This dataset includes one file for each of the 51 counties that were collected, as well as a CA_Merged file with the parcels merged into a single file.Note – this data does not include attributes beyond the parcel ID number (PARNO) – that will be provided when available, most likely by the state of California.DownloadA 1.6 GB zipped file geodatabase is available for download - click here.DescriptionA geodatabase with parcel boundaries for 51 (out of 58) counties in the State of California. The original target was to collect data for the close of the 2013 fiscal year. As the collection progressed, it became clear that holding to that time standard was not practical. Out of expediency, the date requirement was relaxed, and the currently available dataset was collected for a majority of the counties. Most of these were distributed with minimal metadata.The table “ParcelInfo” includes the data that the data came into our possession, and our best estimate of the last time the parcel dataset was updated by the original source. Data sets listed as “Downloaded from” were downloaded from a publicly accessible web or FTP site from the county. Other data sets were provided directly to us by the county, though many of them may also be available for direct download. Â These data have been reprojected to California Albers NAD84, but have not been checked for topology, or aligned to county boundaries in any way. Tulare County’s dataset arrived with an undefined projection and was identified as being California State Plane NAD83 (US Feet) and was assigned by ICE as that projection prior to reprojection. Kings County’s dataset was delivered as individual shapefiles for each of the 50 assessor’s books maintained at the county. These were merged to a single feature class prior to importing to the database.The attribute tables were standardized and truncated to include only a PARNO (APN). The format of these fields has been left identical to the original dataset. The Data Interoperablity Extension ETL tool used in this process is included in the zip file. Where provided by the original data sources, metadata for the original data has been maintained. Please note that the attribute table structure changes were made at ICE, UC Davis, not at the original data sources.Parcel Source InformationCountyDateCollecDateCurrenNotesAlameda4/8/20142/13/2014Download from Alamenda CountyAlpine4/22/20141/26/2012Alpine County PlanningAmador5/21/20145/14/2014Amador County Transportation CommissionButte2/24/20141/6/2014Butte County Association of GovernmentsCalaveras5/13/2014Download from Calaveras County, exact date unknown, labelled 2013Contra Costa4/4/20144/4/2014Contra Costa Assessor’s OfficeDel Norte5/13/20145/8/2014Download from Del Norte CountyEl Dorado4/4/20144/3/2014El Dorado County AssessorFresno4/4/20144/4/2014Fresno County AssessorGlenn4/4/201410/13/2013Glenn County Public WorksHumboldt6/3/20144/25/2014Humbodt County AssessorImperial8/4/20147/18/2014Imperial County AssessorKern3/26/20143/16/2014Kern County AssessorKings4/21/20144/14/2014Kings CountyLake7/15/20147/19/2013Lake CountyLassen7/24/20147/24/2014Lassen CountyLos Angeles10/22/201410/9/2014Los Angeles CountyMadera7/28/2014Madera County, Date Current unclear likely 7/2014Marin5/13/20145/1/2014Marin County AssessorMendocino4/21/20143/27/2014Mendocino CountyMerced7/15/20141/16/2014Merced CountyMono4/7/20144/7/2014Mono CountyMonterey5/13/201410/31/2013Download from Monterey CountyNapa4/22/20144/22/2014Napa CountyNevada10/29/201410/26/2014Download from Nevada CountyOrange3/18/20143/18/2014Download from Orange CountyPlacer7/2/20147/2/2014Placer CountyRiverside3/17/20141/6/2014Download from Riverside CountySacramento4/2/20143/12/2014Sacramento CountySan Benito5/12/20144/30/2014San Benito CountySan Bernardino2/12/20142/12/2014Download from San Bernardino CountySan Diego4/18/20144/18/2014San Diego CountySan Francisco5/23/20145/23/2014Download from San Francisco CountySan Joaquin10/13/20147/1/2013San Joaquin County Fiscal year close dataSan Mateo2/12/20142/12/2014San Mateo CountySanta Barbara4/22/20149/17/2013Santa Barbara CountySanta Clara9/5/20143/24/2014Santa Clara County, Required a PRA requestSanta Cruz2/13/201411/13/2014Download from Santa Cruz CountyShasta4/23/20141/6/2014Download from Shasta CountySierra7/15/20141/20/2014Sierra CountySolano4/24/2014Download from Solano Couty, Boundaries appear to be from 2013Sonoma5/19/20144/3/2014Download from Sonoma CountyStanislaus4/23/20141/22/2014Download from Stanislaus CountySutter11/5/201410/14/2014Download from Sutter CountyTehama1/16/201512/9/2014Tehama CountyTrinity12/8/20141/20/2010Download from Trinity County, Note age of data 2010Tulare7/1/20146/24/2014Tulare CountyTuolumne5/13/201410/9/2013Download from Tuolumne CountyVentura11/4/20146/18/2014Download from Ventura CountyYolo11/4/20149/10/2014Download from Yolo CountyYuba11/12/201412/17/2013Download from Yuba County
Vector polygon map data of property parcels from Fresno County, California containing 202,076 features.
Property parcel GIS map data consists of detailed information about individual land parcels, including their boundaries, ownership details, and geographic coordinates.
Property parcel data can be used to analyze and visualize land-related information for purposes such as real estate assessment, urban planning, or environmental management.
Available for viewing and sharing as a map in a Koordinates map viewer. This data is also available for export to DWG for CAD, PDF, KML, CSV, and GIS data formats, including Shapefile, MapInfo, and Geodatabase.
{{description}}
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Parcel Viewer makes searching for King County parcel information easy. You can search by address, search by parcel number, or you can just zoom in on the map and click on a parcel. Once a parcel is selected, you will get direct links to the King County Assessor’s eReal Property report and the Districts and Development Conditions report.
Vector polygon map data of property parcels from Placer County, California containing 178,401 features.
Property parcel GIS map data consists of detailed information about individual land parcels, including their boundaries, ownership details, and geographic coordinates.
Property parcel data can be used to analyze and visualize land-related information for purposes such as real estate assessment, urban planning, or environmental management.
Available for viewing and sharing as a map in a Koordinates map viewer. This data is also available for export to DWG for CAD, PDF, KML, CSV, and GIS data formats, including Shapefile, MapInfo, and Geodatabase.
This is the official Mariposa County Assessor's Parcel Map GIS layer. This GIS data provides the parcel geometry, APN (Assessor's Parcel Number, e.g. 013-116-007-000) and Physical Addresses for all legal properties in Mariposa County. Data is delivered as-is and under no circumstances shall Mariposa County be held liable from any determinations made based on said data.This GIS data is automatically updated on a daily basis and 1 business day behind the most recent Assessor's Office data export. For example, if the data is listed as updated on Jan 1, then the data is from Dec 31.This layer consists of 2 layers actually. The first layer is the geometry with minimal attribute data. The second layer is a table with address data for each parcel. Using a GIS program like ArcGIS Pro a join can be established using the APN and the common
Do not download this parcel map service as a shapefile - you will get an error. To download a zipped file geodatabase, go to this Hub item: https://egis-lacounty.hub.arcgis.com/datasets/parcelsThis map service provides information about properties and parcel boundaries in the County of Los Angeles. The Office of the Assessor (click here for their website) maintains assessment records of real and personal property in the County of Los Angeles, as well as a GIS Tax Parcel Base Map. The Assessor has recently changed its policies and will be releasing a number of datasets publicly over time. They will be available here, as well as on the County’s Open Data Portal (click here to learn more). To access the Property Assessment Information System, where you can search for properties and see maps and imagery, go to the PAIS website.All inquiries should be directed to the Mapping & GIS Services Section, LA County Office of the Assessor at gisinfo@assessor.lacounty.gov
In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Offshore of Point Conception map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Offshore of Point Conception map area data layers. Data layers are symbolized as shown on the associated map sheets.
{{description}}
The following data is provided as a public service, for informational purposes only. This data should not be construed as legal advice. Users of this data should independently verify its determinations prior to taking any action under the California Environmental Quality Act (CEQA) or any other law. The State of California makes no warranties as to accuracy of this data.
This zoning data was collected from 535 of California"s 539 jurisdictions. An effort was made to contact each jurisdiction in the state and request zoning data in whatever form available. In the event that zoning maps were not available in a GIS format, maps were converted from PDF or image maps using geo-referencing techniques and then transposing map information to parcel geometries sourced from county assessor data. Collection efforts began in late 2021 and were mostly finished in late 2022. Some data has been updated in 2023. Sources and dates are documented in the "Source" and "Date" columns with more detail available in the accompanying sources table.
Individual zoning maps were combined for this statewide dataset. As part of the aggregation process, contiguous areas with identical zone codes, within jurisdictions, were merged or dissolved. Some features representing roads with right-of-way or Null zone designations were removed from this data. Features less than 4 square meters in area were also removed.
Vector polygon map data of property parcels from Shasta County, California containing 101,781 features.
Property parcel GIS map data consists of detailed information about individual land parcels, including their boundaries, ownership details, and geographic coordinates.
Property parcel data can be used to analyze and visualize land-related information for purposes such as real estate assessment, urban planning, or environmental management.
Available for viewing and sharing as a map in a Koordinates map viewer. This data is also available for export to DWG for CAD, PDF, KML, CSV, and GIS data formats, including Shapefile, MapInfo, and Geodatabase.
Geospatial data about Yolo County, California Parcels. Export to CAD, GIS, PDF, CSV and access via API.
Geospatial data about Amador County, California Parcels. Export to CAD, GIS, PDF, CSV and access via API.
In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Offshore of Ventura map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Offshore of Ventura map area data layers. Data layers are symbolized as shown on the associated map sheets.
{{description}}
In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Hueneme Canyon map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Hueneme Canyon map area data layers. Data layers are symbolized as shown on the associated map sheets.
California State Lands Commission Offshore Oil Leases in the vicinity of Santa Barbara, Ventura, and Orange County.The polygons in this layer show the position of Offshore Oil Leases as documented by former State Lands Senior Boundary Determination Officer, Cris N. Perez and as reviewed and updated by GIS and Boundary staff.Background: This layer represents active offshore oil and gas agreements in California waters, which are what remain of the more than 60 originally issued. These leases were issued prior to the catastrophic 1969 oil spill from Platform A in federal waters off Santa Barbara County, and some predate the formation of the Commission. Between 2010 and 2014, the bulk of the approximately $300 million generated annually for the state's General Fund from oil and gas agreements was from these offshore leases.In 1921, the Legislature created the first tidelands oil and gas leasing program. Between 1921 and 1929, approximately 100 permits and leases were issued and over 850 wells were drilled in Santa Barbara and Ventura Counties. In 1929, the Legislature prohibited any new leases or permits. In 1933, however, the prohibition was partially lifted in response to an alleged theft of tidelands oil in Huntington Beach. It wasn't until 1938, and again in 1955, that the Legislature would allow new offshore oil and gas leasing. Except for limited circumstances, the Legislature has consistently placed limits on the areas that the Commission may offer for lease and in 1994, placed the entirety of California's coast off-limits to new oil and gas leases. Layer Creation Process:In 1997 Cris N. Perez, Senior Boundary Determination Officer of the Southern California Section of the State Lands Division, prepared a report on the Commission’s Offshore Oil Leases to:A. Show the position of Offshore Oil Leases. B. Produce a hard copy of 1927 NAD Coordinates for each lease. C. Discuss any problems evident after plotting the leases.Below are some of the details Cris included in the report:I have plotted the leases that were supplied to me by the Long Beach Office and computed 1927 NAD California Coordinates for each one. Where the Mean High Tide Line (MHTL) was called for and not described in the deed, I have plotted the California State Lands Commission CB Map Coordinates, from the actual field surveys of the Mean High Water Line and referenced them wherever used. Where the MHTL was called for and not described in the deed and no California State Lands Coordinates were available, I digitized the maps entitled, “Map of the Offshore Ownership Boundary of the State of California Drawn pursuant to the Supplemental Decree of the U.S. Supreme Court in the U.S. V. California, 382 U.S. 448 (1966), Scale 1:10000 Sheets 1-161.” The shore line depicted on these maps is the Mean Lower Low Water (MLLW) Line as shown on the Hydrographic or Topographic Sheets for the coastline. If a better fit is needed, a field survey to position this line will need to be done.The coordinates listed in Cris’ report were retrieved through Optical Character Recognition (OCR) and used to produce GIS polygons using Esri ArcGIS software. Coordinates were checked after the OCR process when producing the polygons in ArcMap to ensure accuracy. Original Coordinate systems (NAD 1927 California State Plane Zones 5 and 6) were used initially, with each zone being reprojected to NAD 83 Teale Albers Meters and merged after the review process.While Cris’ expertise and documentation were relied upon to produce this GIS Layer, certain polygons were reviewed further for any potential updates since Cris’ document and for any unusual geometry. Boundary Determination Officers addressed these issues and plotted leases currently listed as active, but not originally in Cris’ report. On December 24, 2014, the SLA boundary offshore of California was fixed (permanently immobilized) by a decree issued by the U.S. Supreme Court United States v. California, 135 S. Ct. 563 (2014). Offshore leases were clipped so as not to exceed the limits of this fixed boundary. Lease Notes:PRC 1482The “lease area” for this lease is based on the Compensatory Royalty Agreement dated 1-21-1955 as found on the CSLC Insider. The document spells out the distinction between “leased lands” and “state lands”. The leased lands are between two private companies and the agreement only makes a claim to the State’s interest as those lands as identified and surveyed per the map Tract 893, Bk 27 Pg 24. The map shows the State’s interest as being confined to the meanders of three sloughs, one of which is severed from the bay (Anaheim) by a Tideland sale. It should be noted that the actual sovereign tide and or submerged lands for this area is all those historic tide and submerged lands minus and valid tide land sales patents. The three parcels identified were also compared to what the Orange County GIS land records system has for their parcels. Shapefiles were downloaded from that site as well as two centerline monuments for 2 roads covered by the Tract 893. It corresponded well, so their GIS linework was held and clipped or extended to make a parcel.MJF Boundary Determination Officer 12/19/16PRC 3455The “lease area” for this lease is based on the Tract No. 2 Agreement, Long Beach Unit, Wilmington Oil Field, CA dated 4/01/1965 and found on the CSLC insider (also recorded March 12, 1965 in Book M 1799, Page 801).Unit Operating Agreement, Long Beach Unit recorded March 12, 1965 in Book M 1799 page 599.“City’s Portion of the Offshore Area” shall mean the undeveloped portion of the Long Beach tidelands as defined in Section 1(f) of Chapter 138, and includes Tract No. 1”“State’s Portion of the Offshore Area” shall mean that portion of the Alamitos Beach Park Lands, as defined in Chapter 138, included within the Unit Area and includes Tract No. 2.”“Alamitos Beach Park Lands” means those tidelands and submerged lands, whether filled or unfilled, described in that certain Judgment After Remittitur in The People of the State of California v. City of Long Beach, Case No. 683824 in the Superior Court of the State of California for the County of Los Angeles, dated May 8, 1962, and entered on May 15, 1962 in Judgment Book 4481, at Page 76, of the Official Records of the above entitled court”*The description for Tract 2 has an EXCEPTING (statement) “therefrom that portion lying Southerly of the Southerly line of the Boundary of Subsidence Area, as shown on Long Beach Harbor Department {LBHD} Drawing No. D-98. This map could not be found in records nor via a PRA request to the LBHD directly. Some maps were located that show the extents of subsidence in this area being approximately 700 feet waterward of the MHTL as determined by SCC 683824. Although the “EXCEPTING” statement appears to exclude most of what would seem like the offshore area (out to 3 nautical miles from the MHTL which is different than the actual CA offshore boundary measured from MLLW) the 1964, ch 138 grant (pg25) seems to reference the lands lying seaward of that MHTL and ”westerly of the easterly boundary of the undeveloped portion of the Long Beach tidelands, the latter of which is the same boundary (NW) of tract 2. This appears to then indicate that the “EXCEPTING” area is not part of the Lands Granted to City of Long Beach and appears to indicate that this portion might be then the “State’s Portion of the Offshore Area” as referenced in the Grant and the Unit Operating Agreement. Section “f” in the CSLC insider document (pg 9) defines the Contract Lands: means Tract No. 2 as described in Exhibit “A” to the Unit Agreement, and as shown on Exhibit “B” to the Unit Agreement, together with all other lands within the State’s Portion of the Offshore Area.Linework has been plotted in accordance with the methods used to produce this layer, with record lines rotated to those as listed in the descriptions. The main boundaries being the MHTL(north/northeast) that appears to be fixed for most of the area (projected to the city boundary on the east/southeast); 3 nautical miles from said MHTL on the south/southwest; and the prolongation of the NWly line of Block 50 of Alamitos Bay Tract.MJF Boundary Determination Officer 12-27-16PRC 4736The “lease area” for this lease is based on the Oil and Gas Lease and Agreement as found on the CSLC insider and recorded August 17, 1973 in BK 10855 PG 432 Official Records, Orange County. The State’s Mineral Interests are confined to Parcels “B-1” and “B-2” and are referred to as “State Mineral Lands” comprising 70.00 Acres. The lessee each has a right to certain uses including but not limited to usage of utility corridors, 110 foot radius parcels surrounding well-sites and roads. The State also has access to those same roads per this agreement/lease. Those uses are allowed in what are termed “State Lands”-Parcel E and “Leased Lands” which are defined as the “South Bolsa Lease Area”-Parcel C (2 parcels) and “North Bolsa Lease Area”-Parcel D. The “State Lands”-Parcel E are actually 3 parcels, 2 of which are within road right-of-ways. MJF Boundary Determination Officer 12-28-16
This polygon shapefile depicts boundaries of parcels over which the County of Solano, California held authority in 2013. A Parcel is a piece of real property under a defined ownership, or it can be a lot in a subdivision. County governments administer and legislate through the creation of and maintenance of land records that are associated with a Parcel of land. Thus the Parcel is often the vital administrative unit of local government. Parcel maps must meet the requirements of the General Plan and all applicable laws and ordinances. Parcel maps are alternately called tax maps, plat maps, plot maps and assessor maps. This dataset includes Active Parcel Numbers (APNs). This layer is part of a collection of GIS data produced by Solano County, California.
The Statewide Property Inventory (SPI) is a detailed inventory of the State's real property assets including land, structures/improvements, leased space and State-owned space leased to others. This website provides summary-level information from the SPI.Included in the information provided are properties which have been declared surplus by the California State Legislature. Some of these properties are currently for sale by the Department of General Services.The Department of General Services - Real Estate Services Division makes every effort to ensure the accuracy and completeness of the information presented, but disclaims liability for omissions or errors in the contents of this data set.Original AGOL Item owned by DGS is located here.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset was updated April, 2024.
This ownership dataset was generated primarily from CPAD data, which already tracks the majority of ownership information in California. CPAD is utilized without any snapping or clipping to FRA/SRA/LRA. CPAD has some important data gaps, so additional data sources are used to supplement the CPAD data. Currently this includes the most currently available data from BIA, DOD, and FWS. Additional sources may be added in subsequent versions. Decision rules were developed to identify priority layers in areas of overlap.
Starting in 2022, the ownership dataset was compiled using a new methodology. Previous versions attempted to match federal ownership boundaries to the FRA footprint, and used a manual process for checking and tracking Federal ownership changes within the FRA, with CPAD ownership information only being used for SRA and LRA lands. The manual portion of that process was proving difficult to maintain, and the new method (described below) was developed in order to decrease the manual workload, and increase accountability by using an automated process by which any final ownership designation could be traced back to a specific dataset.
The current process for compiling the data sources includes:
* Clipping input datasets to the California boundary
* Filtering the FWS data on the Primary Interest field to exclude lands that are managed by but not owned by FWS (ex: Leases, Easements, etc)
* Supplementing the BIA Pacific Region Surface Trust lands data with the Western Region portion of the LAR dataset which extends into California.
* Filtering the BIA data on the Trust Status field to exclude areas that represent mineral rights only.
* Filtering the CPAD data on the Ownership Level field to exclude areas that are Privately owned (ex: HOAs)
* In the case of overlap, sources were prioritized as follows: FWS > BIA > CPAD > DOD
* As an exception to the above, DOD lands on FRA which overlapped with CPAD lands that were incorrectly coded as non-Federal were treated as an override, such that the DOD designation could win out over CPAD.
In addition to this ownership dataset, a supplemental _source dataset is available which designates the source that was used to determine the ownership in this dataset.
Data Sources:
* GreenInfo Network's California Protected Areas Database (CPAD2023a). https://www.calands.org/cpad/; https://www.calands.org/wp-content/uploads/2023/06/CPAD-2023a-Database-Manual.pdf
* US Fish and Wildlife Service FWSInterest dataset (updated December, 2023). https://gis-fws.opendata.arcgis.com/datasets/9c49bd03b8dc4b9188a8c84062792cff_0/explore
* Department of Defense Military Bases dataset (updated September 2023) https://catalog.data.gov/dataset/military-bases
* Bureau of Indian Affairs, Pacific Region, Surface Trust and Pacific Region Office (PRO) land boundaries data (2023) via John Mosley John.Mosley@bia.gov
* Bureau of Indian Affairs, Land Area Representations (LAR) and BIA Regions datasets (updated Oct 2019) https://biamaps.doi.gov/bogs/datadownload.html
Data Gaps & Changes:
Known gaps include several BOR, ACE and Navy lands which were not included in CPAD nor the DOD MIRTA dataset. Our hope for future versions is to refine the process by pulling in additional data sources to fill in some of those data gaps. Additionally, any feedback received about missing or inaccurate data can be taken back to the appropriate source data where appropriate, so fixes can occur in the source data, instead of just in this dataset.
24_1: Input datasets this year included numerous changes since the previous version, particularly the CPAD and DOD inputs. Of particular note was the re-addition of Camp Pendleton to the DOD input dataset, which is reflected in this version of the ownership
This dataset includes one file for each of the 51 counties that were collected, as well as a CA_Merged file with the parcels merged into a single file.Note – this data does not include attributes beyond the parcel ID number (PARNO) – that will be provided when available, most likely by the state of California.DownloadA 1.6 GB zipped file geodatabase is available for download - click here.DescriptionA geodatabase with parcel boundaries for 51 (out of 58) counties in the State of California. The original target was to collect data for the close of the 2013 fiscal year. As the collection progressed, it became clear that holding to that time standard was not practical. Out of expediency, the date requirement was relaxed, and the currently available dataset was collected for a majority of the counties. Most of these were distributed with minimal metadata.The table “ParcelInfo” includes the data that the data came into our possession, and our best estimate of the last time the parcel dataset was updated by the original source. Data sets listed as “Downloaded from” were downloaded from a publicly accessible web or FTP site from the county. Other data sets were provided directly to us by the county, though many of them may also be available for direct download. Â These data have been reprojected to California Albers NAD84, but have not been checked for topology, or aligned to county boundaries in any way. Tulare County’s dataset arrived with an undefined projection and was identified as being California State Plane NAD83 (US Feet) and was assigned by ICE as that projection prior to reprojection. Kings County’s dataset was delivered as individual shapefiles for each of the 50 assessor’s books maintained at the county. These were merged to a single feature class prior to importing to the database.The attribute tables were standardized and truncated to include only a PARNO (APN). The format of these fields has been left identical to the original dataset. The Data Interoperablity Extension ETL tool used in this process is included in the zip file. Where provided by the original data sources, metadata for the original data has been maintained. Please note that the attribute table structure changes were made at ICE, UC Davis, not at the original data sources.Parcel Source InformationCountyDateCollecDateCurrenNotesAlameda4/8/20142/13/2014Download from Alamenda CountyAlpine4/22/20141/26/2012Alpine County PlanningAmador5/21/20145/14/2014Amador County Transportation CommissionButte2/24/20141/6/2014Butte County Association of GovernmentsCalaveras5/13/2014Download from Calaveras County, exact date unknown, labelled 2013Contra Costa4/4/20144/4/2014Contra Costa Assessor’s OfficeDel Norte5/13/20145/8/2014Download from Del Norte CountyEl Dorado4/4/20144/3/2014El Dorado County AssessorFresno4/4/20144/4/2014Fresno County AssessorGlenn4/4/201410/13/2013Glenn County Public WorksHumboldt6/3/20144/25/2014Humbodt County AssessorImperial8/4/20147/18/2014Imperial County AssessorKern3/26/20143/16/2014Kern County AssessorKings4/21/20144/14/2014Kings CountyLake7/15/20147/19/2013Lake CountyLassen7/24/20147/24/2014Lassen CountyLos Angeles10/22/201410/9/2014Los Angeles CountyMadera7/28/2014Madera County, Date Current unclear likely 7/2014Marin5/13/20145/1/2014Marin County AssessorMendocino4/21/20143/27/2014Mendocino CountyMerced7/15/20141/16/2014Merced CountyMono4/7/20144/7/2014Mono CountyMonterey5/13/201410/31/2013Download from Monterey CountyNapa4/22/20144/22/2014Napa CountyNevada10/29/201410/26/2014Download from Nevada CountyOrange3/18/20143/18/2014Download from Orange CountyPlacer7/2/20147/2/2014Placer CountyRiverside3/17/20141/6/2014Download from Riverside CountySacramento4/2/20143/12/2014Sacramento CountySan Benito5/12/20144/30/2014San Benito CountySan Bernardino2/12/20142/12/2014Download from San Bernardino CountySan Diego4/18/20144/18/2014San Diego CountySan Francisco5/23/20145/23/2014Download from San Francisco CountySan Joaquin10/13/20147/1/2013San Joaquin County Fiscal year close dataSan Mateo2/12/20142/12/2014San Mateo CountySanta Barbara4/22/20149/17/2013Santa Barbara CountySanta Clara9/5/20143/24/2014Santa Clara County, Required a PRA requestSanta Cruz2/13/201411/13/2014Download from Santa Cruz CountyShasta4/23/20141/6/2014Download from Shasta CountySierra7/15/20141/20/2014Sierra CountySolano4/24/2014Download from Solano Couty, Boundaries appear to be from 2013Sonoma5/19/20144/3/2014Download from Sonoma CountyStanislaus4/23/20141/22/2014Download from Stanislaus CountySutter11/5/201410/14/2014Download from Sutter CountyTehama1/16/201512/9/2014Tehama CountyTrinity12/8/20141/20/2010Download from Trinity County, Note age of data 2010Tulare7/1/20146/24/2014Tulare CountyTuolumne5/13/201410/9/2013Download from Tuolumne CountyVentura11/4/20146/18/2014Download from Ventura CountyYolo11/4/20149/10/2014Download from Yolo CountyYuba11/12/201412/17/2013Download from Yuba County