Facebook
TwitterPanel data possess several advantages over conventional cross-sectional and time-series data, including their power to isolate the effects of specific actions, treatments, and general policies often at the core of large-scale econometric development studies. While the concept of panel data alone provides the capacity for modelling the complexities of human behaviour, the notion of universal panel data - in which time- and situation-driven variances leading to variations in tools, and thus results, are mitigated - can further enhance exploitation of the richness of panel information. The NPS Universal Panel Questionnaire (UPQ) consists of both survey instruments and datasets, meticulously aligned and engineered with the aim of facilitating the use of and improving access to the wealth of panel data offered by the NPS. The NPS-UPQ provides a consistent and straightforward means of conducting not only user-driven analyses using convenient, standardized tools, but also for monitoring MKUKUTA, FYDP II, and other national level development indicators reported by the NPS.
The design of the NPS-UPQ combines the four completed rounds of the NPS - NPS 2008/09 (R1), NPS 2010/11 (R2), NPS 2012/13 (R3), and NPS 2014/15 (R4) - into pooled, module-specific survey instruments and datasets. The panel survey instruments offer the ease of comparability over time, with modifications and variances easily identifiable as well as those aspects of the questionnaire which have remained identical and offer consistent information. By providing all module-specific data over time within compact, pooled datasets, panel datasets eliminate the need for user-generated merges between rounds and present data in a clear, logical format, increasing both the usability and comprehension of complex data.
Regional coverage
Households
The universe includes all households and individuals in Tanzania with the exception of those residing in military barracks or other institutions.
Sample survey data [ssd]
SAMPLING PROCEDURE While the same sample of respondents was maintained over the first three rounds of the NPS, longitudinal surveys tend to suffer from bias introduced by households leaving the survey over time, i.e. attrition. Although the NPS maintains a highly successful recapture rate (roughly 96% retention at the household level), minimizing the escalation of this selection bias, a refresh of longitudinal cohorts was done for the NPS 2014/15 to ensure proper representativeness of estimates while maintaining a sufficient primary sample to maintain cohesion within panel analysis. A newly completed Population and Housing Census (PHC) in 2012, providing updated population figures along with changes in administrative boundaries, emboldened the opportunity to realign the NPS sample and abate collective bias potentially introduced through attrition.
To maintain the panel concept of the NPS, the sample design for NPS 2014/2015 consisted of a combination of the original NPS sample and a new NPS sample. A nationally representative sub-sample was selected to continue as part of the “Extended Panel” while an entirely new sample, “Refresh Panel”, was selected to represent national and sub-national domains. Similar to the sample in NPS 2008/2009, the sample design for the “Refresh Panel” allows analysis at four primary domains of inference, namely: Dar es Salaam, other urban areas on mainland Tanzania, rural mainland Tanzania, and Zanzibar. This new cohort in NPS 2014/2015 will be maintained and tracked in all future rounds between national censuses.
Face-to-face [f2f]
The format of the NPS-UPQ survey instrument is similar to previously disseminated NPS survey instruments. Each module has a questionnaire and clearly identifies if the module collects information at the individual or household level. Within each module-specific questionnaire of the NPS-UPQ survey instrument, there are five distinct sections, arranged vertically: (1) the UPQ - “U” on the survey instrument, (2) R4, (3), R3, (4) R2, and (5) R1 – the latter 4 sections presenting each questionnaire in its original form at time of its respective dissemination.
The uppermost section of each module’s questionnaire (“U”) represents the model universal panel questionnaire, with questions generated from the comprehensive listing of questions across all four rounds of the NPS and codes generated from the comprehensive collection of codes. The following sections are arranged vertically by round, considering R4 as most recent. While not all rounds will have data reported for each question in the UPQ and not each question will have reports for each of the UPQ codes listed, the NPS-UPQ survey instrument represents the visual, all-inclusive set of information collected by the NPS over time.
The four round-specific sections (R4, R3, R2, R1) are aligned with their UPQ-equivalent question, visually presenting their contribution to compatibility with the UPQ. Each round-specific section includes the original round-specific variable names, response codes and skip patterns (corresponding to their respective round-specific NPS data sets, and despite their variance from other rounds or from the comprehensive UPQ code listing)4.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This repository provides code and data used in "Social Equity of Bridge Management" (DOI: 10.1061/JMENEA/MEENG-5265). Both the dataset used in the analysis ("Panel.csv") and the R script to create the dataset ("Panel_Prep.R") are provided. The main results of the paper as well as alternate specifications for the ordered probit with random effects models can be replicated with "Models_OrderedProbit.R". Note that these models take an extensive amount of memory and computational resources. Additionally, we have provided alternate model specifications in the "Robustness" R scripts: binomial probit with random effects, ordered probit without random effects, and Ordinary Least Squares with random effects. An extended version of the supplemental materials is also provided.
Facebook
TwitterThe documentation covers Enterprise Survey panel datasets that were collected in Slovenia in 2009, 2013 and 2019.
The Slovenia ES 2009 was conducted between 2008 and 2009. The Slovenia ES 2013 was conducted between March 2013 and September 2013. Finally, the Slovenia ES 2019 was conducted between December 2018 and November 2019. The objective of the Enterprise Survey is to gain an understanding of what firms experience in the private sector.
As part of its strategic goal of building a climate for investment, job creation, and sustainable growth, the World Bank has promoted improving the business environment as a key strategy for development, which has led to a systematic effort in collecting enterprise data across countries. The Enterprise Surveys (ES) are an ongoing World Bank project in collecting both objective data based on firms' experiences and enterprises' perception of the environment in which they operate.
National
The primary sampling unit of the study is the establishment. An establishment is a physical location where business is carried out and where industrial operations take place or services are provided. A firm may be composed of one or more establishments. For example, a brewery may have several bottling plants and several establishments for distribution. For the purposes of this survey an establishment must take its own financial decisions and have its own financial statements separate from those of the firm. An establishment must also have its own management and control over its payroll.
As it is standard for the ES, the Slovenia ES was based on the following size stratification: small (5 to 19 employees), medium (20 to 99 employees), and large (100 or more employees).
Sample survey data [ssd]
The sample for Slovenia ES 2009, 2013, 2019 were selected using stratified random sampling, following the methodology explained in the Sampling Manual for Slovenia 2009 ES and for Slovenia 2013 ES, and in the Sampling Note for 2019 Slovenia ES.
Three levels of stratification were used in this country: industry, establishment size, and oblast (region). The original sample designs with specific information of the industries and regions chosen are included in the attached Excel file (Sampling Report.xls.) for Slovenia 2009 ES. For Slovenia 2013 and 2019 ES, specific information of the industries and regions chosen is described in the "The Slovenia 2013 Enterprise Surveys Data Set" and "The Slovenia 2019 Enterprise Surveys Data Set" reports respectively, Appendix E.
For the Slovenia 2009 ES, industry stratification was designed in the way that follows: the universe was stratified into manufacturing industries, services industries, and one residual (core) sector as defined in the sampling manual. Each industry had a target of 90 interviews. For the manufacturing industries sample sizes were inflated by about 17% to account for potential non-response cases when requesting sensitive financial data and also because of likely attrition in future surveys that would affect the construction of a panel. For the other industries (residuals) sample sizes were inflated by about 12% to account for under sampling in firms in service industries.
For Slovenia 2013 ES, industry stratification was designed in the way that follows: the universe was stratified into one manufacturing industry, and two service industries (retail, and other services).
Finally, for Slovenia 2019 ES, three levels of stratification were used in this country: industry, establishment size, and region. The original sample design with specific information of the industries and regions chosen is described in "The Slovenia 2019 Enterprise Surveys Data Set" report, Appendix C. Industry stratification was done as follows: Manufacturing – combining all the relevant activities (ISIC Rev. 4.0 codes 10-33), Retail (ISIC 47), and Other Services (ISIC 41-43, 45, 46, 49-53, 55, 56, 58, 61, 62, 79, 95).
For Slovenia 2009 and 2013 ES, size stratification was defined following the standardized definition for the rollout: small (5 to 19 employees), medium (20 to 99 employees), and large (more than 99 employees). For stratification purposes, the number of employees was defined on the basis of reported permanent full-time workers. This seems to be an appropriate definition of the labor force since seasonal/casual/part-time employment is not a common practice, except in the sectors of construction and agriculture.
For Slovenia 2009 ES, regional stratification was defined in 2 regions. These regions are Vzhodna Slovenija and Zahodna Slovenija. The Slovenia sample contains panel data. The wave 1 panel “Investment Climate Private Enterprise Survey implemented in Slovenia” consisted of 223 establishments interviewed in 2005. A total of 57 establishments have been re-interviewed in the 2008 Business Environment and Enterprise Performance Survey.
For Slovenia 2013 ES, regional stratification was defined in 2 regions (city and the surrounding business area) throughout Slovenia.
Finally, for Slovenia 2019 ES, regional stratification was done across two regions: Eastern Slovenia (NUTS code SI03) and Western Slovenia (SI04).
Computer Assisted Personal Interview [capi]
Questionnaires have common questions (core module) and respectfully additional manufacturing- and services-specific questions. The eligible manufacturing industries have been surveyed using the Manufacturing questionnaire (includes the core module, plus manufacturing specific questions). Retail firms have been interviewed using the Services questionnaire (includes the core module plus retail specific questions) and the residual eligible services have been covered using the Services questionnaire (includes the core module). Each variation of the questionnaire is identified by the index variable, a0.
Survey non-response must be differentiated from item non-response. The former refers to refusals to participate in the survey altogether whereas the latter refers to the refusals to answer some specific questions. Enterprise Surveys suffer from both problems and different strategies were used to address these issues.
Item non-response was addressed by two strategies: a- For sensitive questions that may generate negative reactions from the respondent, such as corruption or tax evasion, enumerators were instructed to collect the refusal to respond as (-8). b- Establishments with incomplete information were re-contacted in order to complete this information, whenever necessary. However, there were clear cases of low response.
For 2009 and 2013 Slovenia ES, the survey non-response was addressed by maximizing efforts to contact establishments that were initially selected for interview. Up to 4 attempts were made to contact the establishment for interview at different times/days of the week before a replacement establishment (with similar strata characteristics) was suggested for interview. Survey non-response did occur but substitutions were made in order to potentially achieve strata-specific goals. Further research is needed on survey non-response in the Enterprise Surveys regarding potential introduction of bias.
For 2009, the number of contacted establishments per realized interview was 6.18. This number is the result of two factors: explicit refusals to participate in the survey, as reflected by the rate of rejection (which includes rejections of the screener and the main survey) and the quality of the sample frame, as represented by the presence of ineligible units. The relatively low ratio of contacted establishments per realized interview (6.18) suggests that the main source of error in estimates in the Slovenia may be selection bias and not frame inaccuracy.
For 2013, the number of realized interviews per contacted establishment was 25%. This number is the result of two factors: explicit refusals to participate in the survey, as reflected by the rate of rejection (which includes rejections of the screener and the main survey) and the quality of the sample frame, as represented by the presence of ineligible units. The number of rejections per contact was 44%.
Finally, for 2019, the number of interviews per contacted establishments was 9.7%. This number is the result of two factors: explicit refusals to participate in the survey, as reflected by the rate of rejection (which includes rejections of the screener and the main survey) and the quality of the sample frame, as represented by the presence of ineligible units. The share of rejections per contact was 75.2%.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The dataset comprises the Quad (Australia, India, Japan, and the United States) member countries’ military expenditure (ME) and related economic indicators, 1991-2020. lnME is logarithms of the Quad member countries’ ME. lnSpillover1 is the product of the Quad member countries’ ME divided by its own ME. lnSpillover2 is logarithms of the sum of the Quad member countries’ ME minus its own ME. lnGDP is the Quad member countries’ GDP. And lnChineseME is logarithms of Chinese ME. lnME_fd is the first difference value of lnME. lnSpillover1_fd is the first difference value of lnSpillover1. lnSpillover2_fd is the first difference value of lnSpillover2. lnGDP_fd is the first difference value of ln lnGDP. And lnChineseME_fd is the first difference value of lnChineseME. IV_1_1 is the 2 periods lagged lnSpillover1_fd. IV_1_2 is logarithms of the first difference value of the product of the Quad member countries’ GDP divided by its own GDP. IV_2_1 is the 2 periods lagged lnSpillover2_fd. IV_2_2 is logarithms of the first difference value of the sum of the Quad member countries’ GDP minus its own GDP. Data on the Quad member countries’ ME (in current US dollars) from 1991–2020 were obtained from Stockholm International Peace Research Institute (2022), and data on their GDP (in current US dollars) during the same period were obtained from World Bank (2022). Further, Chinese ME (in current US dollars) from 1991–2020 were obtained from Stockholm International Peace Research Institute (2022). The data were converted to constant US dollars using the US GDP deflator taken from World Bank (2022). Data source Stockholm International Peace Research Institute. 2022. “SIPRI Military Expenditure Database.” https://www.sipri.org/databases/milex. World Bank. 2022. “World Development Indicators.” https://databank.worldbank.org/source/world-development-indicators.
Facebook
Twitterhttps://www.icpsr.umich.edu/web/ICPSR/studies/37072/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/37072/terms
The Monitoring the Future (MTF) project is a long-term epidemiologic and etiologic study of substance use among youth and adults in the United States. It is conducted at the University of Michigan's Institute for Social Research, and funded by a series of investigator-initiated research grants from the National Institute on Drug Abuse. MTF has two components: MTF Main and MTF Panel. From its inception in 1975, the cross-sectional MTF Main study has collected data annually from nationally representative samples of 12,000-19,000 high school seniors in 12th grade located in approximately 135 schools nationwide. Beginning in 1991, similar annual cross-sectional surveys of nationally representative samples of 8th and 10th graders have been conducted. In all, approximately 45,000 students annually respond to about 100 drug use and demographic questions, as well as to about 200 additional questions divided among multiple survey forms on other topics such as attitudes toward government, social institutions, race relations, changing gender roles, educational aspirations, occupational aims, and marital plans. The longitudinal MTF Panel study conducts follow-up surveys with representative subsamples of respondents from each 12th grade cohort participating in MTF Main. From each cohort, a sample of about 2,450 students are selected for longitudinal follow-up, with an oversampling of students who reported prior drug use during their 12th grade survey. Longitudinal follow-up currently spans modal ages 19-30 and 35-60. For surveys at modal ages 19-30, the sample is randomly split into two halves (approx. 1,225 each) to be followed every other year. One half-sample begins its first follow-up the year after high school (at modal age 19), and the other half-sample begins its first follow-up in the second year after high school (at modal age 20). Thus, six young adult follow-up (FU) surveys occur between modal ages 19-30, at modal ages 19/20 (FU1), 21/22 (FU2), 23/24 (FU3), 25/26 (FU4), 27/28 (FU5), and 29/30 (FU6). After age 30, respondents are surveyed every five years: 35, 40, 45, 50, 55, and 60 (these are referred to as FZ surveys). The FZ surveys cover many of the same topics as the 12th grade and FU surveys and include additional questions on life events and health. MTF Panel surveys for the young adults (ages 19-30) were conducted using mailed paper surveys from 1977-2017. In 2018 and 2019, a random half of all those aged 19-30 received a mailed paper survey, while the other half were surveyed using a new procedure that encouraged participation using web surveys (web-push). The FZ surveys (ages 35-60) were conducted using mailed paper surveys through the 2019 data collection. More information about the MTF project can be accessed through the Monitoring the Future website. Annual reports are published by the research team, describing the data collection and trends over time.
Facebook
TwitterThe General Social Surveys (GSS) have been conducted by the "https://www.norc.org/Pages/default.aspx" Target="_blank">National Opinion Research Center (NORC) annually since 1972, except for the years 1979, 1981, and 1992 (a supplement was added in 1992), and biennially beginning in 1994. The GSS are designed to be part of a program of social indicator research, replicating questionnaire items and wording in order to facilitate time-trend studies. The 2016-2020 GSS consisted of re-interviews of respondents from the 2016 and 2018 Cross-Sectional GSS rounds. All respondents from 2018 were fielded, but a random subsample of the respondents from 2016 were released for the 2020 panel. Cross-sectional responses from 2016 and 2018 are labelled Waves 1A and 1B, respectively, while responses from the 2020 re-interviews are labelled Wave 2.
The 2016-2020 GSS Wave 2 Panel also includes a collaboration between the General Social Survey (GSS) and the "https://electionstudies.org/" Target="_blank">American National Election Studies (ANES). The 2016-2020 GSS Panel Wave 2 contained a module of items proposed by the ANES team, including attitudinal questions, feelings thermometers for presidential candidates, and plans for voting in the 2020 presidential election. These respondents appear in both the ANES post-election study and the 2016-2020 GSS panel, with their 2020 GSS responses serving as their equivalent pre-election data. Researchers can link the relevant GSS Panel Wave 2 data with ANES post-election data using either ANESID (in the GSS Panel Wave 2 datafile) or V200001 in the ANES 2020 post-election datafile.
Facebook
Twitterhttp://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
This dataset was created by Amrit Raj
Released under Database: Open Database, Contents: Database Contents
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset contains panel data for a sample of 15 countries (Australia, Austria, Canada, China, Denmark, France, Germany, Israel, Italy, Japan, Republic of Korea, Spain, Sweden, Switzerland and United States) over the period 2006-2015. The series used are available for a small number of developed countries and for a relatively short time period. Solar PV module prices, imports of solar PV panels and public budget for R&D in PV are in real terms and were obtained by dividing them by the United States GDP deflator. The series are obtained from five main sources. Imports value of solar PV panels series are taken from Commodity Trade Statistics database (COMTRADE). PV panels (cells and modules) are a part of the category HS 854140, "Photosensitive Semiconductor Devices, Photovoltaic Cells and Light-Emitting Diodes". Solar PV module prices, cumulative installed PV capacity and public budget for R&D in PV series are constructed from the PVPS report Trends in Photovoltaic Applications of the International Energy Agency (IEA). Population density, political stability index, renewable energy consumption and per capita carbon dioxide emissions series are all obtained from the World Bank (WB). Real GDP per capita series is taken from Federal Reserve Bank of St. Louis (FRED). Technological development in PV and crude oil import price series are drawn from the Organisation for Economic Co-operation and Development (OECD) database. Since crude oil import price series are not available for China and Israel, we use the West Texas Intermediate spot crude oil price as a proxy. The dummy for presence of feed-in tariff is constructed from the OECD database.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
While fixed effects (FE) models are often employed to address potential omitted variables, we argue that these models’ real utility is in isolating a particular dimension of variance from panel data for analysis. In addition, we show through novel mathematical decomposition and simulation that only one-way FE models cleanly capture either the over-time or cross-sectional dimensions in panel data, while the two-way FE model unhelpfully combines within-unit and cross-sectional variation in a way that produces un-interpretable answers. In fact, as we show in this paper, if we begin with the interpretation that many researchers wrongly assign to the two-way FE model—that it represents a single estimate of X on Y while accounting for unit-level heterogeneity and time shocks—the two-way FE specification is statistically unidentified, a fact that statistical software packages like R and Stata obscure through internal matrix processing.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Summary : Fuel demand is shown to be influenced by fuel prices, people's income and motorization rates. We explore the effects of electric vehicle's rates in gasoline demand using this panel dataset.
Files : dataset.csv - Panel dimensions are the Brazilian state ( i ) and year ( t ). The other columns are: gasoline sales per capita (ln_Sg_pc), prices of gasoline (ln_Pg) and ethanol (ln_Pe) and their lags, motorization rates of combustion vehicles (ln_Mi_c) and electric vehicles (ln_Mi_e) and GDP per capita (ln_gdp_pc). All variables are all under the natural log function, since we use this to calculate demand elasticities in a regression model.
adjacency.csv - The adjacency matrix used in interaction with electric vehicles' motorization rates to calculate spatial effects. At first, it follows a binary adjacency formula: for each pair of states i and j, the cell (i, j) is 0 if the states are not adjacent and 1 if they are. Then, each row is normalized to have sum equal to one.
regression.do - Series of Stata commands used to estimate the regression models of our study. dataset.csv must be imported to work, see comment section.
dataset_predictions.xlsx - Based on the estimations from Stata, we use this excel file to make average predictions by year and by state. Also, by including years beyond the last panel sample, we also forecast the model into the future and evaluate the effects of different policies that influence gasoline prices (taxation) and EV motorization rates (electrification). This file is primarily used to create images, but can be used to further understand how the forecasting scenarios are set up.
Sources: Fuel prices and sales: ANP (https://www.gov.br/anp/en/access-information/what-is-anp/what-is-anp) State population, GDP and vehicle fleet: IBGE (https://www.ibge.gov.br/en/home-eng.html?lang=en-GB) State EV fleet: Anfavea (https://anfavea.com.br/en/site/anuarios/)
Facebook
Twitterhttps://www.gesis.org/en/institute/data-usage-termshttps://www.gesis.org/en/institute/data-usage-terms
Overview of online panel software
Topics: 1. General capabililties: name of software solution; provider; consent to publish name; offered tools; underlying database platform; software offered as an enterprise solution, a web-based ´software as a service´ solution, part desktop or enterprise/part SAAS, either enterprise or SAAS; solution complies with EU data protection.
Panel recruitment: methods for panel recruitment; double opt-in; confirmation of identity methods; collection of profile data at the time of recruitment; maximum panel size, maximum profile data.
Panel administration: database design; specific interface for panel admininstrators; open interfaces provided to the panel database; each panel can have its own themed panel or community pages; incentive management capabilities; intant suspend; import of panellists for single use samples;
Panel member experience: panel members´ possibilities to update their profile information; tools, activities or items the panel members can access via their panel; integrated mobile app; further available via the mobile app; actions for closed or ineligible surveys.
Sample selection: capabilities to select samples; limit to the combinations of selection criteria; capabilities to ensure that panellists are not over-researched; sample selection tool uses predictive or heuristic statistical model to estimate the amount of sample to draw, in order to fulfil the target number of interviews; sample selection can include or take into account samples being sourced from other panels; extraction of sample for administration in other survey platforms.
Data capture and data linkage: panel data can be enriched with additional data; methods for capturing and updating the participation history or survey outcome; data from the survey can be used to update the panellists response data with the survey outcome; offered support for handling bounce-backs from email invitations; methods for data exchange or interoperability with other panel or survey software platforms.
Analytics and active panel management: stored information in the panel database; measures of panel health to measure and track (at a macro level); dashboard interface to show the current state of the panel; examination of methods to evaluate or score the individual´s participation and engagement; measures to identify and remove problematic panel members; other comments.
Facebook
TwitterThe General Social Surveys (GSS) have been conducted by the "https://www.norc.org/Pages/default.aspx" Target="_blank">National Opinion Research Center (NORC) annually since 1972, except for the years 1979, 1981, and 1992 (a supplement was added in 1992), and biennially beginning in 1994. The GSS are designed to be part of a program of social indicator research, replicating questionnaire items and wording in order to facilitate time-trend studies. This GSS panel dataset has three waves of interviews: originally sampled and interviewed in 2006, interviewed for the second time in 2008, and interviewed for the third wave in 2010. This file contains those 2,000 respondents who were pre-selected among the 2006 samples and those variables that were asked at least twice in three waves. Survey items on religion include the following: religious preference, religion raised in, spouse's religious preference, frequency of religious service attendance, religious experiences, and religious salience.
Facebook
TwitterThese data form one of two prongs from a "https://onlinelibrary.wiley.com/doi/abs/10.1111/ajps.12365" Target="_blank">larger project, whose goal was to determine how politics, religion, and secularism are intertwined. There was a multi-wave panel survey and experiment used in the study. The project showed that religion and secularism are a consequence as well as a cause of politics.
The data here represent the panel data from the project. The Experimental data can be found "https://www.thearda.com/data-archive?fid=PPFE" Target="_blank">here
Facebook
TwitterThe documentation covers Enterprise Survey panel datasets that were collected in Chad in 2009 and 2018. The Enterprise Survey is a firm-level survey of a representative sample of an economy's private sector. The surveys cover a broad range of business environment topics including access to finance, corruption, infrastructure, crime, competition, and performance measures. The objective of the Enterprise Survey is to gain an understanding of what firms experience in the private sector.
As part of its strategic goal of building a climate for investment, job creation, and sustainable growth, the World Bank has promoted improving the business environment as a key strategy for development, which has led to a systematic effort in collecting enterprise data across countries. The Enterprise Surveys (ES) are an ongoing World Bank project in collecting both objective data based on firms' experiences and enterprises' perception of the environment in which they operate.
National coverage
The primary sampling unit of the study is the establishment. An establishment is a physical location where business is carried out and where industrial operations take place or services are provided. A firm may be composed of one or more establishments. For example, a brewery may have several bottling plants and several establishments for distribution. For the purposes of this survey an establishment must make its own financial decisions and have its own financial statements separate from those of the firm. An establishment must also have its own management and control over its payroll.
The whole population, or universe of the study, is the non-agricultural economy. It comprises: all manufacturing sectors according to the group classification of ISIC Revision 3.1: (group D), construction sector (group F), services sector (groups G and H), and transport, storage, and communications sector (group I). Note that this definition excludes the following sectors: financial intermediation (group J), real estate and renting activities (group K, except sub-sector 72, IT, which was added to the population under study), and all public or utilities-sectors.
Sample survey data [ssd]
The samples for 2009 and 2018 Chad Enterprise Surveys were selected using stratified random sampling, following the methodology explained in the Sampling Note.
Two levels of stratification were used in the Chad 2009 ES sample: firm sector and firm size. The Industry stratification was designed as follows: the universe was stratified into manufacturing and services industries. The initial sample design had a target of 75 interviews in manufacturing and 75 interviews in services.
In 2018 Chad ES, three levels of stratification were used: industry, establishment size, and region. The industry stratification was designed in the way that follows: the universe was stratified as into manufacturing and services industries- Manufacturing (ISIC Rev. 3.1 codes 15 - 37), and Services (ISIC codes 45, 50-52, 55, 60-64, and 72). Regional stratification did not take place for the Chad ES.
Face-to-face [f2f]
Two questionnaires - Manufacturing amd Services were used to collect the survey data.
The Questionnaires have common questions (core module) and respectfully additional manufacturing- and services-specific questions. The eligible manufacturing industries have been surveyed using the Manufacturing questionnaire (includes the core module, plus manufacturing specific questions). Retail firms have been interviewed using the Services questionnaire (includes the core module plus retail specific questions) and the residual eligible services have been covered using the Services questionnaire (includes the core module).
Facebook
TwitterThe documented dataset covers Enterprise Survey (ES) panel data collected in Lesotho in 2009 and 2016, as part of Africa Enterprise Surveys rollout, an initiative of the World Bank. The objective of the Enterprise Survey is to obtain feedback from enterprises on the state of the private sector as well as to help in building a panel of enterprise data that will make it possible to track changes in the business environment over time, thus allowing, for example, impact assessments of reforms.
Enterprise Surveys target a sample consisting of longitudinal (panel) observations and new cross-sectional data. Panel firms are prioritized in the sample selection, comprising up to 50% of the sample in the current wave. For all panel firms, regardless of the sample, current eligibility or operating status is determined and included in panel datasets.
Lesotho ES 2009 was conducted from September 2008 to February 2009, Lesotho ES 2016 was carried out in June - August 2016. Stratified random sampling was used to select the surveyed businesses. Data was collected using face-to-face interviews.
Data from 301 establishments was analyzed: 90 businesses were from 2009 only, 89 - from 2016 only, and 122 firms were from 2009 and 2016.
The standard Enterprise Survey topics include firm characteristics, gender participation, access to finance, annual sales, costs of inputs and labor, workforce composition, bribery, licensing, infrastructure, trade, crime, competition, capacity utilization, land and permits, taxation, informality, business-government relations, innovation and technology, and performance measures. Over 90 percent of the questions objectively measure characteristics of a country’s business environment. The remaining questions assess the survey respondents’ opinions on what are the obstacles to firm growth and performance.
National
The primary sampling unit of the study is an establishment. An establishment is a physical location where business is carried out and where industrial operations take place or services are provided. A firm may be composed of one or more establishments. For example, a brewery may have several bottling plants and several establishments for distribution. For the purposes of this survey an establishment must make its own financial decisions and have its own financial statements separate from those of the firm. An establishment must also have its own management and control over its payroll.
The whole population, or the universe, covered in the Enterprise Surveys is the non-agricultural private economy. It comprises: all manufacturing sectors according to the ISIC Revision 3.1 group classification (group D), construction sector (group F), services sector (groups G and H), and transport, storage, and communications sector (group I). Note that this population definition excludes the following sectors: financial intermediation (group J), real estate and renting activities (group K, except sub-sector 72, IT, which was added to the population under study), and all public or utilities sectors. Companies with 100% government ownership are not eligible to participate in the Enterprise Surveys.
Sample survey data [ssd]
Two levels of stratification were used in this country: industry and establishment size.
Industry stratification was designed as follows: the universe was stratified as into manufacturing and services industries - Manufacturing (ISIC Rev. 3.1 codes 15 - 37), and Services (ISIC codes 45, 50-52, 55, 60-64, and 72).
For the Lesotho ES, size stratification was defined as follows: small (5 to 19 employees), medium (20 to 99 employees), and large (100 or more employees). Regional stratification did not take place for the Lesotho ES.
In 2009, it was not possible to obtain a single usable frame for Lesotho. Instead frames were obtained from two government branches: the Chamber of Commerce and the Ministry of Trade, Industry, Cooperatives and Marketing. Those frames were merged and duplicates removed to provide the frame used for the survey.
In 2016 ES, the sample frame consisted of listings of firms from two sources: for panel firms the list of 151 firms from the Lesotho 2009 ES was used and for fresh firms (i.e., firms not covered in 2009) firm data from Lesotho Bureau of Statistics Business Register, published in August 2015, was used.
Face-to-face [f2f]
The following survey instruments were used for Lesotho ES: - Manufacturing Module Questionnaire - Services Module Questionnaire
The survey is fielded via manufacturing or services questionnaires in order not to ask questions that are irrelevant to specific types of firms, e.g. a question that relates to production and nonproduction workers should not be asked of a retail firm. In addition to questions that are asked across countries, all surveys are customized and contain country-specific questions. An example of customization would be including tourism-related questions that are asked in certain countries when tourism is an existing or potential sector of economic growth. There is a skip pattern in the Service Module Questionnaire for questions that apply only to retail firms.
Data entry and quality controls are implemented by the contractor and data is delivered to the World Bank in batches (typically 10%, 50% and 100%). These data deliveries are checked for logical consistency, out of range values, skip patterns, and duplicate entries. Problems are flagged by the World Bank and corrected by the implementing contractor through data checks, callbacks, and revisiting establishments.
Survey non-response must be differentiated from item non-response. The former refers to refusals to participate in the survey altogether whereas the latter refers to the refusals to answer some specific questions. Enterprise Surveys suffer from both problems and different strategies were used to address these issues.
Item non-response was addressed by two strategies: a- For sensitive questions that may generate negative reactions from the respondent, such as corruption or tax evasion, enumerators were instructed to collect "Refusal to respond" (-8) as a different option from "Don't know" (-9). b- Establishments with incomplete information were re-contacted in order to complete this information, whenever necessary.
Survey non-response was addressed by maximizing efforts to contact establishments that were initially selected for interview. Attempts were made to contact the establishment for interview at different times/days of the week before a replacement establishment (with similar strata characteristics) was suggested for interview. Survey non-response did occur but substitutions were made in order to potentially achieve strata-specific goals.
Facebook
TwitterAttribution-NonCommercial-NoDerivs 3.0 (CC BY-NC-ND 3.0)https://creativecommons.org/licenses/by-nc-nd/3.0/
License information was derived automatically
The Brazilian Schools Panel database and Brazilian Municipal Education Panel Database combine and simplify 20 years' worth of data from the Brazilian School Census, educational testing, and educational indicators. This report provides an introduction to the data and serves as a road map to their strengths and limitations.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Panel data of daily returns on stocks of tech companies (Google, META, Microsoft) and non-tech companies(Johnson and Johnson, McDonalds, Shell PLC) from 2021 to 2024.
Facebook
TwitterPolygon geometry with attributes displaying the Federal Emergency Management Agency Flood Insurance Rate Map panels in East Baton Rouge Parish, Louisiana.
Facebook
TwitterThis dataset, a product of the Trade Team - Development Research Group, is part of a larger effort in the group to measure the extent of the brain drain as part of the International Migration and Development Program. It measures international skilled migration for the years 1975-2000.
The methodology is explained in: "Tendance de long terme des migrations internationals. Analyse à partir des 6 principaux pays recerveurs", Cécily Defoort.
This data set uses the same methodology as used in the Docquier-Marfouk data set on international migration by educational attainment. The authors use data from 6 key receiving countries in the OECD: Australia, Canada, France, Germany, the UK and the US.
It is estimated that the data represent approximately 77 percent of the world’s migrant population.
Bilateral brain drain rates are estimated based observations for every five years, during the period 1975-2000.
Australia, Canada, France, Germany, UK and US
Aggregate data [agg]
Other [oth]
Facebook
TwitterThe dataset used in this paper is a panel data on the 7 membership countries of SAARC.
Facebook
TwitterPanel data possess several advantages over conventional cross-sectional and time-series data, including their power to isolate the effects of specific actions, treatments, and general policies often at the core of large-scale econometric development studies. While the concept of panel data alone provides the capacity for modelling the complexities of human behaviour, the notion of universal panel data - in which time- and situation-driven variances leading to variations in tools, and thus results, are mitigated - can further enhance exploitation of the richness of panel information. The NPS Universal Panel Questionnaire (UPQ) consists of both survey instruments and datasets, meticulously aligned and engineered with the aim of facilitating the use of and improving access to the wealth of panel data offered by the NPS. The NPS-UPQ provides a consistent and straightforward means of conducting not only user-driven analyses using convenient, standardized tools, but also for monitoring MKUKUTA, FYDP II, and other national level development indicators reported by the NPS.
The design of the NPS-UPQ combines the four completed rounds of the NPS - NPS 2008/09 (R1), NPS 2010/11 (R2), NPS 2012/13 (R3), and NPS 2014/15 (R4) - into pooled, module-specific survey instruments and datasets. The panel survey instruments offer the ease of comparability over time, with modifications and variances easily identifiable as well as those aspects of the questionnaire which have remained identical and offer consistent information. By providing all module-specific data over time within compact, pooled datasets, panel datasets eliminate the need for user-generated merges between rounds and present data in a clear, logical format, increasing both the usability and comprehension of complex data.
Regional coverage
Households
The universe includes all households and individuals in Tanzania with the exception of those residing in military barracks or other institutions.
Sample survey data [ssd]
SAMPLING PROCEDURE While the same sample of respondents was maintained over the first three rounds of the NPS, longitudinal surveys tend to suffer from bias introduced by households leaving the survey over time, i.e. attrition. Although the NPS maintains a highly successful recapture rate (roughly 96% retention at the household level), minimizing the escalation of this selection bias, a refresh of longitudinal cohorts was done for the NPS 2014/15 to ensure proper representativeness of estimates while maintaining a sufficient primary sample to maintain cohesion within panel analysis. A newly completed Population and Housing Census (PHC) in 2012, providing updated population figures along with changes in administrative boundaries, emboldened the opportunity to realign the NPS sample and abate collective bias potentially introduced through attrition.
To maintain the panel concept of the NPS, the sample design for NPS 2014/2015 consisted of a combination of the original NPS sample and a new NPS sample. A nationally representative sub-sample was selected to continue as part of the “Extended Panel” while an entirely new sample, “Refresh Panel”, was selected to represent national and sub-national domains. Similar to the sample in NPS 2008/2009, the sample design for the “Refresh Panel” allows analysis at four primary domains of inference, namely: Dar es Salaam, other urban areas on mainland Tanzania, rural mainland Tanzania, and Zanzibar. This new cohort in NPS 2014/2015 will be maintained and tracked in all future rounds between national censuses.
Face-to-face [f2f]
The format of the NPS-UPQ survey instrument is similar to previously disseminated NPS survey instruments. Each module has a questionnaire and clearly identifies if the module collects information at the individual or household level. Within each module-specific questionnaire of the NPS-UPQ survey instrument, there are five distinct sections, arranged vertically: (1) the UPQ - “U” on the survey instrument, (2) R4, (3), R3, (4) R2, and (5) R1 – the latter 4 sections presenting each questionnaire in its original form at time of its respective dissemination.
The uppermost section of each module’s questionnaire (“U”) represents the model universal panel questionnaire, with questions generated from the comprehensive listing of questions across all four rounds of the NPS and codes generated from the comprehensive collection of codes. The following sections are arranged vertically by round, considering R4 as most recent. While not all rounds will have data reported for each question in the UPQ and not each question will have reports for each of the UPQ codes listed, the NPS-UPQ survey instrument represents the visual, all-inclusive set of information collected by the NPS over time.
The four round-specific sections (R4, R3, R2, R1) are aligned with their UPQ-equivalent question, visually presenting their contribution to compatibility with the UPQ. Each round-specific section includes the original round-specific variable names, response codes and skip patterns (corresponding to their respective round-specific NPS data sets, and despite their variance from other rounds or from the comprehensive UPQ code listing)4.