3 datasets found
  1. f

    Spatial Access Priority Mapping (SAPM) with Fishers: A Quantitative GIS...

    • plos.figshare.com
    pdf
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Katherine L. Yates; David S. Schoeman (2023). Spatial Access Priority Mapping (SAPM) with Fishers: A Quantitative GIS Method for Participatory Planning [Dataset]. http://doi.org/10.1371/journal.pone.0068424
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Katherine L. Yates; David S. Schoeman
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Spatial management tools, such as marine spatial planning and marine protected areas, are playing an increasingly important role in attempts to improve marine management and accommodate conflicting needs. Robust data are needed to inform decisions among different planning options, and early inclusion of stakeholder involvement is widely regarded as vital for success. One of the biggest stakeholder groups, and the most likely to be adversely impacted by spatial restrictions, is the fishing community. In order to take their priorities into account, planners need to understand spatial variation in their perceived value of the sea. Here a readily accessible, novel method for quantitatively mapping fishers’ spatial access priorities is presented. Spatial access priority mapping, or SAPM, uses only basic functions of standard spreadsheet and GIS software. Unlike the use of remote-sensing data, SAPM actively engages fishers in participatory mapping, documenting rather than inferring their priorities. By so doing, SAPM also facilitates the gathering of other useful data, such as local ecological knowledge. The method was tested and validated in Northern Ireland, where over 100 fishers participated in a semi-structured questionnaire and mapping exercise. The response rate was excellent, 97%, demonstrating fishers’ willingness to be involved. The resultant maps are easily accessible and instantly informative, providing a very clear visual indication of which areas are most important for the fishers. The maps also provide quantitative data, which can be used to analyse the relative impact of different management options on the fishing industry and can be incorporated into planning software, such as MARXAN, to ensure that conservation goals can be met at minimum negative impact to the industry. This research shows how spatial access priority mapping can facilitate the early engagement of fishers and the ready incorporation of their priorities into the decision-making process in a transparent, quantitative way.

  2. a

    Long Island Sound Quaternary Geology Set

    • ct-deep-gis-open-data-website-ctdeep.hub.arcgis.com
    • gimi9.com
    • +3more
    Updated Oct 23, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Energy & Environmental Protection (2019). Long Island Sound Quaternary Geology Set [Dataset]. https://ct-deep-gis-open-data-website-ctdeep.hub.arcgis.com/maps/6c9cfffad21c46eca249c51e59595fda
    Explore at:
    Dataset updated
    Oct 23, 2019
    Dataset authored and provided by
    Department of Energy & Environmental Protection
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Description

    Connecticut Quaternary Geology Long Island Submerged Marine Fluvial-Estuarine, Channel-Fill Deposits identifies early postglacial, channel-fill deposits submerged in Long Island Sound and Fishers Island Sound. This information appears on Sheet 1 of the The Quaternary Geologic Map of Connecticut and Long Island Sound Basin (Stone and others, 2005). The Connecticut Quaternary Geology digital spatial data combines the information portrayed on the on-land portion of the Quaternary Geologic Map of Connecticut and Long Island Sound Basin (Stone and others 2005) with the information portrayed on its sister map, the Surficial Materials Map of Connecticut (Stone and others, 1992). When used together, these maps provide a three dimensional context for understanding and predicting the internal composition, resource potential and hydrologic character of Connecticut's glacial and postglacial deposits. Both were compiled at 1:24,000 scale, and published at 1:125,000 scale. The Quaternary Geologic Map of Connecticut and Long Island Sound Basin (Stone and others, 2005) portrays the glacial and postglacial deposits of Connecticut (including Long Island Sound) with an emphasis on where and how they were emplaced. Glacial Ice-Laid Deposits (thin till, thick till, and deposits of individual end moraines), Early Postglacial Deposits (Late Wisconsinan to Early Holocene stream terrace and inland dune deposits) and Holocene Postglacial Deposits (alluvium, swamp deposits, marsh deposits, beach and dune deposits, talus, and artificial fill) are differentiated from Glacial Meltwater Deposits. This mapping is based on the concept of systematic northward retreat of the Late Wisconsinan glacier. Meltwater deposits are divided into six depositional system categories (Deposits of Major Ice-Dammed Lakes, Deposits of Major Sediment-Dammed Lakes, Deposits of Related Series of Ice-Dammed Ponds, Deposits of Related Series of Sediment-Dammed Ponds, Deposits of Proximal Meltwater Streams, and Deposits of Distal Meltwater Streams) based on the arrangement and character of the groupings of sedimentary facies (morphosequences). The Surficial Materials Map of Connecticut (Stone and others, 1992) portrays the glacial and postglacial deposits of Connecticut in terms of their aerial extent and subsurface textural relationships. Glacial Ice-Laid Deposits (thin till, thick till, end moraine deposits) and Postglacial Deposits (alluvium, swamp deposits, marsh deposits, beach deposits, talus, and artificial fill) are differentiated from Glacial Meltwater Deposits. The meltwater deposits are further characterized using four texturally-based map units (g = gravel, sg = sand and gravel, s = sand, and f = fines). In many places a single map unit (e.g. sand) is sufficient to describe the entire meltwater section. Where more complex stratigraphic relationships exist, "stacked" map units are used to characterize the subsurface (e.g. sg/s/f - sand and gravel overlying sand overlying fines). Where postglacial deposits overlie meltwater deposits, this relationship is also described (e.g. alluvium overlying sand). Map unit definitions (Surficial Materials Polygon Code definitions, found in the metadata) provide a short description of the inferred depositional environment for each of the glacial meltwater map units. The geologic contacts between till and meltwater deposits coincide on both the Quaternary and Surficial Materials maps, as do the boundaries of polygons that define areas of thick till, alluvium, swamp deposits, marsh deposits, beach and dune deposits, talus, and artificial fill. Within the meltwater deposits, a Quaternary map unit (deposit) may contain several Surficial Materials textural units (akin to facies within a delta, for example). Combining the textural and vertical stacking information from the Surficial Materials map with the orderly portrayal of morphosequence relationships, up and down valley, that can be gleaned from the Quaternary map provides a three dimensional predictive context for relating the geologic setting of Connecticut's glacial meltwater deposits to their behavior as aquifers and/or transmitters of contaminants. Since this data layer is a polygon and line feature representation of the two maps combined, each map unit's depiction and description could provide information as to its aerial extent, subsurface textural characteristics, depositional and paleogeographic settings, and facies composition in a morphosequence context. Therefore, a typical meltwater polygon would have a combination of Quaternary (e.g. Deposit of Major Sediment-Dammed Lake; Glacial Lake Middletown Cromwell Deltaic Deposit) and Surficial Materials (e.g. sand and gravel overlying sand overlying fine) map attributes. Additional polygon features are incorporated to define surface water areas for streams, lakes, ponds, bays, and estuaries greater than 5 acres in size. Line features describe the type of boundary between individual geologic or textural units such as a geologic contact line between two different geologic units or a linear shoreline feature between a textural unit and an adjacent waterbody. The data have been updated to reflect minor changes in map unit name (QUPOLY_COD) for consistency with the 2005 publication of the Quaternary Geologic Map of Connecticut and Long Island Sound Basin. Previously distributed versions of CTQSGEOM were consistent with the 1998 Open-file Report for the same map. It is important to note that this data layer represents only the on-land portion of the Quaternary Geologic Map of Connecticut and Long Island Sound Basin (Stone and others, 2005). The off-shore geologic units are organized in separate data layers (LISQMOR, LISQFAN, LISQLAKE, LISQCHAN, LISQMARD) which can be used in conjunction with this data layer. These Long Island Sound layers have been mapped at 1:80,000 scale using seismic reflection data. The CTQSGEOM data layer should be used as the geologic base for Connecticut Quaternary Geology / Surficial Materials Features (CTQSFEAT) data layer which represents features such as eskers, meltwater channels, spillways, and locations of radio-carbon dated samples.

    Connecticut Quaternary Geology Long Island Submerged Marine Deltaic Deposits identifies early postglacial, marine deltaic deposits submerged in Long Island Sound. This information appears on Sheet 1 of the The Quaternary Geologic Map of Connecticut and Long Island Sound Basin (Stone and others, 2005). The Connecticut Quaternary Geology digital spatial data combines the information portrayed on the on-land portion of the Quaternary Geologic Map of Connecticut and Long Island Sound Basin (Stone and others 2005) with the information portrayed on its sister map, the Surficial Materials Map of Connecticut (Stone and others, 1992). When used together, these maps provide a three dimensional context for understanding and predicting the internal composition, resource potential and hydrologic character of Connecticut's glacial and postglacial deposits. Both were compiled at 1:24,000 scale, and published at 1:125,000 scale. The Quaternary Geologic Map of Connecticut and Long Island Sound Basin (Stone and others, 2005) portrays the glacial and postglacial deposits of Connecticut (including Long Island Sound) with an emphasis on where and how they were emplaced. Glacial Ice-Laid Deposits (thin till, thick till, and deposits of individual end moraines), Early Postglacial Deposits (Late Wisconsinan to Early Holocene stream terrace and inland dune deposits) and Holocene Postglacial Deposits (alluvium, swamp deposits, marsh deposits, beach and dune deposits, talus, and artificial fill) are differentiated from Glacial Meltwater Deposits. This mapping is based on the concept of systematic northward retreat of the Late Wisconsinan glacier. Meltwater deposits are divided into six depositional system categories (Deposits of Major Ice-Dammed Lakes, Deposits of Major Sediment-Dammed Lakes, Deposits of Related Series of Ice-Dammed Ponds, Deposits of Related Series of Sediment-Dammed Ponds, Deposits of Proximal Meltwater Streams, and Deposits of Distal Meltwater Streams) based on the arrangement and character of the groupings of sedimentary facies (morphosequences). The Surficial Materials Map of Connecticut (Stone and others, 1992) portrays the glacial and postglacial deposits of Connecticut in terms of their aerial extent and subsurface textural relationships. Glacial Ice-Laid Deposits (thin till, thick till, end moraine deposits) and Postglacial Deposits (alluvium, swamp deposits, marsh deposits, beach deposits, talus, and artificial fill) are differentiated from Glacial Meltwater Deposits. The meltwater deposits are further characterized using four texturally-based map units (g = gravel, sg = sand and gravel, s = sand, and f = fines). In many places a single map unit (e.g. sand) is sufficient to describe the entire meltwater section. Where more complex stratigraphic relationships exist, "stacked" map units are used to characterize the subsurface (e.g. sg/s/f - sand and gravel overlying sand overlying fines). Where postglacial deposits overlie meltwater deposits, this relationship is also described (e.g. alluvium overlying sand). Map unit definitions (Surficial Materials Polygon Code definitions, found in the metadata) provide a short description of the inferred depositional environment for each of the glacial meltwater map units. The geologic contacts between till and meltwater deposits coincide on both the Quaternary and Surficial Materials maps, as do the boundaries of polygons that define areas of thick till, alluvium, swamp deposits, marsh deposits, beach and dune deposits, talus, and artificial fill. Within the meltwater deposits, a Quaternary map unit (deposit) may contain several Surficial Materials textural units (akin to facies within a delta, for example). Combining the textural and vertical stacking information from the Surficial Materials map with the orderly portrayal of

  3. a

    MPI All Fishing Intensity 2007-2019

    • data-mpi.opendata.arcgis.com
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated Jun 28, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ministry for Primary Industries (2021). MPI All Fishing Intensity 2007-2019 [Dataset]. https://data-mpi.opendata.arcgis.com/maps/c479ab7ca2e1446c8acf0250bf02a44f
    Explore at:
    Dataset updated
    Jun 28, 2021
    Dataset authored and provided by
    Ministry for Primary Industries
    Area covered
    Description

    The distribution of total commercial catch is estimated for all fishing events reported in statutory catch and effort returns for the period 1 October 2007 to 30 September 2019.

    The location of fishing events is reported by either start (or start and end) coordinates (precise to 1 nautical mile) or by large statistical areas. The total catch of all species from each fishing event is spread uniformly over a polygon of space estimated to be occupied by that fishing. Trawl fishing polygons are derived from the length and width of the door-spread for the duration of the tow. The path of each tow is taken as a straight line between start and end coordinates where these are reported, or between start and estimated end coordinates. Where not required to report end coordinates, (as is the case for most inshore trawling) tow end points are derived using the direction of the next tow start position or the direction of the landing point for the last tow of the day.Line fishing is attributed to a circle with the center at the reported start position and a radius of the reported length of line set. Set net fishing is attributed to a circle with the center at the reported start position and radius of 2 nm in accordance with the definition of a single set netting event prescribed in reporting regulations. Jig fishing reports a single nightly position and is assumed to occur within 5 nm of that position. Hand and Pot fishing reports by statistical area, and where available, information on habitat and depth or information supplied by fishers is used to define the parts of each statistical area where each type of fishing is likely to have occurred. In the case of lobster potting and paua diving, an informal map of reef area supplied by the Department of Conservation is used to estimate where this fishing may have occurred.Catch intensity (kg/ha) is mapped to a square kilometre grid for all fishing events and summed over gear types. The data is aggregated into grid squares of between 1 and 2500 km2 as required to give 12-year annual averages of data from at least three permit holders. Catch per unit area values are classified into ten intensity classes.

    MPI has high confidence in the data on catch quantities used to create this data but the spatial distributions of those catches are only approximate and should be used with caution especially at large map scales (maps of small spatial extent). Nevertheless, the aggregation of a large number of fishing events tends to provide consistent patterns that have passed scrutiny when tested with groups of fishers.Grid squares with less than 3 permit holders present have removed in order to confidentialise the data. The data has been approved for public release by the data owner, Team Manager, Fisheries Data Management as permit holders and catch values have been aggregated as part of the confidentialisation process and to align with MPI's commitment to promote open data.Please contact the data owner for any questions in relation to the release of this data (RDM@mpi.govt.nz). The data custodian for this data is the Spatial Intelligence team (Spatial.Intelligence@mpi.govt.nz). This data is also displayed on the MPI website as the commercial fishing intensity map.You can also use the tile layer in your desktop GIS, which is here

  4. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Katherine L. Yates; David S. Schoeman (2023). Spatial Access Priority Mapping (SAPM) with Fishers: A Quantitative GIS Method for Participatory Planning [Dataset]. http://doi.org/10.1371/journal.pone.0068424

Spatial Access Priority Mapping (SAPM) with Fishers: A Quantitative GIS Method for Participatory Planning

Explore at:
34 scholarly articles cite this dataset (View in Google Scholar)
pdfAvailable download formats
Dataset updated
Jun 1, 2023
Dataset provided by
PLOS ONE
Authors
Katherine L. Yates; David S. Schoeman
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Spatial management tools, such as marine spatial planning and marine protected areas, are playing an increasingly important role in attempts to improve marine management and accommodate conflicting needs. Robust data are needed to inform decisions among different planning options, and early inclusion of stakeholder involvement is widely regarded as vital for success. One of the biggest stakeholder groups, and the most likely to be adversely impacted by spatial restrictions, is the fishing community. In order to take their priorities into account, planners need to understand spatial variation in their perceived value of the sea. Here a readily accessible, novel method for quantitatively mapping fishers’ spatial access priorities is presented. Spatial access priority mapping, or SAPM, uses only basic functions of standard spreadsheet and GIS software. Unlike the use of remote-sensing data, SAPM actively engages fishers in participatory mapping, documenting rather than inferring their priorities. By so doing, SAPM also facilitates the gathering of other useful data, such as local ecological knowledge. The method was tested and validated in Northern Ireland, where over 100 fishers participated in a semi-structured questionnaire and mapping exercise. The response rate was excellent, 97%, demonstrating fishers’ willingness to be involved. The resultant maps are easily accessible and instantly informative, providing a very clear visual indication of which areas are most important for the fishers. The maps also provide quantitative data, which can be used to analyse the relative impact of different management options on the fishing industry and can be incorporated into planning software, such as MARXAN, to ensure that conservation goals can be met at minimum negative impact to the industry. This research shows how spatial access priority mapping can facilitate the early engagement of fishers and the ready incorporation of their priorities into the decision-making process in a transparent, quantitative way.

Search
Clear search
Close search
Google apps
Main menu