The documentation covers Enterprise Survey panel datasets that were collected in Slovenia in 2009, 2013 and 2019.
The Slovenia ES 2009 was conducted between 2008 and 2009. The Slovenia ES 2013 was conducted between March 2013 and September 2013. Finally, the Slovenia ES 2019 was conducted between December 2018 and November 2019. The objective of the Enterprise Survey is to gain an understanding of what firms experience in the private sector.
As part of its strategic goal of building a climate for investment, job creation, and sustainable growth, the World Bank has promoted improving the business environment as a key strategy for development, which has led to a systematic effort in collecting enterprise data across countries. The Enterprise Surveys (ES) are an ongoing World Bank project in collecting both objective data based on firms' experiences and enterprises' perception of the environment in which they operate.
National
The primary sampling unit of the study is the establishment. An establishment is a physical location where business is carried out and where industrial operations take place or services are provided. A firm may be composed of one or more establishments. For example, a brewery may have several bottling plants and several establishments for distribution. For the purposes of this survey an establishment must take its own financial decisions and have its own financial statements separate from those of the firm. An establishment must also have its own management and control over its payroll.
As it is standard for the ES, the Slovenia ES was based on the following size stratification: small (5 to 19 employees), medium (20 to 99 employees), and large (100 or more employees).
Sample survey data [ssd]
The sample for Slovenia ES 2009, 2013, 2019 were selected using stratified random sampling, following the methodology explained in the Sampling Manual for Slovenia 2009 ES and for Slovenia 2013 ES, and in the Sampling Note for 2019 Slovenia ES.
Three levels of stratification were used in this country: industry, establishment size, and oblast (region). The original sample designs with specific information of the industries and regions chosen are included in the attached Excel file (Sampling Report.xls.) for Slovenia 2009 ES. For Slovenia 2013 and 2019 ES, specific information of the industries and regions chosen is described in the "The Slovenia 2013 Enterprise Surveys Data Set" and "The Slovenia 2019 Enterprise Surveys Data Set" reports respectively, Appendix E.
For the Slovenia 2009 ES, industry stratification was designed in the way that follows: the universe was stratified into manufacturing industries, services industries, and one residual (core) sector as defined in the sampling manual. Each industry had a target of 90 interviews. For the manufacturing industries sample sizes were inflated by about 17% to account for potential non-response cases when requesting sensitive financial data and also because of likely attrition in future surveys that would affect the construction of a panel. For the other industries (residuals) sample sizes were inflated by about 12% to account for under sampling in firms in service industries.
For Slovenia 2013 ES, industry stratification was designed in the way that follows: the universe was stratified into one manufacturing industry, and two service industries (retail, and other services).
Finally, for Slovenia 2019 ES, three levels of stratification were used in this country: industry, establishment size, and region. The original sample design with specific information of the industries and regions chosen is described in "The Slovenia 2019 Enterprise Surveys Data Set" report, Appendix C. Industry stratification was done as follows: Manufacturing – combining all the relevant activities (ISIC Rev. 4.0 codes 10-33), Retail (ISIC 47), and Other Services (ISIC 41-43, 45, 46, 49-53, 55, 56, 58, 61, 62, 79, 95).
For Slovenia 2009 and 2013 ES, size stratification was defined following the standardized definition for the rollout: small (5 to 19 employees), medium (20 to 99 employees), and large (more than 99 employees). For stratification purposes, the number of employees was defined on the basis of reported permanent full-time workers. This seems to be an appropriate definition of the labor force since seasonal/casual/part-time employment is not a common practice, except in the sectors of construction and agriculture.
For Slovenia 2009 ES, regional stratification was defined in 2 regions. These regions are Vzhodna Slovenija and Zahodna Slovenija. The Slovenia sample contains panel data. The wave 1 panel “Investment Climate Private Enterprise Survey implemented in Slovenia” consisted of 223 establishments interviewed in 2005. A total of 57 establishments have been re-interviewed in the 2008 Business Environment and Enterprise Performance Survey.
For Slovenia 2013 ES, regional stratification was defined in 2 regions (city and the surrounding business area) throughout Slovenia.
Finally, for Slovenia 2019 ES, regional stratification was done across two regions: Eastern Slovenia (NUTS code SI03) and Western Slovenia (SI04).
Computer Assisted Personal Interview [capi]
Questionnaires have common questions (core module) and respectfully additional manufacturing- and services-specific questions. The eligible manufacturing industries have been surveyed using the Manufacturing questionnaire (includes the core module, plus manufacturing specific questions). Retail firms have been interviewed using the Services questionnaire (includes the core module plus retail specific questions) and the residual eligible services have been covered using the Services questionnaire (includes the core module). Each variation of the questionnaire is identified by the index variable, a0.
Survey non-response must be differentiated from item non-response. The former refers to refusals to participate in the survey altogether whereas the latter refers to the refusals to answer some specific questions. Enterprise Surveys suffer from both problems and different strategies were used to address these issues.
Item non-response was addressed by two strategies: a- For sensitive questions that may generate negative reactions from the respondent, such as corruption or tax evasion, enumerators were instructed to collect the refusal to respond as (-8). b- Establishments with incomplete information were re-contacted in order to complete this information, whenever necessary. However, there were clear cases of low response.
For 2009 and 2013 Slovenia ES, the survey non-response was addressed by maximizing efforts to contact establishments that were initially selected for interview. Up to 4 attempts were made to contact the establishment for interview at different times/days of the week before a replacement establishment (with similar strata characteristics) was suggested for interview. Survey non-response did occur but substitutions were made in order to potentially achieve strata-specific goals. Further research is needed on survey non-response in the Enterprise Surveys regarding potential introduction of bias.
For 2009, the number of contacted establishments per realized interview was 6.18. This number is the result of two factors: explicit refusals to participate in the survey, as reflected by the rate of rejection (which includes rejections of the screener and the main survey) and the quality of the sample frame, as represented by the presence of ineligible units. The relatively low ratio of contacted establishments per realized interview (6.18) suggests that the main source of error in estimates in the Slovenia may be selection bias and not frame inaccuracy.
For 2013, the number of realized interviews per contacted establishment was 25%. This number is the result of two factors: explicit refusals to participate in the survey, as reflected by the rate of rejection (which includes rejections of the screener and the main survey) and the quality of the sample frame, as represented by the presence of ineligible units. The number of rejections per contact was 44%.
Finally, for 2019, the number of interviews per contacted establishments was 9.7%. This number is the result of two factors: explicit refusals to participate in the survey, as reflected by the rate of rejection (which includes rejections of the screener and the main survey) and the quality of the sample frame, as represented by the presence of ineligible units. The share of rejections per contact was 75.2%.
The General Social Surveys (GSS) have been conducted by the "https://www.norc.org/Pages/default.aspx" Target="_blank">National Opinion Research Center (NORC) annually since 1972, except for the years 1979, 1981, and 1992 (a supplement was added in 1992), and biennially beginning in 1994. The GSS are designed to be part of a program of social indicator research, replicating questionnaire items and wording in order to facilitate time-trend studies. The 2016-2020 GSS consisted of re-interviews of respondents from the 2016 and 2018 Cross-Sectional GSS rounds. All respondents from 2018 were fielded, but a random subsample of the respondents from 2016 were released for the 2020 panel. Cross-sectional responses from 2016 and 2018 are labelled Waves 1A and 1B, respectively, while responses from the 2020 re-interviews are labelled Wave 2.
The 2016-2020 GSS Wave 2 Panel also includes a collaboration between the General Social Survey (GSS) and the "https://electionstudies.org/" Target="_blank">American National Election Studies (ANES). The 2016-2020 GSS Panel Wave 2 contained a module of items proposed by the ANES team, including attitudinal questions, feelings thermometers for presidential candidates, and plans for voting in the 2020 presidential election. These respondents appear in both the ANES post-election study and the 2016-2020 GSS panel, with their 2020 GSS responses serving as their equivalent pre-election data. Researchers can link the relevant GSS Panel Wave 2 data with ANES post-election data using either ANESID (in the GSS Panel Wave 2 datafile) or V200001 in the ANES 2020 post-election datafile.
The documentation covers Enterprise Survey panel datasets that were collected in Chad in 2009 and 2018. The Enterprise Survey is a firm-level survey of a representative sample of an economy's private sector. The surveys cover a broad range of business environment topics including access to finance, corruption, infrastructure, crime, competition, and performance measures. The objective of the Enterprise Survey is to gain an understanding of what firms experience in the private sector.
As part of its strategic goal of building a climate for investment, job creation, and sustainable growth, the World Bank has promoted improving the business environment as a key strategy for development, which has led to a systematic effort in collecting enterprise data across countries. The Enterprise Surveys (ES) are an ongoing World Bank project in collecting both objective data based on firms' experiences and enterprises' perception of the environment in which they operate.
National coverage
The primary sampling unit of the study is the establishment. An establishment is a physical location where business is carried out and where industrial operations take place or services are provided. A firm may be composed of one or more establishments. For example, a brewery may have several bottling plants and several establishments for distribution. For the purposes of this survey an establishment must make its own financial decisions and have its own financial statements separate from those of the firm. An establishment must also have its own management and control over its payroll.
The whole population, or universe of the study, is the non-agricultural economy. It comprises: all manufacturing sectors according to the group classification of ISIC Revision 3.1: (group D), construction sector (group F), services sector (groups G and H), and transport, storage, and communications sector (group I). Note that this definition excludes the following sectors: financial intermediation (group J), real estate and renting activities (group K, except sub-sector 72, IT, which was added to the population under study), and all public or utilities-sectors.
Sample survey data [ssd]
The samples for 2009 and 2018 Chad Enterprise Surveys were selected using stratified random sampling, following the methodology explained in the Sampling Note.
Two levels of stratification were used in the Chad 2009 ES sample: firm sector and firm size. The Industry stratification was designed as follows: the universe was stratified into manufacturing and services industries. The initial sample design had a target of 75 interviews in manufacturing and 75 interviews in services.
In 2018 Chad ES, three levels of stratification were used: industry, establishment size, and region. The industry stratification was designed in the way that follows: the universe was stratified as into manufacturing and services industries- Manufacturing (ISIC Rev. 3.1 codes 15 - 37), and Services (ISIC codes 45, 50-52, 55, 60-64, and 72). Regional stratification did not take place for the Chad ES.
Face-to-face [f2f]
Two questionnaires - Manufacturing amd Services were used to collect the survey data.
The Questionnaires have common questions (core module) and respectfully additional manufacturing- and services-specific questions. The eligible manufacturing industries have been surveyed using the Manufacturing questionnaire (includes the core module, plus manufacturing specific questions). Retail firms have been interviewed using the Services questionnaire (includes the core module plus retail specific questions) and the residual eligible services have been covered using the Services questionnaire (includes the core module).
https://www.icpsr.umich.edu/web/ICPSR/studies/37072/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/37072/terms
The Monitoring the Future (MTF) project is a long-term epidemiologic and etiologic study of substance use among youth and adults in the United States. It is conducted at the University of Michigan's Institute for Social Research, and funded by a series of investigator-initiated research grants from the National Institute on Drug Abuse. MTF has two components: MTF Main and MTF Panel. From its inception in 1975, the cross-sectional MTF Main study has collected data annually from nationally representative samples of 12,000-19,000 high school seniors in 12th grade located in approximately 135 schools nationwide. Beginning in 1991, similar annual cross-sectional surveys of nationally representative samples of 8th and 10th graders have been conducted. In all, approximately 45,000 students annually respond to about 100 drug use and demographic questions, as well as to about 200 additional questions divided among multiple survey forms on other topics such as attitudes toward government, social institutions, race relations, changing gender roles, educational aspirations, occupational aims, and marital plans. The longitudinal MTF Panel study conducts follow-up surveys with representative subsamples of respondents from each 12th grade cohort participating in MTF Main. From each cohort, a sample of about 2,450 students are selected for longitudinal follow-up, with an oversampling of students who reported prior drug use during their 12th grade survey. Longitudinal follow-up currently spans modal ages 19-30 and 35-60. For surveys at modal ages 19-30, the sample is randomly split into two halves (approx. 1,225 each) to be followed every other year. One half-sample begins its first follow-up the year after high school (at modal age 19), and the other half-sample begins its first follow-up in the second year after high school (at modal age 20). Thus, six young adult follow-up (FU) surveys occur between modal ages 19-30, at modal ages 19/20 (FU1), 21/22 (FU2), 23/24 (FU3), 25/26 (FU4), 27/28 (FU5), and 29/30 (FU6). After age 30, respondents are surveyed every five years: 35, 40, 45, 50, 55, and 60 (these are referred to as FZ surveys). The FZ surveys cover many of the same topics as the 12th grade and FU surveys and include additional questions on life events and health. MTF Panel surveys for the young adults (ages 19-30) were conducted using mailed paper surveys from 1977-2017. In 2018 and 2019, a random half of all those aged 19-30 received a mailed paper survey, while the other half were surveyed using a new procedure that encouraged participation using web surveys (web-push). The FZ surveys (ages 35-60) were conducted using mailed paper surveys through the 2019 data collection. More information about the MTF project can be accessed through the Monitoring the Future website. Annual reports are published by the research team, describing the data collection and trends over time.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This paper studies panel data models with unobserved group factor structures. The group membership of each unit and the number of groups are left unspecified. We estimate the model by minimizing the sum of least squared errors with a shrinkage penalty. The number of explanatory variables can be large. The regressions coefficients can be homogeneous or group specific. The consistency and asymptotic normality of the estimator are established. We also introduce new Cp-type criteria for selecting the number of groups, the numbers of group-specific common factors and relevant regressors. Monte Carlo results show that the proposed method works well. We apply the method to the study of US mutual fund returns and to the study of individual stock returns of the China mainland stock markets.
The documented dataset covers Enterprise Survey (ES) panel data collected in Argentina in 2006, 2010 and 2017, as part of the Enterprise Survey initiative of the World Bank. An Indicator Survey is similar to an Enterprise Survey; it is implemented for smaller economies where the sampling strategies inherent in an Enterprise Survey are often not applicable due to the limited universe of firms.
The objective of the 2006-2017 Enterprise Survey is to obtain feedback from enterprises in client countries on the state of the private sector as well as to build a panel of enterprise data that will make it possible to track changes in the business environment over time and allow, for example, impact assessments of reforms. Through interviews with firms in the manufacturing and services sectors, the Indicator Survey data provides information on the constraints to private sector growth and is used to create statistically significant business environment indicators that are comparable across countries.
As part of its strategic goal of building a climate for investment, job creation, and sustainable growth, the World Bank has promoted improving the business environment as a key strategy for development, which has led to a systematic effort in collecting enterprise data across countries. The Enterprise Surveys (ES) are an ongoing World Bank project in collecting both objective data based on firms' experiences and enterprises' perception of the environment in which they operate.
National
The primary sampling unit of the study is the establishment. An establishment is a physical location where business is carried out and where industrial operations take place or services are provided. A firm may be composed of one or more establishments. For example, a brewery may have several bottling plants and several establishments for distribution. For the purposes of this survey an establishment must make its own financial decisions and have its own financial statements separate from those of the firm. An establishment must also have its own management and control over its payroll.
The whole population, or the universe, covered in the Enterprise Surveys is the non-agricultural economy. It comprises: all manufacturing sectors according to the ISIC Revision 3.1 group classification (group D), construction sector (group F), services sector (groups G and H), and transport, storage, and communications sector (group I). Note that this population definition excludes the following sectors: financial intermediation (group J), real estate and renting activities (group K, except sub-sector 72, IT, which was added to the population under study), and all public or utilities-sectors.
Sample survey data [ssd]
The sample for the 2006-2017 Argentina Enterprise Survey (ES) was selected using stratified random sampling, following the methodology explained in the Sampling Manual. Stratified random sampling was preferred over simple random sampling for several reasons: - To obtain unbiased estimates for different subdivisions of the population with some known level of precision. - To obtain unbiased estimates for the whole population. The whole population, or universe of the study, is the non-agricultural economy. It comprises: all manufacturing sectors (group D), construction (group F), services (groups G and H), and transport, storage, and communications (group I). Groups are defined following ISIC revision 3.1. Note that this definition excludes the following sectors: financial intermediation (group J), real estate and renting activities (group K, excluding sub-sector 72, IT, which was added to the population under study), and all public or utilities-sectors. - To make sure that the final total sample includes establishments from all different sectors and that it is not concentrated in one or two of industries/sizes/regions. - To exploit the benefits of stratified sampling where population estimates, in most cases, will be more precise than using a simple random sampling method (i.e., lower standard errors, other things being equal.)
Three levels of stratification were used in every country: industry, establishment size, and region.
Industry stratification was designed in the following way: In small economies the population was stratified into 3 manufacturing industries, one services industry - retail-, and one residual sector as defined in the sampling manual. Each industry had a target of 120 interviews. In middle size economies the population was stratified into 4 manufacturing industries, 2 services industries -retail and IT-, and one residual sector. For the manufacturing industries sample sizes were inflated by 25% to account for potential non-response in the financing data.
For the Argentina ES, size stratification was defined following the standardized definition for the rollout: small (5 to 19 employees), medium (20 to 99 employees), and large (more than 99 employees). For stratification purposed, the number of employees was defined on the basis of reported permanent full-time workers. This resulted in some difficulties in certain countries where seasonal/casual/part-time labor is common.
Face-to-face [f2f]
The current survey instruments are available: - Core Questionnaire + Manufacturing Module [ISIC Rev.3.1: 15-37] - Core Questionnaire + Retail Module [ISIC Rev.3.1: 52] - Core Questionnaire [ISIC Rev.3.1: 45, 50, 51, 55, 60-64, 72] - Screener Questionnaire.
The "Core Questionnaire" is the heart of the Enterprise Survey and contains the survey questions asked of all firms across the world. There are also two other survey instruments - the "Core Questionnaire + Manufacturing Module" and the "Core Questionnaire + Retail Module." The survey is fielded via three instruments in order to not ask questions that are irrelevant to specific types of firms, e.g. a question that relates to production and nonproduction workers should not be asked of a retail firm. In addition to questions that are asked across countries, all surveys are customized and contain country-specific questions. An example of customization would be including tourism-related questions that are asked in certain countries when tourism is an existing or potential sector of economic growth.
The standard Enterprise Survey topics include firm characteristics, gender participation, access to finance, annual sales, costs of inputs/labor, workforce composition, bribery, licensing, infrastructure, trade, crime, competition, capacity utilization, land and permits, taxation, informality, business-government relations, innovation and technology, and performance measures.
Data entry and quality controls are implemented by the contractor and data is delivered to the World Bank in batches (typically 10%, 50% and 100%). These data deliveries are checked for logical consistency, out of range values, skip patterns, and duplicate entries. Problems are flagged by the World Bank and corrected by the implementing contractor through data checks, callbacks, and revisiting establishments.
Survey non-response must be differentiated from item non-response. The former refers to refusals to participate in the survey altogether whereas the latter refers to the refusals to answer some specific questions. Enterprise Surveys suffer from both problems and different strategies were used to address these issues.
Item non-response was addressed by two strategies:
a- For sensitive questions that may generate negative reactions from the respondent, such as corruption or tax evasion, enumerators were instructed to collect the refusal to respond (-8) as a different option from don't know (-9).
b- Establishments with incomplete information were re-contacted in order to complete this information, whenever necessary. However, there were clear cases of low response. The following graph shows non-response rates for the sales variable, d2, by sector. Please, note that for this specific question, refusals were not separately identified from "Don't know" responses.
Survey non-response was addressed by maximizing efforts to contact establishments that were initially selected for interview. Attempts were made to contact the establishment for interview at different times/days of the week before a replacement establishment (with similar strata characteristics) was suggested for interview. Survey non-response did occur but substitutions were made in order to potentially achieve strata-specific goals; whenever this was done, strict rules were followed to ensure replacements were randomly selected within the same stratum. Further research is needed on survey non-response in the Enterprise Surveys regarding potential introduction of bias.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Panel data for a factor model on systematic risk determinants exploration.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
We propose a new method for estimating dynamic panel data models with selection. The method uses backward substitution for the lagged dependent variable, which leads to an estimating equation that requires correcting for contemporaneous selection only. The estimator is valid under relatively weak assumptions about errors and permits avoiding the weak instruments problem associated with differencing. We also propose a simple test for selection bias that is based on the addition of a selection term to the first-difference equation and subsequent testing for significance of this term. The methods are applied to estimating dynamic earnings equations for women.
The documented dataset covers Enterprise Survey (ES) panel data collected in Paraguay in 2006, 2010 and 2017, as part of Latin America and the Caribbean Enterprise Surveys rollout, an initiative of the World Bank. The objective of the study is to obtain feedback from enterprises in client countries on the state of the private sector as well as to help in building a panel of enterprise data that will make it possible to track changes in the business environment over time, thus allowing, for example, impact assessments of reforms. Through face-to-face interviews with firms in the manufacturing and services sectors, the survey assesses the constraints to private sector growth and creates statistically significant business environment indicators that are comparable across countries.
Enterprise Surveys target a sample consisting of longitudinal (panel) observations and new cross-sectional data. Panel firms are prioritized in the sample selection, comprising up to 50% of the sample. For all panel firms, regardless of the sample, current eligibility or operating status is determined and included in panel datasets.
Paraguay ES 2010 was conducted in June 2010 and April 2011, Paraguay ES 2006 was carried out in March and October 2006. Stratified random sampling was used to select the surveyed businesses. Data was collected using face-to-face interviews.
Data from 1,338 establishments was analyzed: 460 businesses were from 2006 only, 153 - from 2010 only, 246 - from 2017 only, 110 firms were from 2010 and 2017, 180 - from 2006 and 2010, 186 firms were from 2006, 2010 and 2017.
The standard Enterprise Survey topics include firm characteristics, gender participation, access to finance, annual sales, costs of inputs and labor, workforce composition, bribery, licensing, infrastructure, trade, crime, competition, capacity utilization, land and permits, taxation, informality, business-government relations, innovation and technology, and performance measures. Over 90 percent of the questions objectively measure characteristics of a country’s business environment. The remaining questions assess the survey respondents’ opinions on what are the obstacles to firm growth and performance.
National
The primary sampling unit of the study is an establishment. An establishment is a physical location where business is carried out and where industrial operations take place or services are provided. A firm may be composed of one or more establishments. For example, a brewery may have several bottling plants and several establishments for distribution. For the purposes of this survey an establishment must make its own financial decisions and have its own financial statements separate from those of the firm. An establishment must also have its own management and control over its payroll.
The whole population, or universe of the study, is the non-agricultural economy. It comprises: all manufacturing sectors according to the group classification of ISIC Revision 3.1: (group D), construction sector (group F), services sector (groups G and H), and transport, storage, and communications sector (group I). Note that this definition excludes the following sectors: financial intermediation (group J), real estate and renting activities (group K, except sub-sector 72, IT, which was added to the population under study), and all public or utilities-sectors.
Sample survey data [ssd]
Three levels of stratification were used in this country: industry, establishment size, and region.
Industry stratification was designed as follows: the universe was stratified into Manufacturing industries (ISIC Rev. 3.1 codes 15- 37), Retail industries (ISIC code 52) and Other Services (ISIC codes 45, 50, 51, 55, 60-64, and 72).
Size stratification was defined as follows: small (5 to 19 employees), medium (20 to 99 employees), and large (100 or more employees).
In 2010, two sample frames were used. The first was supplied by the World Bank and consists of enterprises interviewed in Paraguay 2006. The World Bank required that attempts should be made to re-interview establishments responding to the Paraguay 2006 survey where they were within the selected geographical locations and met eligibility criteria. That sample is referred to as the Panel.
The two sample frames were then used for the selection of a sample with the aim of obtaining interviews with 360 establishments with five or more employees.
Face-to-face [f2f]
Data entry and quality controls are implemented by the contractor and data is delivered to the World Bank in batches (typically 10%, 50% and 100%). These data deliveries are checked for logical consistency, out of range values, skip patterns, and duplicate entries. Problems are flagged by the World Bank and corrected by the implementing contractor through data checks, callbacks, and revisiting establishments.
Survey non-response must be differentiated from item non-response. The former refers to refusals to participate in the survey altogether whereas the latter refers to the refusals to answer some specific questions. Enterprise Surveys suffer from both problems and different strategies were used to address these issues.
Item non-response was addressed by two strategies: a- For sensitive questions that may generate negative reactions from the respondent, such as corruption or tax evasion, enumerators were instructed to collect "Refusal to respond" (-8) as a different option from "Don't know" (-9). b- Establishments with incomplete information were re-contacted in order to complete this information, whenever necessary.
Survey non-response was addressed by maximizing efforts to contact establishments that were initially selected for interview. Attempts were made to contact the establishment for interview at different times/days of the week before a replacement establishment (with similar strata characteristics) was suggested for interview. Survey non-response did occur but substitutions were made in order to potentially achieve strata-specific goals.
The S_FIRM_Pan table contains information about the FIRM panel area. A spatial file with location information also corresponds with this data table. The spatial entities representing FIRM panels are polygons. The polygon for the FIRM panel corresponds to the panel neatlines. Panel boundaries are generally derived from USGS DOQQ boundaries. As a result, the panels are generally rectangular. In situations where a portion of a panel lies outside the jurisdiction being mapped, the user must refer to the S_Pol_Ar table to determine the portion of the panel area where the FIRM Database shows the effective flood hazard data for the mapped jurisdiction. This information is needed for the FIRM Panel Index and the following tables in the FIS report: Listing of NFIP Jurisdictions, Levees, Incorporated Letters of Map Change, and Coastal Barrier Resources System Information. The spatial entities representing FIRM panels are polygons. The polygon for the FIRM panel corresponds to the panel neatlines. Panel boundaries are generally derived from USGS DOQQ boundaries. As a result, the panels are generally rectangular. FIRM panels must not overlap or have gaps within a study. In situations where a portion of a panel lies outside the jurisdiction being mapped, the user must refer to the S_Pol_Ar table to determine the portion of the panel area where the FIRM Database shows the effective flood hazard data for the mapped jurisdiction. This information is needed for the FIRM Panel Index and the following tables in the FIS report: Listing of NFIP Jurisdictions, Levees, Incorporated Letters of Map Change, and Coastal Barrier Resources System Information.Flood hazard and supporting data are developed using specifications for horizontal control consistent with 1:12,000–scale mapping. If you plan to display maps from the National Flood Hazard Layer with other map data for official purposes, ensure that the other information meets FEMA’s standards for map accuracy. The minimum horizontal positional accuracy for base map hydrographic and transportation features used with the NFHL is the NSSDA radial accuracy of 38 feet. USGS imagery and map services that meet this standard can be found by visiting the Knowledge Sharing Site (KSS) for Base Map Standards (420). Other base map standards can be found at https://riskmapportal.msc.fema.gov/kss/MapChanges/default.aspx. You will need a username and password to access this information.The NFHL data are from FEMA’s Flood Insurance Rate Map (FIRM) databases. New data are added continually. The NFHL also contains map changes to FIRM data made by Letters of Map Revision (LOMRs). The NFHL is stored in North American Datum of 1983, Geodetic Reference System 80 coordinate system, though many of the NFHL GIS web services support the Web Mercator Sphere projection commonly used in web mapping applications.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Summary : Fuel demand is shown to be influenced by fuel prices, people's income and motorization rates. We explore the effects of electric vehicle's rates in gasoline demand using this panel dataset.
Files : dataset.csv - Panel dimensions are the Brazilian state ( i ) and year ( t ). The other columns are: gasoline sales per capita (ln_Sg_pc), prices of gasoline (ln_Pg) and ethanol (ln_Pe) and their lags, motorization rates of combustion vehicles (ln_Mi_c) and electric vehicles (ln_Mi_e) and GDP per capita (ln_gdp_pc). All variables are all under the natural log function, since we use this to calculate demand elasticities in a regression model.
adjacency.csv - The adjacency matrix used in interaction with electric vehicles' motorization rates to calculate spatial effects. At first, it follows a binary adjacency formula: for each pair of states i and j, the cell (i, j) is 0 if the states are not adjacent and 1 if they are. Then, each row is normalized to have sum equal to one.
regression.do - Series of Stata commands used to estimate the regression models of our study. dataset.csv must be imported to work, see comment section.
dataset_predictions.xlsx - Based on the estimations from Stata, we use this excel file to make average predictions by year and by state. Also, by including years beyond the last panel sample, we also forecast the model into the future and evaluate the effects of different policies that influence gasoline prices (taxation) and EV motorization rates (electrification). This file is primarily used to create images, but can be used to further understand how the forecasting scenarios are set up.
Sources: Fuel prices and sales: ANP (https://www.gov.br/anp/en/access-information/what-is-anp/what-is-anp) State population, GDP and vehicle fleet: IBGE (https://www.ibge.gov.br/en/home-eng.html?lang=en-GB) State EV fleet: Anfavea (https://anfavea.com.br/en/site/anuarios/)
These data form one of two prongs from a "https://onlinelibrary.wiley.com/doi/abs/10.1111/ajps.12365" Target="_blank">larger project, whose goal was to determine how politics, religion, and secularism are intertwined. There was a multi-wave panel survey and experiment used in the study. The project showed that religion and secularism are a consequence as well as a cause of politics.
The data here represent the panel data from the project. The Experimental data can be found "https://www.thearda.com/data-archive?fid=PPFE" Target="_blank">here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
With the increased availability of longitudinal data, dynamic panel data models have become commonplace. Moreover, the properties of various estimators of such models are well known. However, we show that these estimators break down when the data are irregularly spaced along the time dimension. Unfortunately, this is an increasingly frequent occurrence as many longitudinal surveys are collected at non-uniform intervals and no solution is currently available when time-varying covariates are included in the model. In this paper, we propose two new estimators for dynamic panel data models when data are irregularly spaced and compare their finite-sample performance to the näive application of existing estimators. We illustrate the practical importance of this issue in an application concerning early childhood development.
https://www.icpsr.umich.edu/web/ICPSR/studies/7252/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/7252/terms
This study is part of a time-series collection of national surveys fielded continuously since 1952. The American National Election Studies are designed to present data on Americans' social backgrounds, enduring political predispositions, social and political values, perceptions and evaluations of groups and candidates, opinions on questions of public policy, and participation in political life. The data for this collection are derived from an interviewing program across three studies: the 1956 Presidential Pre- and Post-Election (AMERICAN NATIONAL ELECTION STUDY, 1956 [ICPSR 7214]), 1958 Congressional (AMERICAN NATIONAL ELECTION STUDY, 1958 [ICPSR 7215]), and 1960 Presidential Pre- and Post-Election Studies (AMERICAN NATIONAL ELECTION STUDY, 1960 [ICPSR 7216]).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Raw data used in analysis of determinants of dividend policy - a case of banking sector in Serbia.
The Medical Expenditure Panel Survey (MEPS) Household Component (HC) collects data from a sample of families and individuals in selected communities across the United States, drawn from a nationally representative subsample of households that participated in the prior year's National Health Interview Survey (conducted by the National Center for Health Statistics). During the household interviews, MEPS collects detailed information for each person in the household on the following: demographic characteristics, health conditions, health status, use of medical services, charges and source of payments, access to care, satisfaction with care, health insurance coverage, income, and employment. The panel design of the survey, which features several rounds of interviewing, makes it possible to determine how changes in respondents' health status, income, employment, eligibility for public and private insurance coverage, use of services, and payment for care are related. Public Use Files for Household data are available on the MEPS website.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This paper considers the estimation of dynamic panel data models when data are suspected to exhibit cross-sectional dependence. A new estimator is defined that uses cross-sectional dependence for efficiency while being robust to the misspecification of the form of the cross-sectional dependence. We show that using cross-sectional dependence for estimation is important to obtain an estimator that is more efficient than existing estimators. This new estimator also uses nuisance parameters parsimoniously so that it exhibits good small- and large-sample properties even when the number of time periods is large. As an empirical application, we estimate the effect of attending private school on student achievement using a value-added model.
The documented dataset covers Enterprise Survey (ES) panel data collected in Lesotho in 2009 and 2016, as part of Africa Enterprise Surveys rollout, an initiative of the World Bank. The objective of the Enterprise Survey is to obtain feedback from enterprises on the state of the private sector as well as to help in building a panel of enterprise data that will make it possible to track changes in the business environment over time, thus allowing, for example, impact assessments of reforms.
Enterprise Surveys target a sample consisting of longitudinal (panel) observations and new cross-sectional data. Panel firms are prioritized in the sample selection, comprising up to 50% of the sample in the current wave. For all panel firms, regardless of the sample, current eligibility or operating status is determined and included in panel datasets.
Lesotho ES 2009 was conducted from September 2008 to February 2009, Lesotho ES 2016 was carried out in June - August 2016. Stratified random sampling was used to select the surveyed businesses. Data was collected using face-to-face interviews.
Data from 301 establishments was analyzed: 90 businesses were from 2009 only, 89 - from 2016 only, and 122 firms were from 2009 and 2016.
The standard Enterprise Survey topics include firm characteristics, gender participation, access to finance, annual sales, costs of inputs and labor, workforce composition, bribery, licensing, infrastructure, trade, crime, competition, capacity utilization, land and permits, taxation, informality, business-government relations, innovation and technology, and performance measures. Over 90 percent of the questions objectively measure characteristics of a country’s business environment. The remaining questions assess the survey respondents’ opinions on what are the obstacles to firm growth and performance.
National
The primary sampling unit of the study is an establishment. An establishment is a physical location where business is carried out and where industrial operations take place or services are provided. A firm may be composed of one or more establishments. For example, a brewery may have several bottling plants and several establishments for distribution. For the purposes of this survey an establishment must make its own financial decisions and have its own financial statements separate from those of the firm. An establishment must also have its own management and control over its payroll.
The whole population, or the universe, covered in the Enterprise Surveys is the non-agricultural private economy. It comprises: all manufacturing sectors according to the ISIC Revision 3.1 group classification (group D), construction sector (group F), services sector (groups G and H), and transport, storage, and communications sector (group I). Note that this population definition excludes the following sectors: financial intermediation (group J), real estate and renting activities (group K, except sub-sector 72, IT, which was added to the population under study), and all public or utilities sectors. Companies with 100% government ownership are not eligible to participate in the Enterprise Surveys.
Sample survey data [ssd]
Two levels of stratification were used in this country: industry and establishment size.
Industry stratification was designed as follows: the universe was stratified as into manufacturing and services industries - Manufacturing (ISIC Rev. 3.1 codes 15 - 37), and Services (ISIC codes 45, 50-52, 55, 60-64, and 72).
For the Lesotho ES, size stratification was defined as follows: small (5 to 19 employees), medium (20 to 99 employees), and large (100 or more employees). Regional stratification did not take place for the Lesotho ES.
In 2009, it was not possible to obtain a single usable frame for Lesotho. Instead frames were obtained from two government branches: the Chamber of Commerce and the Ministry of Trade, Industry, Cooperatives and Marketing. Those frames were merged and duplicates removed to provide the frame used for the survey.
In 2016 ES, the sample frame consisted of listings of firms from two sources: for panel firms the list of 151 firms from the Lesotho 2009 ES was used and for fresh firms (i.e., firms not covered in 2009) firm data from Lesotho Bureau of Statistics Business Register, published in August 2015, was used.
Face-to-face [f2f]
The following survey instruments were used for Lesotho ES: - Manufacturing Module Questionnaire - Services Module Questionnaire
The survey is fielded via manufacturing or services questionnaires in order not to ask questions that are irrelevant to specific types of firms, e.g. a question that relates to production and nonproduction workers should not be asked of a retail firm. In addition to questions that are asked across countries, all surveys are customized and contain country-specific questions. An example of customization would be including tourism-related questions that are asked in certain countries when tourism is an existing or potential sector of economic growth. There is a skip pattern in the Service Module Questionnaire for questions that apply only to retail firms.
Data entry and quality controls are implemented by the contractor and data is delivered to the World Bank in batches (typically 10%, 50% and 100%). These data deliveries are checked for logical consistency, out of range values, skip patterns, and duplicate entries. Problems are flagged by the World Bank and corrected by the implementing contractor through data checks, callbacks, and revisiting establishments.
Survey non-response must be differentiated from item non-response. The former refers to refusals to participate in the survey altogether whereas the latter refers to the refusals to answer some specific questions. Enterprise Surveys suffer from both problems and different strategies were used to address these issues.
Item non-response was addressed by two strategies: a- For sensitive questions that may generate negative reactions from the respondent, such as corruption or tax evasion, enumerators were instructed to collect "Refusal to respond" (-8) as a different option from "Don't know" (-9). b- Establishments with incomplete information were re-contacted in order to complete this information, whenever necessary.
Survey non-response was addressed by maximizing efforts to contact establishments that were initially selected for interview. Attempts were made to contact the establishment for interview at different times/days of the week before a replacement establishment (with similar strata characteristics) was suggested for interview. Survey non-response did occur but substitutions were made in order to potentially achieve strata-specific goals.
https://www.icpsr.umich.edu/web/ICPSR/studies/9054/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/9054/terms
The 1975-1981 TIME USE LONGITUDINAL PANEL STUDY dataset combines a round of data collected in 1981 with the principal investigators' earlier TIME USE IN ECONOMIC AND SOCIAL ACCOUNTS, 1975-1976 (ICPSR 7580), collected by F. Thomas Juster, Paul Courant, et al. This combined data collection consists of data from 620 respondents, their spouses if they were married at the time of first contact, and up to three children between the ages of three and seventeen living in the household. The key features which characterized the 1975 time use study were repeated in 1981. In both of the data collection years, adult individuals provided four time diaries as well as extensive information related to their time use in the four waves of data collection. Information pertaining to the household was collected, as well as identical measures from respondents and spouses for all person-specific information. Selected children provided two time diary reports (one for a school day and one non-school day), an academic achievement measure, and survey measures pertaining to school and family life. In addition, teacher ratings were obtained. For each adult individual who remained in the sample through the 1981 study, a time budget was constructed from his or her time diaries containing the number of minutes per week spent in each of some 223 mutually exclusive and exhaustive activities. These measures provide a description of how the sample individuals were currently allocating their time and are comparable to the 87 activity measures created from their 1975 diaries. In addition, respondent and spouse time aggregates were converted to parent time aggregates for mothers and fathers of children in the sample. To facilitate analyses on spouses, a merged data file was created for 868 couples in which both husband and wife had complete Wave I data in either 1975-1976 or 1981.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
We propose a simple-to-implement panel data method to evaluate the impacts of social policy. The basic idea is to exploit the dependence among cross-sectional units to construct the counterfactuals. The cross-sectional correlations are attributed to the presence of some (unobserved) common factors. However, instead of trying to estimate the unobserved factors, we propose to use observed data. We use a panel of 24 countries to evaluate the impact of political and economic integration of Hong Kong with mainland China. We find that the political integration hardly had any impact on the growth of the Hong Kong economy. However, the economic integration has raised Hong Kong's annual real GDP by about 4%.
The documentation covers Enterprise Survey panel datasets that were collected in Slovenia in 2009, 2013 and 2019.
The Slovenia ES 2009 was conducted between 2008 and 2009. The Slovenia ES 2013 was conducted between March 2013 and September 2013. Finally, the Slovenia ES 2019 was conducted between December 2018 and November 2019. The objective of the Enterprise Survey is to gain an understanding of what firms experience in the private sector.
As part of its strategic goal of building a climate for investment, job creation, and sustainable growth, the World Bank has promoted improving the business environment as a key strategy for development, which has led to a systematic effort in collecting enterprise data across countries. The Enterprise Surveys (ES) are an ongoing World Bank project in collecting both objective data based on firms' experiences and enterprises' perception of the environment in which they operate.
National
The primary sampling unit of the study is the establishment. An establishment is a physical location where business is carried out and where industrial operations take place or services are provided. A firm may be composed of one or more establishments. For example, a brewery may have several bottling plants and several establishments for distribution. For the purposes of this survey an establishment must take its own financial decisions and have its own financial statements separate from those of the firm. An establishment must also have its own management and control over its payroll.
As it is standard for the ES, the Slovenia ES was based on the following size stratification: small (5 to 19 employees), medium (20 to 99 employees), and large (100 or more employees).
Sample survey data [ssd]
The sample for Slovenia ES 2009, 2013, 2019 were selected using stratified random sampling, following the methodology explained in the Sampling Manual for Slovenia 2009 ES and for Slovenia 2013 ES, and in the Sampling Note for 2019 Slovenia ES.
Three levels of stratification were used in this country: industry, establishment size, and oblast (region). The original sample designs with specific information of the industries and regions chosen are included in the attached Excel file (Sampling Report.xls.) for Slovenia 2009 ES. For Slovenia 2013 and 2019 ES, specific information of the industries and regions chosen is described in the "The Slovenia 2013 Enterprise Surveys Data Set" and "The Slovenia 2019 Enterprise Surveys Data Set" reports respectively, Appendix E.
For the Slovenia 2009 ES, industry stratification was designed in the way that follows: the universe was stratified into manufacturing industries, services industries, and one residual (core) sector as defined in the sampling manual. Each industry had a target of 90 interviews. For the manufacturing industries sample sizes were inflated by about 17% to account for potential non-response cases when requesting sensitive financial data and also because of likely attrition in future surveys that would affect the construction of a panel. For the other industries (residuals) sample sizes were inflated by about 12% to account for under sampling in firms in service industries.
For Slovenia 2013 ES, industry stratification was designed in the way that follows: the universe was stratified into one manufacturing industry, and two service industries (retail, and other services).
Finally, for Slovenia 2019 ES, three levels of stratification were used in this country: industry, establishment size, and region. The original sample design with specific information of the industries and regions chosen is described in "The Slovenia 2019 Enterprise Surveys Data Set" report, Appendix C. Industry stratification was done as follows: Manufacturing – combining all the relevant activities (ISIC Rev. 4.0 codes 10-33), Retail (ISIC 47), and Other Services (ISIC 41-43, 45, 46, 49-53, 55, 56, 58, 61, 62, 79, 95).
For Slovenia 2009 and 2013 ES, size stratification was defined following the standardized definition for the rollout: small (5 to 19 employees), medium (20 to 99 employees), and large (more than 99 employees). For stratification purposes, the number of employees was defined on the basis of reported permanent full-time workers. This seems to be an appropriate definition of the labor force since seasonal/casual/part-time employment is not a common practice, except in the sectors of construction and agriculture.
For Slovenia 2009 ES, regional stratification was defined in 2 regions. These regions are Vzhodna Slovenija and Zahodna Slovenija. The Slovenia sample contains panel data. The wave 1 panel “Investment Climate Private Enterprise Survey implemented in Slovenia” consisted of 223 establishments interviewed in 2005. A total of 57 establishments have been re-interviewed in the 2008 Business Environment and Enterprise Performance Survey.
For Slovenia 2013 ES, regional stratification was defined in 2 regions (city and the surrounding business area) throughout Slovenia.
Finally, for Slovenia 2019 ES, regional stratification was done across two regions: Eastern Slovenia (NUTS code SI03) and Western Slovenia (SI04).
Computer Assisted Personal Interview [capi]
Questionnaires have common questions (core module) and respectfully additional manufacturing- and services-specific questions. The eligible manufacturing industries have been surveyed using the Manufacturing questionnaire (includes the core module, plus manufacturing specific questions). Retail firms have been interviewed using the Services questionnaire (includes the core module plus retail specific questions) and the residual eligible services have been covered using the Services questionnaire (includes the core module). Each variation of the questionnaire is identified by the index variable, a0.
Survey non-response must be differentiated from item non-response. The former refers to refusals to participate in the survey altogether whereas the latter refers to the refusals to answer some specific questions. Enterprise Surveys suffer from both problems and different strategies were used to address these issues.
Item non-response was addressed by two strategies: a- For sensitive questions that may generate negative reactions from the respondent, such as corruption or tax evasion, enumerators were instructed to collect the refusal to respond as (-8). b- Establishments with incomplete information were re-contacted in order to complete this information, whenever necessary. However, there were clear cases of low response.
For 2009 and 2013 Slovenia ES, the survey non-response was addressed by maximizing efforts to contact establishments that were initially selected for interview. Up to 4 attempts were made to contact the establishment for interview at different times/days of the week before a replacement establishment (with similar strata characteristics) was suggested for interview. Survey non-response did occur but substitutions were made in order to potentially achieve strata-specific goals. Further research is needed on survey non-response in the Enterprise Surveys regarding potential introduction of bias.
For 2009, the number of contacted establishments per realized interview was 6.18. This number is the result of two factors: explicit refusals to participate in the survey, as reflected by the rate of rejection (which includes rejections of the screener and the main survey) and the quality of the sample frame, as represented by the presence of ineligible units. The relatively low ratio of contacted establishments per realized interview (6.18) suggests that the main source of error in estimates in the Slovenia may be selection bias and not frame inaccuracy.
For 2013, the number of realized interviews per contacted establishment was 25%. This number is the result of two factors: explicit refusals to participate in the survey, as reflected by the rate of rejection (which includes rejections of the screener and the main survey) and the quality of the sample frame, as represented by the presence of ineligible units. The number of rejections per contact was 44%.
Finally, for 2019, the number of interviews per contacted establishments was 9.7%. This number is the result of two factors: explicit refusals to participate in the survey, as reflected by the rate of rejection (which includes rejections of the screener and the main survey) and the quality of the sample frame, as represented by the presence of ineligible units. The share of rejections per contact was 75.2%.