CodeContests is a competitive programming dataset for machine-learning. This dataset was used when training AlphaCode.
It consists of programming problems, from a variety of sources.
Problems include test cases in the form of paired inputs and outputs, as well as both correct and incorrect human solutions in a variety of languages.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
A cleaned dataset from paperswithcode.com
Last dataset update: July 2023 This is a cleaned up dataset optained from paperswithcode.com through their API service. It represents a set of around 56K carefully categorized papers into 3K tasks and 16 areas. The papers contain arXiv and NIPS IDs as well as title, abstract and other meta information. It can be used for training text classifiers that concentrate on the use of specific AI and ML methods and frameworks.
Contents… See the full description on the dataset page: https://huggingface.co/datasets/J0nasW/paperswithcode.
The 20BN-SOMETHING-SOMETHING V2 dataset is a large collection of labeled video clips that show humans performing pre-defined basic actions with everyday objects. The dataset was created by a large number of crowd workers. It allows machine learning models to develop fine-grained understanding of basic actions that occur in the physical world. It contains 220,847 videos, with 168,913 in the training set, 24,777 in the validation set and 27,157 in the test set. There are 174 labels.
Source
Image Source
The MNIST database (Modified National Institute of Standards and Technology database) is a large collection of handwritten digits. It has a training set of 60,000 examples, and a test set of 10,000 examples. It is a subset of a larger NIST Special Database 3 (digits written by employees of the United States Census Bureau) and Special Database 1 (digits written by high school students) which contain monochrome images of handwritten digits. The digits have been size-normalized and centered in a fixed-size image. The original black and white (bilevel) images from NIST were size normalized to fit in a 20x20 pixel box while preserving their aspect ratio. The resulting images contain grey levels as a result of the anti-aliasing technique used by the normalization algorithm. the images were centered in a 28x28 image by computing the center of mass of the pixels, and translating the image so as to position this point at the center of the 28x28 field.
The ImageNet dataset contains 14,197,122 annotated images according to the WordNet hierarchy. Since 2010 the dataset is used in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC), a benchmark in image classification and object detection. The publicly released dataset contains a set of manually annotated training images. A set of test images is also released, with the manual annotations withheld. ILSVRC annotations fall into one of two categories: (1) image-level annotation of a binary label for the presence or absence of an object class in the image, e.g., “there are cars in this image” but “there are no tigers,” and (2) object-level annotation of a tight bounding box and class label around an object instance in the image, e.g., “there is a screwdriver centered at position (20,25) with width of 50 pixels and height of 30 pixels”. The ImageNet project does not own the copyright of the images, therefore only thumbnails and URLs of images are provided.
Total number of non-empty WordNet synsets: 21841 Total number of images: 14197122 Number of images with bounding box annotations: 1,034,908 Number of synsets with SIFT features: 1000 Number of images with SIFT features: 1.2 million
The COCO (Common Objects in Context) dataset is a large-scale object detection, segmentation, and captioning dataset. It is designed to encourage research on a wide variety of object categories and is commonly used for benchmarking computer vision models. It is an essential dataset for researchers and developers working on object detection, segmentation, and pose estimation tasks.
LIAR is a publicly available dataset for fake news detection. A decade-long of 12.8K manually labeled short statements were collected in various contexts from POLITIFACT.COM, which provides detailed analysis report and links to source documents for each case. This dataset can be used for fact-checking research as well. Notably, this new dataset is an order of magnitude larger than previously largest public fake news datasets of similar type. The LIAR dataset4 includes 12.8K human labeled short statements from POLITIFACT.COM’s API, and each statement is evaluated by a POLITIFACT.COM editor for its truthfulness.
The Malimg Dataset contains 9,339 malware byteplot images from 25 different families.
The Cora dataset consists of 2708 scientific publications classified into one of seven classes. The citation network consists of 5429 links. Each publication in the dataset is described by a 0/1-valued word vector indicating the absence/presence of the corresponding word from the dictionary. The dictionary consists of 1433 unique words.
The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes, with 6000 images per class. There are 50000 training images and 10000 test images. The dataset is divided into five training batches and one test batch, each with 10000 images. The test batch contains exactly 1000 randomly-selected images from each class. The training batches contain the remaining images in random order, but some training batches may contain more images from one class than another. Between them, the training batches contain exactly 5000 images from each class.
The CodeSearchNet Corpus is a large dataset of functions with associated documentation written in Go, Java, JavaScript, PHP, Python, and Ruby from open source projects on GitHub. The CodeSearchNet Corpus includes: * Six million methods overall * Two million of which have associated documentation (docstrings, JavaDoc, and more) * Metadata that indicates the original location (repository or line number, for example) where the data was found
The LOL dataset is composed of 500 low-light and normal-light image pairs and divided into 485 training pairs and 15 testing pairs. The low-light images contain noise produced during the photo capture process. Most of the images are indoor scenes. All the images have a resolution of 400×600.
The ImageNet-A dataset consists of real-world, unmodified, and naturally occurring examples that are misclassified by ResNet models.
Cityscapes is a large-scale database which focuses on semantic understanding of urban street scenes. It provides semantic, instance-wise, and dense pixel annotations for 30 classes grouped into 8 categories (flat surfaces, humans, vehicles, constructions, objects, nature, sky, and void). The dataset consists of around 5000 fine annotated images and 20000 coarse annotated ones. Data was captured in 50 cities during several months, daytimes, and good weather conditions. It was originally recorded as video so the frames were manually selected to have the following features: large number of dynamic objects, varying scene layout, and varying background.
GSM8K is a dataset of 8.5K high quality linguistically diverse grade school math word problems created by human problem writers. The dataset is segmented into 7.5K training problems and 1K test problems. These problems take between 2 and 8 steps to solve, and solutions primarily involve performing a sequence of elementary calculations using basic arithmetic operations (+ − ×÷) to reach the final answer. A bright middle school student should be able to solve every problem. It can be used for multi-step mathematical reasoning.
The APPS dataset consists of problems collected from different open-access coding websites such as Codeforces, Kattis, and more. The APPS benchmark attempts to mirror how humans programmers are evaluated by posing coding problems in unrestricted natural language and evaluating the correctness of solutions. The problems range in difficulty from introductory to collegiate competition level and measure coding ability as well as problem-solving.
The Automated Programming Progress Standard, abbreviated APPS, consists of 10,000 coding problems in total, with 131,836 test cases for checking solutions and 232,444 ground-truth solutions written by humans. Problems can be complicated, as the average length of a problem is 293.2 words. The data are split evenly into training and test sets, with 5,000 problems each. In the test set, every problem has multiple test cases, and the average number of test cases is 21.2. Each test case is specifically designed for the corresponding problem, enabling us to rigorously evaluate program functionality.
The AI2’s Reasoning Challenge (ARC) dataset is a multiple-choice question-answering dataset, containing questions from science exams from grade 3 to grade 9. The dataset is split in two partitions: Easy and Challenge, where the latter partition contains the more difficult questions that require reasoning. Most of the questions have 4 answer choices, with <1% of all the questions having either 3 or 5 answer choices. ARC includes a supporting KB of 14.3M unstructured text passages.
The Large-scale Scene Understanding (LSUN) challenge aims to provide a different benchmark for large-scale scene classification and understanding. The LSUN classification dataset contains 10 scene categories, such as dining room, bedroom, chicken, outdoor church, and so on. For training data, each category contains a huge number of images, ranging from around 120,000 to 3,000,000. The validation data includes 300 images, and the test data has 1000 images for each category.
The Pinterest dataset contains more than 1 million images associated to Pinterest users’ who have “pinned” them.
CodeContests is a competitive programming dataset for machine-learning. This dataset was used when training AlphaCode.
It consists of programming problems, from a variety of sources.
Problems include test cases in the form of paired inputs and outputs, as well as both correct and incorrect human solutions in a variety of languages.