for analysing the consultation rate, stratified by burden group, using the Maximum likelihood method (1_menbregpaper.do and 2_menbregpaper_bs.do).

    Note: In this example, for demonstration purposes we create a dataset for 10 months leading up to diagnosis. In the paper, we analyse 24 months before diagnosis. Here, we study consultation rates over time, but the method could be used to study any countable event, such as number of prescriptions.

  5. d

    India Email Receipt Panel Dataset (Direct from Data Originator) *No PII*

    • datarade.ai
    .csv, .xls
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Vumonic, India Email Receipt Panel Dataset (Direct from Data Originator) *No PII* [Dataset]. https://datarade.ai/data-products/india-email-receipt-panel-dataset-direct-from-data-originato-vumonic
    Explore at:
    .csv, .xlsAvailable download formats
    Dataset authored and provided by
    Vumonic
    Area covered
    India
    Description

    SUMMARY:

    Vumonic provides its clients email receipt datasets on weekly, monthly, or quarterly subscriptions, for any online consumer vertical. We gain consent-based access to our users' email inboxes through our own proprietary apps, from which we gather and extract all the email receipts and put them into a structured format for consumption of our clients. We currently have over 1M users in our India panel.

    If you are not familiar with email receipt data, it provides item and user-level transaction information (all PII-wiped), which allows for deep granular analysis of things like marketshare, growth, competitive intelligence, and more.

    VERTICALS:

    • Ecommerce (Amazon, Flipkart, Myntra, Nykaa)
    • Taxi (Uber, Ola)
    • Food Delivery (Swiggy, Zomato)
    • OTT (Netflix, Amazon Prime Video, Disney+)
    • Appstore (Apple App Store and Google Playstore)
    • OTA (Expedia, Booking.com, GoIbibo)
    • E-wallets (PhonePe, PayTM)
    • Education (Byju's, Unacademy)

    PRICING/QUOTE:

    Our email receipt data is priced market-rate based on the requirement. To give a quote, all we need to know is:

    • what vertical you are interested in
    • how often do you wish to receive the data, and
    • do you want any backdata (e.g. from 2019 onwards)

    Send us over this info and we can answer any questions you have, provide sample, and more.

  6. Enterprise Survey 2009-2016, Panel Data - Lesotho

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated May 11, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank (2017). Enterprise Survey 2009-2016, Panel Data - Lesotho [Dataset]. https://microdata.worldbank.org/index.php/catalog/2835
    Explore at:
    Dataset updated
    May 11, 2017
    Dataset provided by
    World Bank Grouphttp://www.worldbank.org/
    Authors
    World Bank
    Time period covered
    2008 - 2016
    Area covered
    Lesotho
    Description

    Abstract

    The documented dataset covers Enterprise Survey (ES) panel data collected in Lesotho in 2009 and 2016, as part of Africa Enterprise Surveys rollout, an initiative of the World Bank. The objective of the Enterprise Survey is to obtain feedback from enterprises on the state of the private sector as well as to help in building a panel of enterprise data that will make it possible to track changes in the business environment over time, thus allowing, for example, impact assessments of reforms.

    Enterprise Surveys target a sample consisting of longitudinal (panel) observations and new cross-sectional data. Panel firms are prioritized in the sample selection, comprising up to 50% of the sample in the current wave. For all panel firms, regardless of the sample, current eligibility or operating status is determined and included in panel datasets.

    Lesotho ES 2009 was conducted from September 2008 to February 2009, Lesotho ES 2016 was carried out in June - August 2016. Stratified random sampling was used to select the surveyed businesses. Data was collected using face-to-face interviews.

    Data from 301 establishments was analyzed: 90 businesses were from 2009 only, 89 - from 2016 only, and 122 firms were from 2009 and 2016.

    The standard Enterprise Survey topics include firm characteristics, gender participation, access to finance, annual sales, costs of inputs and labor, workforce composition, bribery, licensing, infrastructure, trade, crime, competition, capacity utilization, land and permits, taxation, informality, business-government relations, innovation and technology, and performance measures. Over 90 percent of the questions objectively measure characteristics of a country’s business environment. The remaining questions assess the survey respondents’ opinions on what are the obstacles to firm growth and performance.

    Geographic coverage

    National

    Analysis unit

    The primary sampling unit of the study is an establishment. An establishment is a physical location where business is carried out and where industrial operations take place or services are provided. A firm may be composed of one or more establishments. For example, a brewery may have several bottling plants and several establishments for distribution. For the purposes of this survey an establishment must make its own financial decisions and have its own financial statements separate from those of the firm. An establishment must also have its own management and control over its payroll.

    Universe

    The whole population, or the universe, covered in the Enterprise Surveys is the non-agricultural private economy. It comprises: all manufacturing sectors according to the ISIC Revision 3.1 group classification (group D), construction sector (group F), services sector (groups G and H), and transport, storage, and communications sector (group I). Note that this population definition excludes the following sectors: financial intermediation (group J), real estate and renting activities (group K, except sub-sector 72, IT, which was added to the population under study), and all public or utilities sectors. Companies with 100% government ownership are not eligible to participate in the Enterprise Surveys.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Two levels of stratification were used in this country: industry and establishment size.

    Industry stratification was designed as follows: the universe was stratified as into manufacturing and services industries - Manufacturing (ISIC Rev. 3.1 codes 15 - 37), and Services (ISIC codes 45, 50-52, 55, 60-64, and 72).

    For the Lesotho ES, size stratification was defined as follows: small (5 to 19 employees), medium (20 to 99 employees), and large (100 or more employees). Regional stratification did not take place for the Lesotho ES.

    In 2009, it was not possible to obtain a single usable frame for Lesotho. Instead frames were obtained from two government branches: the Chamber of Commerce and the Ministry of Trade, Industry, Cooperatives and Marketing. Those frames were merged and duplicates removed to provide the frame used for the survey.

    In 2016 ES, the sample frame consisted of listings of firms from two sources: for panel firms the list of 151 firms from the Lesotho 2009 ES was used and for fresh firms (i.e., firms not covered in 2009) firm data from Lesotho Bureau of Statistics Business Register, published in August 2015, was used.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The following survey instruments were used for Lesotho ES: - Manufacturing Module Questionnaire - Services Module Questionnaire

    The survey is fielded via manufacturing or services questionnaires in order not to ask questions that are irrelevant to specific types of firms, e.g. a question that relates to production and nonproduction workers should not be asked of a retail firm. In addition to questions that are asked across countries, all surveys are customized and contain country-specific questions. An example of customization would be including tourism-related questions that are asked in certain countries when tourism is an existing or potential sector of economic growth. There is a skip pattern in the Service Module Questionnaire for questions that apply only to retail firms.

    Cleaning operations

    Data entry and quality controls are implemented by the contractor and data is delivered to the World Bank in batches (typically 10%, 50% and 100%). These data deliveries are checked for logical consistency, out of range values, skip patterns, and duplicate entries. Problems are flagged by the World Bank and corrected by the implementing contractor through data checks, callbacks, and revisiting establishments.

    Response rate

    Survey non-response must be differentiated from item non-response. The former refers to refusals to participate in the survey altogether whereas the latter refers to the refusals to answer some specific questions. Enterprise Surveys suffer from both problems and different strategies were used to address these issues.

    Item non-response was addressed by two strategies: a- For sensitive questions that may generate negative reactions from the respondent, such as corruption or tax evasion, enumerators were instructed to collect "Refusal to respond" (-8) as a different option from "Don't know" (-9). b- Establishments with incomplete information were re-contacted in order to complete this information, whenever necessary.

    Survey non-response was addressed by maximizing efforts to contact establishments that were initially selected for interview. Attempts were made to contact the establishment for interview at different times/days of the week before a replacement establishment (with similar strata characteristics) was suggested for interview. Survey non-response did occur but substitutions were made in order to potentially achieve strata-specific goals.

  7. Dataset for the paper "The Impact of International Trade on the Price of...

    • figshare.com
    xlsx
    Updated Apr 12, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ivan Hajdukovic (2020). Dataset for the paper "The Impact of International Trade on the Price of Solar Photovoltaic Modules: Empirical Evidence " [Dataset]. http://doi.org/10.6084/m9.figshare.12116244.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Apr 12, 2020
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Ivan Hajdukovic
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This dataset contains panel data for a sample of 15 countries (Australia, Austria, Canada, China, Denmark, France, Germany, Israel, Italy, Japan, Republic of Korea, Spain, Sweden, Switzerland and United States) over the period 2006-2015. The series used are available for a small number of developed countries and for a relatively short time period. Solar PV module prices, imports of solar PV panels and public budget for R&D in PV are in real terms and were obtained by dividing them by the United States GDP deflator. The series are obtained from five main sources. Imports value of solar PV panels series are taken from Commodity Trade Statistics database (COMTRADE). PV panels (cells and modules) are a part of the category HS 854140, "Photosensitive Semiconductor Devices, Photovoltaic Cells and Light-Emitting Diodes". Solar PV module prices, cumulative installed PV capacity and public budget for R&D in PV series are constructed from the PVPS report Trends in Photovoltaic Applications of the International Energy Agency (IEA). Population density, political stability index, renewable energy consumption and per capita carbon dioxide emissions series are all obtained from the World Bank (WB). Real GDP per capita series is taken from Federal Reserve Bank of St. Louis (FRED). Technological development in PV and crude oil import price series are drawn from the Organisation for Economic Co-operation and Development (OECD) database. Since crude oil import price series are not available for China and Israel, we use the West Texas Intermediate spot crude oil price as a proxy. The dummy for presence of feed-in tariff is constructed from the OECD database.

  8. The Panel Study of Income Dynamics (PSID)

    • catalog.data.gov
    • data.virginia.gov
    • +2more
    Updated Jul 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Institutes of Health (NIH), Department of Health & Human Services (2025). The Panel Study of Income Dynamics (PSID) [Dataset]. https://catalog.data.gov/dataset/the-panel-study-of-income-dynamics-psid
    Explore at:
    Dataset updated
    Jul 29, 2025
    Dataset provided by
    United States Department of Health and Human Serviceshttp://www.hhs.gov/
    Description

    The Panel Study of Income Dynamics (PSID) began in 1968 with a nationally representative sample of over 18,000 individuals living in 5,000 families in the United States. Information on these individuals and their descendants has been collected continuously, including data covering employment, income, wealth, expenditures, health, marriage, childbearing, child development, philanthropy, education, and numerous other topics.

  9. Enterprise Survey 2009-2014, Panel Data - Malawi

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Oct 7, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank (2015). Enterprise Survey 2009-2014, Panel Data - Malawi [Dataset]. https://microdata.worldbank.org/index.php/catalog/2360
    Explore at:
    Dataset updated
    Oct 7, 2015
    Dataset provided by
    World Bank Grouphttp://www.worldbank.org/
    Authors
    World Bank
    Time period covered
    2009 - 2014
    Area covered
    Malawi
    Description

    Abstract

    The documented dataset covers Enterprise Survey (ES) panel data collected in Malawi in 2009 and 2014, as part of Africa Enterprise Surveys roll-out, an initiative of the World Bank.

    New Enterprise Surveys target a sample consisting of longitudinal (panel) observations and new cross-sectional data. Panel firms are prioritized in the sample selection, comprising up to 50% of the sample in the current wave. For all panel firms, regardless of the sample, current eligibility or operating status is determined and included in panel datasets.

    Malawi ES 2014 was conducted between April 2014 and February 2015, Malawi ES 2009 was carried out in May - July 2009. The objective of the Enterprise Survey is to obtain feedback from enterprises on the state of the private sector as well as to help in building a panel of enterprise data that will make it possible to track changes in the business environment over time, thus allowing, for example, impact assessments of reforms. Through interviews with firms in the manufacturing and services sectors, the survey assesses the constraints to private sector growth and creates statistically significant business environment indicators that are comparable across countries.

    Stratified random sampling was used to select the surveyed businesses. The data was collected using face-to-face interviews.

    Data from 673 establishments was analyzed: 436 businesses were from 2014 ES only, 63 - from 2009 ES only, and 174 firms were from both 2009 and 2014 panels.

    The standard Enterprise Survey topics include firm characteristics, gender participation, access to finance, annual sales, costs of inputs and labor, workforce composition, bribery, licensing, infrastructure, trade, crime, competition, capacity utilization, land and permits, taxation, informality, business-government relations, innovation and technology, and performance measures. Over 90 percent of the questions objectively measure characteristics of a country’s business environment. The remaining questions assess the survey respondents’ opinions on what are the obstacles to firm growth and performance.

    Geographic coverage

    National

    Analysis unit

    The primary sampling unit of the study is an establishment. An establishment is a physical location where business is carried out and where industrial operations take place or services are provided. A firm may be composed of one or more establishments. For example, a brewery may have several bottling plants and several establishments for distribution. For the purposes of this survey an establishment must make its own financial decisions and have its own financial statements separate from those of the firm. An establishment must also have its own management and control over its payroll.

    Universe

    The whole population, or the universe, covered in the Enterprise Surveys is the non-agricultural private economy. It comprises: all manufacturing sectors according to the ISIC Revision 3.1 group classification (group D), construction sector (group F), services sector (groups G and H), and transport, storage, and communications sector (group I). Note that this population definition excludes the following sectors: financial intermediation (group J), real estate and renting activities (group K, except sub-sector 72, IT, which was added to the population under study), and all public or utilities sectors. Companies with 100% government ownership are not eligible to participate in the Enterprise Surveys.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    For the Malawi ES, multiple sample frames were used: a sample frame was built using data compiled from local and municipal business registries. Due to the fact that the previous round of surveys utilized different stratification criteria in the 2009 survey sample, the presence of panel firms was limited to a maximum of 50% of the achieved interviews in each stratum. That sample is referred to as the panel.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The following survey instruments were used for Malawi ES 2009 and 2014: - Manufacturing Module Questionnaire - Services Module Questionnaire

    The survey is fielded via manufacturing or services questionnaires in order not to ask questions that are irrelevant to specific types of firms, e.g. a question that relates to production and nonproduction workers should not be asked of a retail firm. In addition to questions that are asked across countries, all surveys are customized and contain country-specific questions. An example of customization would be including tourism-related questions that are asked in certain countries when tourism is an existing or potential sector of economic growth. There is a skip pattern in the Service Module Questionnaire for questions that apply only to retail firms.

    Cleaning operations

    Data entry and quality controls are implemented by the contractor and data is delivered to the World Bank in batches (typically 10%, 50% and 100%). These data deliveries are checked for logical consistency, out of range values, skip patterns, and duplicate entries. Problems are flagged by the World Bank and corrected by the implementing contractor through data checks, callbacks, and revisiting establishments.

    Response rate

    Survey non-response must be differentiated from item non-response. The former refers to refusals to participate in the survey altogether whereas the latter refers to the refusals to answer some specific questions. Enterprise Surveys suffer from both problems and different strategies were used to address these issues.

    Item non-response was addressed by two strategies: a- For sensitive questions that may generate negative reactions from the respondent, such as corruption or tax evasion, enumerators were instructed to collect "Refusal to respond" (-8) as a different option from "Don't know" (-9). b- Establishments with incomplete information were re-contacted in order to complete this information, whenever necessary.

    Survey non-response was addressed by maximizing efforts to contact establishments that were initially selected for interview. Attempts were made to contact the establishment for interview at different times/days of the week before a replacement establishment (with similar strata characteristics) was suggested for interview. Survey non-response did occur but substitutions were made in order to potentially achieve strata-specific goals.

  10. Enterprise Survey 2009-2018 Panel Data - Chad

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Nov 19, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The World Bank (2018). Enterprise Survey 2009-2018 Panel Data - Chad [Dataset]. https://microdata.worldbank.org/index.php/catalog/3382
    Explore at:
    Dataset updated
    Nov 19, 2018
    Dataset provided by
    World Bank Grouphttp://www.worldbank.org/
    Authors
    The World Bank
    Time period covered
    2009 - 2018
    Area covered
    Chad
    Description

    Abstract

    The documentation covers Enterprise Survey panel datasets that were collected in Chad in 2009 and 2018. The Enterprise Survey is a firm-level survey of a representative sample of an economy's private sector. The surveys cover a broad range of business environment topics including access to finance, corruption, infrastructure, crime, competition, and performance measures. The objective of the Enterprise Survey is to gain an understanding of what firms experience in the private sector.

    As part of its strategic goal of building a climate for investment, job creation, and sustainable growth, the World Bank has promoted improving the business environment as a key strategy for development, which has led to a systematic effort in collecting enterprise data across countries. The Enterprise Surveys (ES) are an ongoing World Bank project in collecting both objective data based on firms' experiences and enterprises' perception of the environment in which they operate.

    Geographic coverage

    National coverage

    Analysis unit

    The primary sampling unit of the study is the establishment. An establishment is a physical location where business is carried out and where industrial operations take place or services are provided. A firm may be composed of one or more establishments. For example, a brewery may have several bottling plants and several establishments for distribution. For the purposes of this survey an establishment must make its own financial decisions and have its own financial statements separate from those of the firm. An establishment must also have its own management and control over its payroll.

    Universe

    The whole population, or universe of the study, is the non-agricultural economy. It comprises: all manufacturing sectors according to the group classification of ISIC Revision 3.1: (group D), construction sector (group F), services sector (groups G and H), and transport, storage, and communications sector (group I). Note that this definition excludes the following sectors: financial intermediation (group J), real estate and renting activities (group K, except sub-sector 72, IT, which was added to the population under study), and all public or utilities-sectors.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The samples for 2009 and 2018 Chad Enterprise Surveys were selected using stratified random sampling, following the methodology explained in the Sampling Note.

    Two levels of stratification were used in the Chad 2009 ES sample: firm sector and firm size. The Industry stratification was designed as follows: the universe was stratified into manufacturing and services industries. The initial sample design had a target of 75 interviews in manufacturing and 75 interviews in services.

    In 2018 Chad ES, three levels of stratification were used: industry, establishment size, and region. The industry stratification was designed in the way that follows: the universe was stratified as into manufacturing and services industries- Manufacturing (ISIC Rev. 3.1 codes 15 - 37), and Services (ISIC codes 45, 50-52, 55, 60-64, and 72). Regional stratification did not take place for the Chad ES.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Two questionnaires - Manufacturing amd Services were used to collect the survey data.

    The Questionnaires have common questions (core module) and respectfully additional manufacturing- and services-specific questions. The eligible manufacturing industries have been surveyed using the Manufacturing questionnaire (includes the core module, plus manufacturing specific questions). Retail firms have been interviewed using the Services questionnaire (includes the core module plus retail specific questions) and the residual eligible services have been covered using the Services questionnaire (includes the core module).

  11. t

    General Social Survey Panel Data (2006 Sample)

    • thearda.com
    Updated Jan 20, 2004
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Association of Religion Data Archives (2004). General Social Survey Panel Data (2006 Sample) [Dataset]. http://doi.org/10.17605/OSF.IO/E62CA
    Explore at:
    Dataset updated
    Jan 20, 2004
    Dataset provided by
    The Association of Religion Data Archives
    Dataset funded by
    National Science Foundation
    Description

    The General Social Surveys (GSS) have been conducted by the "https://www.norc.org/Pages/default.aspx" Target="_blank">National Opinion Research Center (NORC) annually since 1972, except for the years 1979, 1981, and 1992 (a supplement was added in 1992), and biennially beginning in 1994. The GSS are designed to be part of a program of social indicator research, replicating questionnaire items and wording in order to facilitate time-trend studies. This GSS panel dataset has three waves of interviews: originally sampled and interviewed in 2006, interviewed for the second time in 2008, and interviewed for the third wave in 2010. This file contains those 2,000 respondents who were pre-selected among the 2006 samples and those variables that were asked at least twice in three waves. Survey items on religion include the following: religious preference, religion raised in, spouse's religious preference, frequency of religious service attendance, religious experiences, and religious salience.

  12. Data from: Time Use Longitudinal Panel Study, 1975-1981

    • icpsr.umich.edu
    ascii, sas, spss +1
    Updated Jan 12, 2006
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Juster, F. Thomas; Hill, Martha S.; Stafford, Frank P.; Unknown (2006). Time Use Longitudinal Panel Study, 1975-1981 [Dataset]. http://doi.org/10.3886/ICPSR09054.v2
    Explore at:
    ascii, stata, spss, sasAvailable download formats
    Dataset updated
    Jan 12, 2006
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    Juster, F. Thomas; Hill, Martha S.; Stafford, Frank P.; Unknown
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/9054/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/9054/terms

    Area covered
    United States
    Description

    The 1975-1981 TIME USE LONGITUDINAL PANEL STUDY dataset combines a round of data collected in 1981 with the principal investigators' earlier TIME USE IN ECONOMIC AND SOCIAL ACCOUNTS, 1975-1976 (ICPSR 7580), collected by F. Thomas Juster, Paul Courant, et al. This combined data collection consists of data from 620 respondents, their spouses if they were married at the time of first contact, and up to three children between the ages of three and seventeen living in the household. The key features which characterized the 1975 time use study were repeated in 1981. In both of the data collection years, adult individuals provided four time diaries as well as extensive information related to their time use in the four waves of data collection. Information pertaining to the household was collected, as well as identical measures from respondents and spouses for all person-specific information. Selected children provided two time diary reports (one for a school day and one non-school day), an academic achievement measure, and survey measures pertaining to school and family life. In addition, teacher ratings were obtained. For each adult individual who remained in the sample through the 1981 study, a time budget was constructed from his or her time diaries containing the number of minutes per week spent in each of some 223 mutually exclusive and exhaustive activities. These measures provide a description of how the sample individuals were currently allocating their time and are comparable to the 87 activity measures created from their 1975 diaries. In addition, respondent and spouse time aggregates were converted to parent time aggregates for mothers and fathers of children in the sample. To facilitate analyses on spouses, a merged data file was created for 868 couples in which both husband and wife had complete Wave I data in either 1975-1976 or 1981.

  13. Enterprise Survey 2006-2017, Panel data - Peru

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Apr 11, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank (2019). Enterprise Survey 2006-2017, Panel data - Peru [Dataset]. https://microdata.worldbank.org/index.php/catalog/3443
    Explore at:
    Dataset updated
    Apr 11, 2019
    Dataset provided by
    World Bank Grouphttp://www.worldbank.org/
    Authors
    World Bank
    Time period covered
    2006 - 2017
    Area covered
    Peru
    Description

    Abstract

    The documented dataset covers Enterprise Survey (ES) panel data collected in Peru in 2006, 2010 and 2017, as part of the Enterprise Survey initiative of the World Bank. An Indicator Survey is similar to an Enterprise Survey; it is implemented for smaller economies where the sampling strategies inherent in an Enterprise Survey are often not applicable due to the limited universe of firms.

    The objective of the 2006-2017 Enterprise Survey is to obtain feedback from enterprises in client countries on the state of the private sector as well as to build a panel of enterprise data that will make it possible to track changes in the business environment over time and allow, for example, impact assessments of reforms. Through interviews with firms in the manufacturing and services sectors, the Indicator Survey data provides information on the constraints to private sector growth and is used to create statistically significant business environment indicators that are comparable across countries.

    As part of its strategic goal of building a climate for investment, job creation, and sustainable growth, the World Bank has promoted improving the business environment as a key strategy for development, which has led to a systematic effort in collecting enterprise data across countries. The Enterprise Surveys (ES) are an ongoing World Bank project in collecting both objective data based on firms' experiences and enterprises' perception of the environment in which they operate.

    Geographic coverage

    National

    Analysis unit

    The primary sampling unit of the study is the establishment. An establishment is a physical location where business is carried out and where industrial operations take place or services are provided. A firm may be composed of one or more establishments. For example, a brewery may have several bottling plants and several establishments for distribution. For the purposes of this survey an establishment must make its own financial decisions and have its own financial statements separate from those of the firm. An establishment must also have its own management and control over its payroll.

    Universe

    The whole population, or the universe, covered in the Enterprise Surveys is the non-agricultural economy. It comprises: all manufacturing sectors according to the ISIC Revision 3.1 group classification (group D), construction sector (group F), services sector (groups G and H), and transport, storage, and communications sector (group I). Note that this population definition excludes the following sectors: financial intermediation (group J), real estate and renting activities (group K, except sub-sector 72, IT, which was added to the population under study), and all public or utilities-sectors.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sample for the 2006-2017 Peru Enterprise Survey (ES) was selected using stratified random sampling, following the methodology explained in the Sampling Manual. Stratified random sampling was preferred over simple random sampling for several reasons: - To obtain unbiased estimates for different subdivisions of the population with some known level of precision. - To obtain unbiased estimates for the whole population. The whole population, or universe of the study, is the non-agricultural economy. It comprises: all manufacturing sectors (group D), construction (group F), services (groups G and H), and transport, storage, and communications (group I). Groups are defined following ISIC revision 3.1. Note that this definition excludes the following sectors: financial intermediation (group J), real estate and renting activities (group K, excluding sub-sector 72, IT, which was added to the population under study), and all public or utilities-sectors. - To make sure that the final total sample includes establishments from all different sectors and that it is not concentrated in one or two of industries/sizes/regions. - To exploit the benefits of stratified sampling where population estimates, in most cases, will be more precise than using a simple random sampling method (i.e., lower standard errors, other things being equal.)

    Three levels of stratification were used in every country: industry, establishment size, and region.

    Industry stratification was designed in the following way: In small economies the population was stratified into 3 manufacturing industries, one services industry - retail-, and one residual sector as defined in the sampling manual. Each industry had a target of 120 interviews. In middle size economies the population was stratified into 4 manufacturing industries, 2 services industries -retail and IT-, and one residual sector. For the manufacturing industries sample sizes were inflated by 25% to account for potential non-response in the financing data.

    For the Peru ES, size stratification was defined following the standardized definition for the rollout: small (5 to 19 employees), medium (20 to 99 employees), and large (more than 99 employees). For stratification purposed, the number of employees was defined on the basis of reported permanent full-time workers. This resulted in some difficulties in certain countries where seasonal/casual/part-time labor is common.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The current survey instruments are available: - Core Questionnaire + Manufacturing Module [ISIC Rev.3.1: 15-37] - Core Questionnaire + Retail Module [ISIC Rev.3.1: 52] - Core Questionnaire [ISIC Rev.3.1: 45, 50, 51, 55, 60-64, 72] - Screener Questionnaire.

    The "Core Questionnaire" is the heart of the Enterprise Survey and contains the survey questions asked of all firms across the world. There are also two other survey instruments - the "Core Questionnaire + Manufacturing Module" and the "Core Questionnaire + Retail Module." The survey is fielded via three instruments in order to not ask questions that are irrelevant to specific types of firms, e.g. a question that relates to production and nonproduction workers should not be asked of a retail firm. In addition to questions that are asked across countries, all surveys are customized and contain country-specific questions. An example of customization would be including tourism-related questions that are asked in certain countries when tourism is an existing or potential sector of economic growth.

    The standard Enterprise Survey topics include firm characteristics, gender participation, access to finance, annual sales, costs of inputs/labor, workforce composition, bribery, licensing, infrastructure, trade, crime, competition, capacity utilization, land and permits, taxation, informality, business-government relations, innovation and technology, and performance measures.

    Cleaning operations

    Data entry and quality controls are implemented by the contractor and data is delivered to the World Bank in batches (typically 10%, 50% and 100%). These data deliveries are checked for logical consistency, out of range values, skip patterns, and duplicate entries. Problems are flagged by the World Bank and corrected by the implementing contractor through data checks, callbacks, and revisiting establishments.

    Response rate

    Survey non-response must be differentiated from item non-response. The former refers to refusals to participate in the survey altogether whereas the latter refers to the refusals to answer some specific questions. Enterprise Surveys suffer from both problems and different strategies were used to address these issues.

    Item non-response was addressed by two strategies:

    a- For sensitive questions that may generate negative reactions from the respondent, such as corruption or tax evasion, enumerators were instructed to collect the refusal to respond (-8) as a different option from don’t know (-9).

    b- Establishments with incomplete information were re-contacted in order to complete this information, whenever necessary. However, there were clear cases of low response. The following graph shows non-response rates for the sales variable, d2, by sector. Please, note that for this specific question, refusals were not separately identified from “Don’t know” responses.

    Survey non-response was addressed by maximizing efforts to contact establishments that were initially selected for interview. Attempts were made to contact the establishment for interview at different times/days of the week before a replacement establishment (with similar strata characteristics) was suggested for interview. Survey non-response did occur but substitutions were made in order to potentially achieve strata-specific goals; whenever this was done, strict rules were followed to ensure replacements were randomly selected within the same stratum. Further research is needed on survey non-response in the Enterprise Surveys regarding potential introduction of bias.

  14. Artificial Manga Panel Dataset

    • kaggle.com
    zip
    Updated Mar 9, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aasim Sani (2022). Artificial Manga Panel Dataset [Dataset]. https://www.kaggle.com/datasets/aasimsani/ampd-base
    Explore at:
    zip(11546356671 bytes)Available download formats
    Dataset updated
    Mar 9, 2022
    Authors
    Aasim Sani
    License

    http://www.gnu.org/licenses/lgpl-3.0.htmlhttp://www.gnu.org/licenses/lgpl-3.0.html

    Description

    Artifical Manga Panel Dataset - AMP-D

    Associated Github Repository: https://github.com/aasimsani/artificial_manga_panel_dataset

    The problem

    I love manga, but can't read Japanese. And Google Translate isn't so great with Japanese text localization and doesn't offer a free solution for OCR+translation. So I decided to build something that'll help me translate the manga more efficiently into English. Additionally, the technology to detect the speech bubbles could also help official translators translate manga faster. Sadly I couldn't find a dataset which was free and publicly available to train my speech bubble detector on so I made this.

    What is in this repo?

    This repository contains the associated files and links to create an artificial manga panel dataset. Here's a sample of an image created with this code:
    https://raw.githubusercontent.com/aasimsani/artificial_manga_panel_dataset/main/docs/misc_files/sample.png">

    Setup and usage

    If you just want to use the dataset and not change anything you can find it at

  15. Enterprise Survey 2004-2009-2016, Panel Data - Benin

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated May 3, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank (2017). Enterprise Survey 2004-2009-2016, Panel Data - Benin [Dataset]. https://microdata.worldbank.org/index.php/catalog/2832
    Explore at:
    Dataset updated
    May 3, 2017
    Dataset provided by
    World Bank Grouphttp://www.worldbank.org/
    Authors
    World Bank
    Time period covered
    2004 - 2016
    Area covered
    Benin
    Description

    Abstract

    The documented dataset covers Enterprise Survey (ES) panel data collected in Benin in 2004, 2009 and 2016, as part of Africa Enterprise Surveys rollout, an initiative of the World Bank. The objective of the Enterprise Survey is to obtain feedback from enterprises on the state of the private sector as well as to help in building a panel of enterprise data that will make it possible to track changes in the business environment over time, thus allowing, for example, impact assessments of reforms.

    Enterprise Surveys target a sample consisting of longitudinal (panel) observations and new cross-sectional data. Panel firms are prioritized in the sample selection, comprising up to 50% of the sample in the current wave. For all panel firms, regardless of the sample, current eligibility or operating status is determined and included in panel datasets.

    Benin ES 2009 was conducted from May 18 to Sept. 30, 2009, Benin ES 2016 was carried out in July - October 2016. Stratified random sampling was used to select the surveyed businesses. Data was collected using face-to-face interviews.

    Data from 497 establishments was analyzed: 128 businesses were from 2004 only, 53 - from 2009 only, 88 - from 2016 only, 70 - from 2004 and 2009 only, 56 - from 2009 and 2016 only and 102 firms were from 2004, 2009 and 2016.

    The standard Enterprise Survey topics include firm characteristics, gender participation, access to finance, annual sales, costs of inputs and labor, workforce composition, bribery, licensing, infrastructure, trade, crime, competition, capacity utilization, land and permits, taxation, informality, business-government relations, innovation and technology, and performance measures. Over 90 percent of the questions objectively measure characteristics of a country’s business environment. The remaining questions assess the survey respondents’ opinions on what are the obstacles to firm growth and performance.

    Geographic coverage

    National

    Analysis unit

    The primary sampling unit of the study is an establishment. An establishment is a physical location where business is carried out and where industrial operations take place or services are provided. A firm may be composed of one or more establishments. For example, a brewery may have several bottling plants and several establishments for distribution. For the purposes of this survey an establishment must make its own financial decisions and have its own financial statements separate from those of the firm. An establishment must also have its own management and control over its payroll.

    Universe

    The whole population, or the universe, covered in the Enterprise Surveys is the non-agricultural private economy. It comprises: all manufacturing sectors according to the ISIC Revision 3.1 group classification (group D), construction sector (group F), services sector (groups G and H), and transport, storage, and communications sector (group I). Note that this population definition excludes the following sectors: financial intermediation (group J), real estate and renting activities (group K, except sub-sector 72, IT, which was added to the population under study), and all public or utilities sectors. Companies with 100% government ownership are not eligible to participate in the Enterprise Surveys.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Three levels of stratification were used in this country: industry, establishment size, and region.

    Industry stratification was designed as follows: the universe was stratified as into manufacturing and services industries- Manufacturing (ISIC Rev. 3.1 codes 15 - 37), and Services (ISIC codes 45, 50-52, 55, 60-64, and 72).

    For the Benin ES, size stratification was defined as follows: small (5 to 19 employees), medium (20 to 99 employees), and large (100 or more employees).

    In 2016 ES, regional stratification was done across five regions: Atlantique, Borgou, Mono, Ouémé and Littoral. In 2009 ES, Cotonou and Other were the two areas selected.

    In 2016 ES, the sample frame consisted of listings of firms from three sources: for panel firms, the list of 150 firms from the Benin 2009 ES was used, and for fresh firms (i.e., firms not covered in 2009) lists obtained from National Statistical Institute and Tax Directorate (2013) and the Chamber of Commerce (2016) were used.

    In 2009 ES, two sample frames were used. The first one included the official list "Repertoire of Companies in Benin" (2009) from the Chambre de Commerce et d' Industrie du Benin. The second frame (the panel sample) consisted of enterprises interviewed for the Enterprise Survey in 2004, which were to be re-interviewed where they were in the selected geographical regions and met eligibility criteria.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The following survey instruments were used for Benin ES 2009 and 2016: - Manufacturing Module Questionnaire - Services Module Questionnaire

    The survey is fielded via manufacturing or services questionnaires in order not to ask questions that are irrelevant to specific types of firms, e.g. a question that relates to production and nonproduction workers should not be asked of a retail firm. In addition to questions that are asked across countries, all surveys are customized and contain country-specific questions. An example of customization would be including tourism-related questions that are asked in certain countries when tourism is an existing or potential sector of economic growth. There is a skip pattern in the Service Module Questionnaire for questions that apply only to retail firms.

    Cleaning operations

    Data entry and quality controls are implemented by the contractor and data is delivered to the World Bank in batches (typically 10%, 50% and 100%). These data deliveries are checked for logical consistency, out of range values, skip patterns, and duplicate entries. Problems are flagged by the World Bank and corrected by the implementing contractor through data checks, callbacks, and revisiting establishments.

    Response rate

    Survey non-response must be differentiated from item non-response. The former refers to refusals to participate in the survey altogether whereas the latter refers to the refusals to answer some specific questions. Enterprise Surveys suffer from both problems and different strategies were used to address these issues.

    Item non-response was addressed by two strategies: a- For sensitive questions that may generate negative reactions from the respondent, such as corruption or tax evasion, enumerators were instructed to collect "Refusal to respond" (-8) as a different option from "Don't know" (-9). b- Establishments with incomplete information were re-contacted in order to complete this information, whenever necessary.

    Survey non-response was addressed by maximizing efforts to contact establishments that were initially selected for interview. Attempts were made to contact the establishment for interview at different times/days of the week before a replacement establishment (with similar strata characteristics) was suggested for interview. Survey non-response did occur but substitutions were made in order to potentially achieve strata-specific goals.

  16. General Social Survey 2012 Cross-Section and Panel Combined - Instructional...

    • thearda.com
    Updated 2012
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tom W. Smith (2012). General Social Survey 2012 Cross-Section and Panel Combined - Instructional Dataset [Dataset]. http://doi.org/10.17605/OSF.IO/TH2CE
    Explore at:
    Dataset updated
    2012
    Dataset provided by
    Association of Religion Data Archives
    Authors
    Tom W. Smith
    Dataset funded by
    National Science Foundation
    Description

    This file contains all of the cases and variables that are in the original 2012 General Social Survey, but is prepared for easier use in the classroom. Changes have been made in two areas. First, to avoid confusion when constructing tables or interpreting basic analysis, all missing data codes have been set to system missing. Second, many of the continuous variables have been categorized into fewer categories, and added as additional variables to the file.

    The General Social Surveys (GSS) have been conducted by the National Opinion Research Center (NORC) annually since 1972, except for the years 1979, 1981, and 1992 (a supplement was added in 1992), and biennially beginning in 1994. The GSS are designed to be part of a program of social indicator research, replicating questionnaire items and wording in order to facilitate time-trend studies. This data file has all cases and variables asked on the 2012 GSS. There are a total of 4,820 cases in the data set but their initial sampling years vary because the GSS now contains panel cases. Sampling years can be identified with the variable SAMPTYPE.

    The 2012 GSS featured special modules on religious scriptures, the environment, dance and theater performances, health care system, government involvement, health concerns, emotional health, financial independence and income inequality.

    The GSS has switched from a repeating, cross-section design to a combined repeating cross-section and panel-component design. This file has a rolling panel design, with the 2008 GSS as the base year for the first panel. A sub-sample of 2,000 GSS cases from 2008 was selected for reinterview in 2010 and again in 2012 as part of the GSSs in those years. The 2010 GSS consisted of a new cross-section plus the reinterviews from 2008. The 2012 GSS consists of a new cross-section of 1,974, the first reinterview wave of the 2010 panel cases with 1,551 completed cases, and the second and final reinterview of the 2008 panel with 1,295 completed cases. Altogether, the 2012 GSS had 4,820 cases (1,974 in the new 2012 panel, 1,551 in the 2010 panel, and 1,295 in the 2008 panel).

    To download syntax files for the GSS that reproduce well-known religious group recodes, including RELTRAD, please visit the "/research/syntax-repository-list" Target="_blank">ARDA's Syntax Repository.

  17. R

    Pv Thermal Panel Dataset

    • universe.roboflow.com
    zip
    Updated Dec 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Example (2024). Pv Thermal Panel Dataset [Dataset]. https://universe.roboflow.com/example-dvjh0/pv-thermal-panel/dataset/1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Dec 19, 2024
    Dataset authored and provided by
    Example
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Panel Bounding Boxes
    Description

    PV Thermal Panel

    ## Overview
    
    PV Thermal Panel is a dataset for object detection tasks - it contains Panel annotations for 2,443 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
    
  18. Enterprise Survey 2009-2019, Panel Data - North Macedonia

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Jul 28, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The World Bank Group (2020). Enterprise Survey 2009-2019, Panel Data - North Macedonia [Dataset]. https://microdata.worldbank.org/index.php/catalog/3749
    Explore at:
    Dataset updated
    Jul 28, 2020
    Dataset provided by
    World Bank Grouphttp://www.worldbank.org/
    The European Bank for Reconstruction and Development
    The European Investment Bank
    Time period covered
    2008 - 2019
    Area covered
    North Macedonia
    Description

    Abstract

    The document dataset covers the Enterprise Survey (ES) panel data collected in North Macedonia in 2009, 2013 and 2019.

    Macedonia ES 2009 was conducted in 2008 and 2009, while Macedonia ES 2013 was conducted between November 2012 and May 2013, and North Macedonia ES 2019 was conducted between December 2018 and October 2019. The objective of the Enterprise Survey is to gain an understanding of what firms experience in the private sector.

    As part of its strategic goal of building a climate for investment, job creation, and sustainable growth, the World Bank has promoted improving the business environment as a key strategy for development, which has led to a systematic effort in collecting enterprise data across countries. The Enterprise Surveys (ES) are an ongoing World Bank project in collecting both objective data based on firms’ experiences and enterprises’ perception of the environment in which they operate.

    Geographic coverage

    National

    Geographic coverage notes

    Regions covered are selected based on the number of establishments, contribution to employment, and value added. In most cases these regions are metropolitan areas and reflect the largest centers of economic activity in a country.

    Analysis unit

    The primary sampling unit of the study is the establishment. An establishment is a physical location where business is carried out and where industrial operations take place or services are provided. A firm may be composed of one or more establishments. For example, a brewery may have several bottling plants and several establishments for distribution. For the purposes of this survey an establishment must make its own financial decisions and have its own financial statements separate from those of the firm. An establishment must also have its own management and control over its payroll.

    Universe

    The whole population, or universe of the study, is the non-agricultural economy. It comprises: all manufacturing sectors according to the group classification of ISIC Revision 3.1: (group D), construction sector (group F), services sector (groups G and H), and transport, storage, and communications sector (group I). Note that this definition excludes the following sectors: financial intermediation (group J), real estate and renting activities (group K, except sub-sector 72, IT, which was added to the population under study), and all public or utilities-sectors.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sample for Macedonia 2009 ES, Macedonia 2013 ES and of 2019 North Macedonia ES were selected using stratified random sampling, following the methodology explained in the Sampling Manual for Macedonia 2009 ES and for Macedonia 2013 ES, and in the Sampling Note for 2019 North Macedonia ES. Stratified random sampling was preferred over simple random sampling for several reasons:

    a. To obtain unbiased estimates for different subdivisions of the population with some known level of precision. b. To obtain unbiased estimates for the whole population. The whole population, or universe of the study, is the non-agricultural economy. It comprises: all manufacturing sectors according to the group classification of ISIC Revision 3.1: (group D), construction sector (group F), services sector (groups G and H), and transport, storage, and communications sector (group I). Note that this definition excludes the following sectors: financial intermediation (group J), real estate and renting activities (group K, except sub-sector 72, IT, which was added to the population under study), and all public or utilities-sectors. c. To make sure that the final total sample includes establishments from all different sectors and that it is not concentrated in one or two of industries/sizes/regions. d. To exploit the benefits of stratified sampling where population estimates, in most cases, will be more precise than using a simple random sampling method (i.e., lower standard errors, other things being equal.) e. Stratification may produce a smaller bound on the error of estimation than would be produced by a simple random sample of the same size. This result is particularly true if measurements within strata are homogeneous. f. The cost per observation in the survey may be reduced by stratification of the population elements into convenient groupings.

    Three levels of stratification were used in this country: industry, establishment size, and region. The original sample design with specific information of the industries and regions chosen is described in Appendix C of the North Macedonia 2019 ES Implementation Report and in Appendix E of the Macedonia 2013 Implementation Report.

    Industry stratification was done as follows: Manufacturing – combining all the relevant activities (ISIC Rev. 3.1 codes 15-37), Retail (ISIC 52), and Other Services (ISIC 45, 50, 51, 55, 60-64, 72).

    As it is standard for the ES, the North Macedonia ES was based on the following size stratification: small (5 to 19 employees), medium (20 to 99 employees), and large (100 or more employees).

    Regional stratification for North Macedonia ES 2019 was done across three regions: Skopje; Eastern Macedonia comprising Northeastern, Eastern, Southeastern, and Vardar regions; and Western Macedonia comprising Polog, Southwestern and Pelagonia regions. For Macedonia 2013 ES, regional stratification was defined in 4 regions (city and the surrounding business area) throughout Macedonia. And for Macedonia ES 2009, regional stratification was defined in 4 regions which are Eastern, North- West & West, Skopje, and South.

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Research instrument

    Questionnaires have common questions (core module) and respectfully additional manufacturing- and services-specific questions. The eligible manufacturing industries have been surveyed using the Manufacturing questionnaire (includes the core module, plus manufacturing specific questions). Retail firms have been interviewed using the Services questionnaire (includes the core module plus retail specific questions) and the residual eligible services have been covered using the Services questionnaire (includes the core module). Each variation of the questionnaire is identified by the index variable, a0.

    Response rate

    Survey non-response must be differentiated from item non-response. The former refers to refusals to participate in the survey altogether whereas the latter refers to the refusals to answer some specific questions. Enterprise Surveys suffer from both problems and different strategies were used to address these issues.

    Item non-response was addressed by two strategies:

    a- For sensitive questions that may generate negative reactions from the respondent, such as corruption or tax evasion, enumerators were instructed to collect the refusal to respond (-8) as a different option from don’t know (-9).

    b- Establishments with incomplete information were re-contacted in order to complete this information, whenever necessary. However, there were clear cases of low response. The following graph shows non-response rates for the sales variable, d2, by sector. Please, note that for this specific question, refusals were not separately identified from “Don’t know” responses.

  19. Lacuna_Solar_Survey_Zindi

    • kaggle.com
    zip
    Updated Feb 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jimmy Barium (2025). Lacuna_Solar_Survey_Zindi [Dataset]. https://www.kaggle.com/datasets/jimmybarium/lacuna-solar-survey-zindi
    Explore at:
    zip(19370106622 bytes)Available download formats
    Dataset updated
    Feb 19, 2025
    Authors
    Jimmy Barium
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    **Lacuna Solar Survey Challenge by zindi.africa **

    Access to reliable energy remains a challenge in Madagascar, where many communities either lack electricity or rely on costly, unsustainable alternatives. Solar energy has the potential to bridge this gap, but identifying and mapping solar installations—such as solar panels and solar water heaters—across vast and remote areas is a complex task.

    This dataset provides a unique opportunity to develop machine learning models that can accurately detect and count solar installations using satellite and drone imagery. By leveraging computer vision techniques, participants can contribute to a scalable solution that supports renewable energy adoption, policy planning, and infrastructure development.

    The dataset includes high-resolution images with polygon annotations marking solar panel and solar water heater locations, along with metadata describing installation environments. Your challenge is to build a robust model that can analyze these images and predict the number of solar panels and water heaters in each annotated region.

    Winning solutions will be showcased at the Global AI Summit for Africa in Kigali, Rwanda (April 3-4, 2025), providing participants with global recognition and real-world impact.

    🚀 Why This Matters?

    Supports renewable energy expansion in Madagascar Helps NGOs, policymakers, and researchers make data-driven decisions Provides a valuable benchmark for machine learning in remote sensing 📂 What's Inside the Dataset? ✔ 3,312 training images and 1,107 test images ✔ Polygon annotations marking solar installations ✔ Satellite & drone imagery for diverse perspectives ✔ Metadata indicating image source and installation type

    🎯 Your Task Develop a model that predicts the number of solar panels (nbr_pan) and solar water heaters (nbr_boil) per annotated region.

    🔗 Join the challenge, build impactful AI models, and contribute to a sustainable future!

    If you find this dataset useful, please upvote^^

    Shared under CC-BY SA 4.0 license.

  20. d

    Health and Retirement Study (HRS)

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Damico, Anthony (2023). Health and Retirement Study (HRS) [Dataset]. http://doi.org/10.7910/DVN/ELEKOY
    Explore at:
    Dataset updated
    Nov 21, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Damico, Anthony
    Description

    analyze the health and retirement study (hrs) with r the hrs is the one and only longitudinal survey of american seniors. with a panel starting its third decade, the current pool of respondents includes older folks who have been interviewed every two years as far back as 1992. unlike cross-sectional or shorter panel surveys, respondents keep responding until, well, death d o us part. paid for by the national institute on aging and administered by the university of michigan's institute for social research, if you apply for an interviewer job with them, i hope you like werther's original. figuring out how to analyze this data set might trigger your fight-or-flight synapses if you just start clicking arou nd on michigan's website. instead, read pages numbered 10-17 (pdf pages 12-19) of this introduction pdf and don't touch the data until you understand figure a-3 on that last page. if you start enjoying yourself, here's the whole book. after that, it's time to register for access to the (free) data. keep your username and password handy, you'll need it for the top of the download automation r script. next, look at this data flowchart to get an idea of why the data download page is such a righteous jungle. but wait, good news: umich recently farmed out its data management to the rand corporation, who promptly constructed a giant consolidated file with one record per respondent across the whole panel. oh so beautiful. the rand hrs files make much of the older data and syntax examples obsolete, so when you come across stuff like instructions on how to merge years, you can happily ignore them - rand has done it for you. the health and retirement study only includes noninstitutionalized adults when new respondents get added to the panel (as they were in 1992, 1993, 1998, 2004, and 2010) but once they're in, they're in - respondents have a weight of zero for interview waves when they were nursing home residents; but they're still responding and will continue to contribute to your statistics so long as you're generalizing about a population from a previous wave (for example: it's possible to compute "among all americans who were 50+ years old in 1998, x% lived in nursing homes by 2010"). my source for that 411? page 13 of the design doc. wicked. this new github repository contains five scripts: 1992 - 2010 download HRS microdata.R loop through every year and every file, download, then unzip everything in one big party impor t longitudinal RAND contributed files.R create a SQLite database (.db) on the local disk load the rand, rand-cams, and both rand-family files into the database (.db) in chunks (to prevent overloading ram) longitudinal RAND - analysis examples.R connect to the sql database created by the 'import longitudinal RAND contributed files' program create tw o database-backed complex sample survey object, using a taylor-series linearization design perform a mountain of analysis examples with wave weights from two different points in the panel import example HRS file.R load a fixed-width file using only the sas importation script directly into ram with < a href="http://blog.revolutionanalytics.com/2012/07/importing-public-data-with-sas-instructions-into-r.html">SAScii parse through the IF block at the bottom of the sas importation script, blank out a number of variables save the file as an R data file (.rda) for fast loading later replicate 2002 regression.R connect to the sql database created by the 'import longitudinal RAND contributed files' program create a database-backed complex sample survey object, using a taylor-series linearization design exactly match the final regression shown in this document provided by analysts at RAND as an update of the regression on pdf page B76 of this document . click here to view these five scripts for more detail about the health and retirement study (hrs), visit: michigan's hrs homepage rand's hrs homepage the hrs wikipedia page a running list of publications using hrs notes: exemplary work making it this far. as a reward, here's the detailed codebook for the main rand hrs file. note that rand also creates 'flat files' for every survey wave, but really, most every analysis you c an think of is possible using just the four files imported with the rand importation script above. if you must work with the non-rand files, there's an example of how to import a single hrs (umich-created) file, but if you wish to import more than one, you'll have to write some for loops yourself. confidential to sas, spss, stata, and sudaan users: a tidal wave is coming. you can get water up your nose and be dragged out to sea, or you can grab a surf board. time to transition to r. :D

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
National Bureau of Statistics (2021). National Panel Survey 2008-2015, Uniform Panel Dataset - Tanzania [Dataset]. https://microdata.worldbank.org/index.php/catalog/3814

National Panel Survey 2008-2015, Uniform Panel Dataset - Tanzania

Explore at:
3 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Mar 17, 2021
Dataset authored and provided by
National Bureau of Statistics
Time period covered
2008 - 2015
Area covered
Tanzania
Description

Abstract

Panel data possess several advantages over conventional cross-sectional and time-series data, including their power to isolate the effects of specific actions, treatments, and general policies often at the core of large-scale econometric development studies. While the concept of panel data alone provides the capacity for modeling the complexities of human behavior, the notion of universal panel data – in which time- and situation-driven variances leading to variations in tools, and thus results, are mitigated – can further enhance exploitation of the richness of panel information.

This Basic Information Document (BID) provides a brief overview of the Tanzania National Panel Survey (NPS), but focuses primarily on the theoretical development and application of panel data, as well as key elements of the universal panel survey instrument and datasets generated by the four rounds of the NPS. As this Basic Information Document (BID) for the UPD does not describe in detail the background, development, or use of the NPS itself, the round-specific NPS BIDs should supplement the information provided here.

The NPS Uniform Panel Dataset (UPD) consists of both survey instruments and datasets, meticulously aligned and engineered with the aim of facilitating the use of and improving access to the wealth of panel data offered by the NPS. The NPS-UPD provides a consistent and straightforward means of conducting not only user-driven analyses using convenient, standardized tools, but also for monitoring MKUKUTA, FYDP II, and other national level development indicators reported by the NPS.

The design of the NPS-UPD combines the four completed rounds of the NPS – NPS 2008/09 (R1), NPS 2010/11 (R2), NPS 2012/13 (R3), and NPS 2014/15 (R4) – into pooled, module-specific survey instruments and datasets. The panel survey instruments offer the ease of comparability over time, with modifications and variances easily identifiable as well as those aspects of the questionnaire which have remained identical and offer consistent information. By providing all module-specific data over time within compact, pooled datasets, panel datasets eliminate the need for user-generated merges between rounds and present data in a clear, logical format, increasing both the usability and comprehension of complex data.

Geographic coverage

Designed for analysis of key indicators at four primary domains of inference, namely: Dar es Salaam, other urban, rural, Zanzibar.

Analysis unit

  • Households
  • Individuals

Universe

The universe includes all households and individuals in Tanzania with the exception of those residing in military barracks or other institutions.

Kind of data

Sample survey data [ssd]

Sampling procedure

While the same sample of respondents was maintained over the first three rounds of the NPS, longitudinal surveys tend to suffer from bias introduced by households leaving the survey over time; i.e. attrition. Although the NPS maintains a highly successful recapture rate (roughly 96% retention at the household level), minimizing the escalation of this selection bias, a refresh of longitudinal cohorts was done for the NPS 2014/15 to ensure proper representativeness of estimates while maintaining a sufficient primary sample to maintain cohesion within panel analysis. A newly completed Population and Housing Census (PHC) in 2012, providing updated population figures along with changes in administrative boundaries, emboldened the opportunity to realign the NPS sample and abate collective bias potentially introduced through attrition.

To maintain the panel concept of the NPS, the sample design for NPS 2014/2015 consisted of a combination of the original NPS sample and a new NPS sample. A nationally representative sub-sample was selected to continue as part of the “Extended Panel” while an entirely new sample, “Refresh Panel”, was selected to represent national and sub-national domains. Similar to the sample in NPS 2008/2009, the sample design for the “Refresh Panel” allows analysis at four primary domains of inference, namely: Dar es Salaam, other urban areas on mainland Tanzania, rural mainland Tanzania, and Zanzibar. This new cohort in NPS 2014/2015 will be maintained and tracked in all future rounds between national censuses.

Mode of data collection

Face-to-face [f2f]

Research instrument

The format of the NPS-UPD survey instrument is similar to previously disseminated NPS survey instruments. Each module has a questionnaire and clearly identifies if the module collects information at the individual or household level. Within each module-specific questionnaire of the NPS-UPD survey instrument, there are five distinct sections, arranged vertically: (1) the UPD - “U” on the survey instrument, (2) R4, (3), R3, (4) R2, and (5) R1 – the latter 4 sections presenting each questionnaire in its original form at time of its respective dissemination.

The uppermost section of each module’s questionnaire (“U”) represents the model universal panel questionnaire, with questions generated from the comprehensive listing of questions across all four rounds of the NPS and codes generated from the comprehensive collection of codes. The following sections are arranged vertically by round, considering R4 as most recent. While not all rounds will have data reported for each question in the UPD and not each question will have reports for each of the UPD codes listed, the NPS-UPD survey instrument represents the visual, all-inclusive set of information collected by the NPS over time.

The four round-specific sections (R4, R3, R2, R1) are aligned with their UPD-equivalent question, visually presenting their contribution to compatibility with the UPD. Each round-specific section includes the original round-specific variable names, response codes and skip patterns (corresponding to their respective round-specific NPS data sets, and despite their variance from other rounds or from the comprehensive UPD code listing)4.

Search
Clear search
Close search
Google apps
Main menu