https://academictorrents.com/nolicensespecifiedhttps://academictorrents.com/nolicensespecified
Trip record data from the Taxi and Limousine Commission () from January 2009-December 2016 was consolidated and brought into a consistent Parquet format by Ravi Shekhar
This data provides results from field analyses, from the California Environmental Data Exchange Network (CEDEN). The data set contains two provisionally assigned values (“DataQuality” and “DataQualityIndicator”) to help users interpret the data quality metadata provided with the associated result. Due to file size limitations, the data has been split into individual resources by year. The entire dataset can also be downloaded in bulk using the zip files on this page (in csv format or parquet format), and developers can also use the API associated with each year's dataset to access the data. Example R code using the API to access data across all years can be found here. Users who want to manually download more specific subsets of the data can also use the CEDEN query tool, at: https://ceden.waterboards.ca.gov/AdvancedQueryTool
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This repository contains the two semantically enriched trajectory datasets introduced in the CIKM Resource Paper "A Semantically Enriched Mobility Dataset with Contextual and Social Dimensions", by Chiara Pugliese (CNR-IIT), Francesco Lettich (CNR-ISTI), Guido Rocchietti (CNR-ISTI), Chiara Renso (CNR-ISTI), and Fabio Pinelli (IMT Lucca, CNR-ISTI).
The two datasets were generated with an open source pipeline based on the Jupyter notebooks published in the GitHub repository behind our resource paper, and our MAT-Builder system. Overall, our pipeline first generates the files that we provide in the [paris|nyc]_input_matbuilder.zip archives; the files are then passed as input to the MAT-Builder system, which ultimately generates the two semantically enriched trajectory datasets for Paris and New York City, both in tabular and RDF formats. For more details on the input and output data, please see the sections below.
The [paris|nyc]_input_matbuilder.zip archives contain the data sources we used with the MAT-Builder system to semantically enrich raw preprocessed trajectories. More specifically, the archives contain the following files:
The [paris|nyc]_output_tabular.zip zip archives contain the output files generated by MAT-Builder that express the semantically enriched Paris and New York City datasets in tabular format. More specifically, they contain the following files:
There is then a second set of columns which represents the characteristics of the POI that has been associated with a stop. The relevant ones are:
Data collected for marine benthic infauna, freshwater benthic macroinvertebrate (BMI), algae, bacteria and diatom taxonomic analyses, from the California Environmental Data Exchange Network (CEDEN). Note bacteria single species concentrations are stored within the chemistry template, whereas abundance bacteria are stored within this set. Each record represents a result from a specific event location for a single organism in a single sample.
The data set contains two provisionally assigned values (“DataQuality” and “DataQualityIndicator”) to help users interpret the data quality metadata provided with the associated result.
Zip files are provided for bulk data downloads (in csv or parquet file format), and developers can use the API associated with the "CEDEN Benthic Data" (csv) resource to access the data.
Users who want to manually download more specific subsets of the data can also use the CEDEN Query Tool, which provides access to the same data presented here, but allows for interactive data filtering.
This data provides results from field analyses, from the California Environmental Data Exchange Network (CEDEN). The data set contains two provisionally assigned values (“DataQuality” and “DataQualityIndicator”) to help users interpret the data quality metadata provided with the associated result.
Due to file size limitations, the data has been split into individual resources by year. The entire dataset can also be downloaded in bulk using the zip files on this page (in csv format or parquet format), and developers can also use the API associated with each year's dataset to access the data.
Users who want to manually download more specific subsets of the data can also use the CEDEN Query Tool, which provides access to the same data presented here, but allows for interactive data filtering.
Dataset Summary The DataSeeds.AI Sample Dataset (DSD) is a high-fidelity, human-curated computer vision-ready dataset comprised of 7,772 peer-ranked, fully annotated photographic images, 350,000+ words of descriptive text, and comprehensive metadata. While the DSD is being released under an open source license, a sister dataset of over 10,000 fully annotated and segmented images is available for immediate commercial licensing, and the broader GuruShots ecosystem contains over 100 million images in its catalog.
Each image includes multi-tier human annotations and semantic segmentation masks. Generously contributed to the community by the GuruShots photography platform, where users engage in themed competitions, the DSD uniquely captures aesthetic preference signals and high-quality technical metadata (EXIF) across an expansive diversity of photographic styles, camera types, and subject matter. The dataset is optimized for fine-tuning and evaluating multimodal vision-language models, especially in scene description and stylistic comprehension tasks.
Technical Report - Peer-Ranked Precision: Creating a Foundational Dataset for Fine-Tuning Vision Models from DataSeeds' Annotated Imagery Github Repo - Access the complete weights and code which were used to evaluate the DSD -- https://github.com/DataSeeds-ai/DSD-finetune-blip-llava This dataset is ready for commercial/non-commercial use. Dataset Structure Size: 7,772 images (7,010 train, 762 validation) Format: Apache Parquet files for metadata, with images in JPG format Total Size: ~4.1GB Languages: English (annotations) Annotation Quality: All annotations were verified through a multi-tier human-in-the-loop process
This dataset is made available under Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). See LICENSE.pdf for details.
Dataset description
Parquet file, with:
The file is indexed on [participant]_[month], such that 34_12 means month 12 from participant 34. All participant IDs have been replaced with randomly generated integers and the conversion table deleted.
Column names and explanations are included as a separate tab-delimited file. Detailed descriptions of feature engineering are available from the linked publications.
File contains aggregated, derived feature matrix describing person-generated health data (PGHD) captured as part of the DiSCover Project (https://clinicaltrials.gov/ct2/show/NCT03421223). This matrix focuses on individual changes in depression status over time, as measured by PHQ-9.
The DiSCover Project is a 1-year long longitudinal study consisting of 10,036 individuals in the United States, who wore consumer-grade wearable devices throughout the study and completed monthly surveys about their mental health and/or lifestyle changes, between January 2018 and January 2020.
The data subset used in this work comprises the following:
From these input sources we define a range of input features, both static (defined once, remain constant for all samples from a given participant throughout the study, e.g. demographic features) and dynamic (varying with time for a given participant, e.g. behavioral features derived from consumer-grade wearables).
The dataset contains a total of 35,694 rows for each month of data collection from the participants. We can generate 3-month long, non-overlapping, independent samples to capture changes in depression status over time with PGHD. We use the notation ‘SM0’ (sample month 0), ‘SM1’, ‘SM2’ and ‘SM3’ to refer to relative time points within each sample. Each 3-month sample consists of: PHQ-9 survey responses at SM0 and SM3, one set of screener survey responses, LMC survey responses at SM3 (as well as SM1, SM2, if available), and wearable PGHD for SM3 (and SM1, SM2, if available). The wearable PGHD includes data collected from 8 to 14 days prior to the PHQ-9 label generation date at SM3. Doing this generates a total of 10,866 samples from 4,036 unique participants.
Mathematical Expressions Dataset
Dataset Description
This dataset contains images of mathematical expressions along with their corresponding LaTeX code. Images will automatically be displayed as thumbnails in Hugging Face's Data Studio.
Dataset Summary
Number of files: 1 Parquet files Estimated number of samples: 12,312 Format: Parquet optimized for Hugging Face Features configured for thumbnails: ✅ Columns: latex: LaTeX code of the mathematical expression… See the full description on the dataset page: https://huggingface.co/datasets/ToniDO/TeXtract_augmented_v1.
Overview
The CKW Group is a distribution system operator that supplies more than 200,000 end customers in Central Switzerland. Since October 2022, CKW publishes anonymised and aggregated data from smart meters that measure electricity consumption in canton Lucerne. This unique dataset is accessible in the ckw.ch/opendata platform.
Data set A - anonimised smart meter data
Data set B - aggregated smart meter data
Contents of this data set
This data set contains a small sample of the CKW data set A sorted per smart meter ID, stored as parquet files named with the id field of the corresponding smart meter anonymised data. Example: 027ceb7b8fd77a4b11b3b497e9f0b174.parquet
The orginal CKW data is available for download at https://open.data.axpo.com/%24web/index.html#dataset-a as a (gzip-compressed) csv files, which are are split into one file per calendar month. The columns in the files csv are:
id: the anonymized counter ID (text)
timestamp: the UTC time at the beginning of a 15-minute time window to which the consumption refers (ISO-8601 timestamp)
value_kwh: the consumption in kWh in the time window under consideration (float)
In this archive, data from:
| Dateigrösse | Export Datum | Zeitraum | Dateiname || ----------- | ------------ | -------- | --------- || 4.2GiB | 2024-04-20 | 202402 | ckw_opendata_smartmeter_dataset_a_202402.csv.gz || 4.5GiB | 2024-03-21 | 202401 | ckw_opendata_smartmeter_dataset_a_202401.csv.gz || 4.5GiB | 2024-02-20 | 202312 | ckw_opendata_smartmeter_dataset_a_202312.csv.gz || 4.4GiB | 2024-01-20 | 202311 | ckw_opendata_smartmeter_dataset_a_202311.csv.gz || 4.5GiB | 2023-12-20 | 202310 | ckw_opendata_smartmeter_dataset_a_202310.csv.gz || 4.4GiB | 2023-11-20 | 202309 | ckw_opendata_smartmeter_dataset_a_202309.csv.gz || 4.5GiB | 2023-10-20 | 202308 | ckw_opendata_smartmeter_dataset_a_202308.csv.gz || 4.6GiB | 2023-09-20 | 202307 | ckw_opendata_smartmeter_dataset_a_202307.csv.gz || 4.4GiB | 2023-08-20 | 202306 | ckw_opendata_smartmeter_dataset_a_202306.csv.gz || 4.6GiB | 2023-07-20 | 202305 | ckw_opendata_smartmeter_dataset_a_202305.csv.gz || 3.3GiB | 2023-06-20 | 202304 | ckw_opendata_smartmeter_dataset_a_202304.csv.gz || 4.6GiB | 2023-05-24 | 202303 | ckw_opendata_smartmeter_dataset_a_202303.csv.gz || 4.2GiB | 2023-04-20 | 202302 | ckw_opendata_smartmeter_dataset_a_202302.csv.gz || 4.7GiB | 2023-03-20 | 202301 | ckw_opendata_smartmeter_dataset_a_202301.csv.gz || 4.6GiB | 2023-03-15 | 202212 | ckw_opendata_smartmeter_dataset_a_202212.csv.gz || 4.3GiB | 2023-03-15 | 202211 | ckw_opendata_smartmeter_dataset_a_202211.csv.gz || 4.4GiB | 2023-03-15 | 202210 | ckw_opendata_smartmeter_dataset_a_202210.csv.gz || 4.3GiB | 2023-03-15 | 202209 | ckw_opendata_smartmeter_dataset_a_202209.csv.gz || 4.4GiB | 2023-03-15 | 202208 | ckw_opendata_smartmeter_dataset_a_202208.csv.gz || 4.4GiB | 2023-03-15 | 202207 | ckw_opendata_smartmeter_dataset_a_202207.csv.gz || 4.2GiB | 2023-03-15 | 202206 | ckw_opendata_smartmeter_dataset_a_202206.csv.gz || 4.3GiB | 2023-03-15 | 202205 | ckw_opendata_smartmeter_dataset_a_202205.csv.gz || 4.2GiB | 2023-03-15 | 202204 | ckw_opendata_smartmeter_dataset_a_202204.csv.gz || 4.1GiB | 2023-03-15 | 202203 | ckw_opendata_smartmeter_dataset_a_202203.csv.gz || 3.5GiB | 2023-03-15 | 202202 | ckw_opendata_smartmeter_dataset_a_202202.csv.gz || 3.7GiB | 2023-03-15 | 202201 | ckw_opendata_smartmeter_dataset_a_202201.csv.gz || 3.5GiB | 2023-03-15 | 202112 | ckw_opendata_smartmeter_dataset_a_202112.csv.gz || 3.1GiB | 2023-03-15 | 202111 | ckw_opendata_smartmeter_dataset_a_202111.csv.gz || 3.0GiB | 2023-03-15 | 202110 | ckw_opendata_smartmeter_dataset_a_202110.csv.gz || 2.7GiB | 2023-03-15 | 202109 | ckw_opendata_smartmeter_dataset_a_202109.csv.gz || 2.6GiB | 2023-03-15 | 202108 | ckw_opendata_smartmeter_dataset_a_202108.csv.gz || 2.4GiB | 2023-03-15 | 202107 | ckw_opendata_smartmeter_dataset_a_202107.csv.gz || 2.1GiB | 2023-03-15 | 202106 | ckw_opendata_smartmeter_dataset_a_202106.csv.gz || 2.0GiB | 2023-03-15 | 202105 | ckw_opendata_smartmeter_dataset_a_202105.csv.gz || 1.7GiB | 2023-03-15 | 202104 | ckw_opendata_smartmeter_dataset_a_202104.csv.gz || 1.6GiB | 2023-03-15 | 202103 | ckw_opendata_smartmeter_dataset_a_202103.csv.gz || 1.3GiB | 2023-03-15 | 202102 | ckw_opendata_smartmeter_dataset_a_202102.csv.gz || 1.3GiB | 2023-03-15 | 202101 | ckw_opendata_smartmeter_dataset_a_202101.csv.gz |
was processed into partitioned parquet files, and then organised by id into parquet files with data from single smart meters.
A small sample of all the smart meters data above, are archived in the cloud public cloud space of AISOP project https://os.zhdk.cloud.switch.ch/swift/v1/aisop_public/ckw/ts/batch_0424/batch_0424.zip and also here is this public record. For access to the complete data contact the authors of this archive.
It consists of the following parquet files:
| Size | Date | Name |
|------|------|------|
| 1.0M | Mar 4 12:18 | 027ceb7b8fd77a4b11b3b497e9f0b174.parquet |
| 979K | Mar 4 12:18 | 03a4af696ff6a5c049736e9614f18b1b.parquet |
| 1.0M | Mar 4 12:18 | 03654abddf9a1b26f5fbbeea362a96ed.parquet |
| 1.0M | Mar 4 12:18 | 03acebcc4e7d39b6df5c72e01a3c35a6.parquet |
| 1.0M | Mar 4 12:18 | 039e60e1d03c2afd071085bdbd84bb69.parquet |
| 931K | Mar 4 12:18 | 036877a1563f01e6e830298c193071a6.parquet |
| 1.0M | Mar 4 12:18 | 02e45872f30f5a6a33972e8c3ba9c2e5.parquet |
| 662K | Mar 4 12:18 | 03a25f298431549a6bc0b1a58eca1f34.parquet |
| 635K | Mar 4 12:18 | 029a46275625a3cefc1f56b985067d15.parquet |
| 1.0M | Mar 4 12:18 | 0301309d6d1e06c60b4899061deb7abd.parquet |
| 1.0M | Mar 4 12:18 | 0291e323d7b1eb76bf680f6e800c2594.parquet |
| 1.0M | Mar 4 12:18 | 0298e58930c24010bbe2777c01b7644a.parquet |
| 1.0M | Mar 4 12:18 | 0362c5f3685febf367ebea62fbc88590.parquet |
| 1.0M | Mar 4 12:18 | 0390835d05372cb66f6cd4ca662399e8.parquet |
| 1.0M | Mar 4 12:18 | 02f670f059e1f834dfb8ba809c13a210.parquet |
| 987K | Mar 4 12:18 | 02af749aaf8feb59df7e78d5e5d550e0.parquet |
| 996K | Mar 4 12:18 | 0311d3c1d08ee0af3edda4dc260421d1.parquet |
| 1.0M | Mar 4 12:18 | 030a707019326e90b0ee3f35bde666e0.parquet |
| 955K | Mar 4 12:18 | 033441231b277b283191e0e1194d81e2.parquet |
| 995K | Mar 4 12:18 | 0317b0417d1ec91b5c243be854da8a86.parquet |
| 1.0M | Mar 4 12:18 | 02ef4e49b6fb50f62a043fb79118d980.parquet |
| 1.0M | Mar 4 12:18 | 0340ad82e9946be45b5401fc6a215bf3.parquet |
| 974K | Mar 4 12:18 | 03764b3b9a65886c3aacdbc85d952b19.parquet |
| 1.0M | Mar 4 12:18 | 039723cb9e421c5cbe5cff66d06cb4b6.parquet |
| 1.0M | Mar 4 12:18 | 0282f16ed6ef0035dc2313b853ff3f68.parquet |
| 1.0M | Mar 4 12:18 | 032495d70369c6e64ab0c4086583bee2.parquet |
| 900K | Mar 4 12:18 | 02c56641571fc9bc37448ce707c80d3d.parquet |
| 1.0M | Mar 4 12:18 | 027b7b950689c337d311094755697a8f.parquet |
| 1.0M | Mar 4 12:18 | 02af272adccf45b6cdd4a7050c979f9f.parquet |
| 927K | Mar 4 12:18 | 02fc9a3b2b0871d3b6a1e4f8fe415186.parquet |
| 1.0M | Mar 4 12:18 | 03872674e2a78371ce4dfa5921561a8c.parquet |
| 881K | Mar 4 12:18 | 0344a09d90dbfa77481c5140bb376992.parquet |
| 1.0M | Mar 4 12:18 | 0351503e2b529f53bdae15c7fbd56fc0.parquet |
| 1.0M | Mar 4 12:18 | 033fe9c3a9ca39001af68366da98257c.parquet |
| 1.0M | Mar 4 12:18 | 02e70a1c64bd2da7eb0d62be870ae0d6.parquet |
| 1.0M | Mar 4 12:18 | 0296385692c9de5d2320326eaa000453.parquet |
| 962K | Mar 4 12:18 | 035254738f1cc8a31075d9fbe3ec2132.parquet |
| 991K | Mar 4 12:18 | 02e78f0d6a8fb96050053e188bf0f07c.parquet |
| 1.0M | Mar 4 12:18 | 039e4f37ed301110f506f551482d0337.parquet |
| 961K | Mar 4 12:18 | 039e2581430703b39c359dc62924a4eb.parquet |
| 999K | Mar 4 12:18 | 02c6f7e4b559a25d05b595cbb5626270.parquet |
| 1.0M | Mar 4 12:18 | 02dd91468360700a5b9514b109afb504.parquet |
| 938K | Mar 4 12:18 | 02e99c6bb9d3ca833adec796a232bac0.parquet |
| 589K | Mar 4 12:18 | 03aef63e26a0bdbce4a45d7cf6f0c6f8.parquet |
| 1.0M | Mar 4 12:18 | 02d1ca48a66a57b8625754d6a31f53c7.parquet |
| 1.0M | Mar 4 12:18 | 03af9ebf0457e1d451b83fa123f20a12.parquet |
| 1.0M | Mar 4 12:18 | 0289efb0e712486f00f52078d6c64a5b.parquet |
| 1.0M | Mar 4 12:18 | 03466ed913455c281ffeeaa80abdfff6.parquet |
| 1.0M | Mar 4 12:18 | 032d6f4b34da58dba02afdf5dab3e016.parquet |
| 1.0M | Mar 4 12:18 | 03406854f35a4181f4b0778bb5fc010c.parquet |
| 1.0M | Mar 4 12:18 | 0345fc286238bcea5b2b9849738c53a2.parquet |
| 1.0M | Mar 4 12:18 | 029ff5169155b57140821a920ad67c7e.parquet |
| 985K | Mar 4 12:18 | 02e4c9f3518f079ec4e5133acccb2635.parquet |
| 1.0M | Mar 4 12:18 | 03917c4f2aef487dc20238777ac5fdae.parquet |
| 969K | Mar 4 12:18 | 03aae0ab38cebcb160e389b2138f50da.parquet |
| 914K | Mar 4 12:18 | 02bf87b07b64fb5be54f9385880b9dc1.parquet |
| 1.0M | Mar 4 12:18 | 02776685a085c4b785a3885ef81d427a.parquet |
| 947K | Mar 4 12:18 | 02f5a82af5a5ffac2fe7551bf4a0a1aa.parquet |
| 992K | Mar 4 12:18 | 039670174dbc12e1ae217764c96bbeb3.parquet |
| 1.0M | Mar 4 12:18 | 037700bf3e272245329d9385bb458bac.parquet |
| 602K | Mar 4 12:18 | 0388916cdb86b12507548b1366554e16.parquet |
| 939K | Mar 4 12:18 | 02ccbadea8d2d897e0d4af9fb3ed9a8e.parquet |
| 1.0M | Mar 4 12:18 | 02dc3f4fb7aec02ba689ad437d8bc459.parquet |
| 1.0M | Mar 4 12:18 | 02cf12e01cd20d38f51b4223e53d3355.parquet |
| 993K | Mar 4 12:18 | 0371f79d154c00f9e3e39c27bab2b426.parquet |
where each file contains data from a single smart meter.
Acknowledgement
The AISOP project (https://aisopproject.com/) received funding in the framework of the Joint Programming Platform Smart Energy Systems from European Union's Horizon 2020 research and innovation programme under grant agreement No 883973. ERA-Net Smart Energy Systems joint call on digital transformation for green energy transition.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Web archive derivatives of the Rare Book and Manuscript Library collection from Columbia University Libraries. The derivatives were created with the Archives Unleashed Toolkit and Archives Unleashed Cloud.
The cul-2766-parquet.tar.gz derivatives are in the Apache Parquet format, which is a columnar storage format. These derivatives are generally small enough to work with on your local machine, and can be easily converted to Pandas DataFrames. See this notebook for examples.
Domains
.webpages().groupBy(ExtractDomainDF($"url").alias("url")).count().sort($"count".desc)
Produces a DataFrame with the following columns:
Web Pages
.webpages().select($"crawl_date", $"url", $"mime_type_web_server", $"mime_type_tika", RemoveHTMLDF(RemoveHTTPHeaderDF(($"content"))).alias("content"))
Produces a DataFrame with the following columns:
Web Graph
.webgraph()
Produces a DataFrame with the following columns:
Image Links
.imageLinks()
Produces a DataFrame with the following columns:
The cul-2766-auk.tar.gz derivatives are the standard set of web archive derivatives produced by the Archives Unleashed Cloud.
This dataset is a sample from the TalkingData AdTracking competition. I kept all the positive examples (where is_attributed == 1
), while discarding 99% of the negative samples. The sample has roughly 20% positive examples.
For this competition, your objective was to predict whether a user will download an app after clicking a mobile app advertisement.
train_sample.csv
- Sampled data
Each row of the training data contains a click record, with the following features.
ip
: ip address of click.app
: app id for marketing.device
: device type id of user mobile phone (e.g., iphone 6 plus, iphone 7, huawei mate 7, etc.)os
: os version id of user mobile phonechannel
: channel id of mobile ad publisherclick_time
: timestamp of click (UTC)attributed_time
: if user download the app for after clicking an ad, this is the time of the app downloadis_attributed
: the target that is to be predicted, indicating the app was downloadedNote that ip, app, device, os, and channel are encoded.
I'm also including Parquet files with various features for use within the course.
Web archive derivatives of the Avery Library Historic Preservation and Urban Planning collection from Columbia University Libraries. The derivatives were created with the Archives Unleashed Toolkit and Archives Unleashed Cloud. The cul-1757-parquet.tar.gz derivatives are in the Apache Parquet format, which is a columnar storage format. These derivatives are generally small enough to work with on your local machine, and can be easily converted to Pandas DataFrames. See this notebook for examples. Domains .webpages().groupBy(ExtractDomainDF($"url").alias("url")).count().sort($"count".desc) Produces a DataFrame with the following columns: domain count Web Pages .webpages().select($"crawl_date", $"url", $"mime_type_web_server", $"mime_type_tika", RemoveHTMLDF(RemoveHTTPHeaderDF(($"content"))).alias("content")) Produces a DataFrame with the following columns: crawl_date url mime_type_web_server mime_type_tika content Web Graph .webgraph() Produces a DataFrame with the following columns: crawl_date src dest anchor Image Links .imageLinks() Produces a DataFrame with the following columns: src image_url The cul-1757-auk.tar.gz derivatives are the standard set of web archive derivatives produced by the Archives Unleashed Cloud. Gephi file, which can be loaded into Gephi. It will have basic characteristics already computed and a basic layout. Raw Network file, which can also be loaded into Gephi. You will have to use that network program to lay it out yourself. Full text file. In it, each website within the web archive collection will have its full text presented on one line, along with information around when it was crawled, the name of the domain, and the full URL of the content. Domains count file. A text file containing the frequency count of domains captured within your web archive. Due to file size restrictions in Scholars Portal Dataverse, each of the derivative files needed to be split into 1G parts. These parts can be joined back together with cat. For example: cat cul-1757-parquet.tar.gz.part* > cul-1757-parquet.tar.gz
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This data release contains lake and reservoir water surface temperature summary statistics calculated from Landsat 8 Analysis Ready Dataset (ARD) images available within the Conterminous United States (CONUS) from 2013-2023. All zip files within this data release contain nested directories using .parquet files to store the data. The file example_script_for_using_parquet.R contains example code for using the R arrow package (Richardson and others, 2024) to open and query the nested .parquet files. Limitations with this dataset include: - All biases inherent to the Landsat Surface Temperature product are retained in this dataset which can produce unrealistically high or low estimates of water temperature. This is observed to happen, for example, in cases with partial cloud coverage over a waterbody. - Some waterbodies are split between multiple Landsat Analysis Ready Data tiles or orbit footprints. In these cases, multiple waterbody-wide statistics may be reported - one for each dat ...
Web archive derivatives of the University Archives collection from Columbia University Libraries. The derivatives were created with the Archives Unleashed Toolkit and Archives Unleashed Cloud. The cul-1914-parquet.tar.gz derivatives are in the Apache Parquet format, which is a columnar storage format. These derivatives are generally small enough to work with on your local machine, and can be easily converted to Pandas DataFrames. See this notebook for examples. Domains .webpages().groupBy(ExtractDomainDF($"url").alias("url")).count().sort($"count".desc) Produces a DataFrame with the following columns: domain count Web Pages .webpages().select($"crawl_date", $"url", $"mime_type_web_server", $"mime_type_tika", RemoveHTMLDF(RemoveHTTPHeaderDF(($"content"))).alias("content")) Produces a DataFrame with the following columns: crawl_date url mime_type_web_server mime_type_tika content Web Graph .webgraph() Produces a DataFrame with the following columns: crawl_date src dest anchor Image Links .imageLinks() Produces a DataFrame with the following columns: src image_url Binary Analysis Images PDFs Presentation program files Spreadsheets Text files Word processor files The cul-1914-auk.tar.gz derivatives are the standard set of web archive derivatives produced by the Archives Unleashed Cloud. Gephi file, which can be loaded into Gephi. It will have basic characteristics already computed and a basic layout. Raw Network file, which can also be loaded into Gephi. You will have to use that network program to lay it out yourself. Full text file. In it, each website within the web archive collection will have its full text presented on one line, along with information around when it was crawled, the name of the domain, and the full URL of the content. Domains count file. A text file containing the frequency count of domains captured within your web archive. Due to file size restrictions in Scholars Portal Dataverse, each of the derivative files needed to be split into 1G parts. These parts can be joined back together with cat. For example: cat cul-1914-parquet.tar.gz.part* > cul-1914-parquet.tar.gz
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Raw RNA locations of the mouse atlas produced by EEL FISH for 168 genes.
RNA files are in the .parquet format which can be opened with FISHscale (https://github.com/linnarsson-lab/FISHscale) or any other parquet file reader (https://arrow.apache.org/docs/index.html)
RNA .parquet files Seven sagittal sections of the mouse brain with 168 detected genes, sampled at the medial-lateral positions of -140 µm, 600 µm, 1200 µm, 1810 µm, 2420 µm, 3000 µm and 3600 µm measured from the midline. Position and gene label for all RNA molecules. "c_px_microscope_stitched" contains X coordinates. "r_px_microscope_stitched" contians Y coordinates. The unit are pixels with a size of 0.18 micrometer. Multiply by 0.18 to get um scale. "Valid" Boolean column where a 1 means that the molecule is detected inside the tissue section. A zero means the molecule is detected outside.
Tissue polygons .csv files CSV files demarking the sample borders for the 7 mouse atlas sections. -140 µm, 600 µm, 1200 µm, 1810 µm, 2420 µm, 3000 µm, 3600 µm. These polygons were used to generate the "Valid" column. If you want to make your own selection please have a look at the code in: https://github.com/linnarsson-lab/FISHscale/blob/master/FISHscale/utils/inside_polygon.py
Gene colors .pkl file Pickled Python dictionary with gene colors used in the paper for the mouse atlas.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Fuτure dataset is intended for studies, development, and training of algorithms for reconstructing and identifying hadronically decaying tau leptons. The dataset is generated with Pythia 8, with the full detector simulation being performed by Geant4 with the CLIC-like detector setup CLICdet (CLIC_o3_v14) setup. Events are reconstructed using the Marlin reconstruction framework and interfaced with Key4HEP. Particle candidates in the reconstructed events are reconstructed using the PandoraPF algorithm.
In this version of the dataset no γγ -> hadrons background is included.
This dataset contains e+e- samples with Z->ττ, ZH,H->ττ and Z->qq events, with approximately 2 million events simulated in each category.
The following processes e+e- were simulated with Pythia 8 at sqrt(s) = 380 GeV:
The .root files from the MC simulation chain are eventually processed by the software found in Github in order to create flat ntuples as the final product.
The basis of the ntuples are the particle flow (PF) candidates from PandoraPF. Each PF candidate has four momenta, charge and particle label (electron / muon / photon / charged hadron / neutral hadron). The PF candidates in a given event are clustered into jets using generalized kt algorithm for ee collisions, with parameters p=-1 and R=0.4. The minimum pT is set to be 0 GeV for both generator level jets and reconstructed jets. The dataset contains the four momenta of the jets, with the PF candidates in the jets with the above listed properties.
Additionally, a set of variables describing the tau lifetime are calculated using the software in Github. As tau lifetime is very short, these variables are sensitive to true tau decays. In the calculation of these lifetime variables, we use a linear approximation.
In summary, the features found in the flat ntuples are:
Name | Description |
reco_cand_p4s | 4-momenta per particle in the reco jet. |
reco_cand_charge | Charge per particle in the jet. |
reco_cand_pdg | PDGid per particle in the jet. |
reco_jet_p4s | RecoJet 4-momenta. |
reco_cand_dz | Longitudinal impact parameter per particle in the jet. For future steps. Fill value used for neutral particles as no track parameters can be calculated. |
reco_cand_dz_err | Uncertainty of the longitudinal impact parameter per particle in the jet. For future steps. Fill value used for neutral particles as no track parameters can be calculated. |
reco_cand_dxy | Transverse impact parameter per particle in the jet. For future steps. Fill value used for neutral particles as no track parameters can be calculated. |
reco_cand_dxy_err | Uncertainty of the transverse impact parameter per particle in the jet. For future steps. Fill value used for neutral particles as no track parameters can be calculated. |
gen_jet_p4s | GenJet 4-momenta. Matched with RecoJet within a cone of radius dR < 0.3. |
gen_jet_tau_decaymode | Decay mode of the associated genTau. Jets that have associated leptonically decaying taus are removed, so there are no DM=16 jets. If no GenTau can be matched to GenJet within dR < 0.4, a fill value is used. |
gen_jet_tau_p4s | Visible 4-momenta of the genTau. If no GenTau can be matched to GenJet within dR<0.4, a fill value is used. |
The ground truth is based on stable particles at the generator level, before detector simulation. These particles are clustered into generator-level jets and are matched to generator-level τ leptons as well as reconstructed jets. In order for a generator-level jet to be matched to generator-level τ lepton, the τ lepton needs to be inside a cone of dR = 0.4. The same applies for the reconstructed jet, with the requirement on dR being set to dR = 0.3. For each reconstructed jet, we define three target values related to τ lepton reconstruction:
File | # Jets | Size |
z_test.parquet |
870 843 | 171 MB |
z_train.parquet |
3 483 369 | 681 MB |
zh_test.parquet |
1 068 606 | 213 MB |
zh_train.parquet |
4 274 423 | 851 MB |
qq_test.parquet |
6 366 715 | 1.4 GB |
qq_train.parquet |
25 466 858 | 5.6 GB |
The dataset consists of 6 files of 8.9 GB in total.
The .parquet files can be directly loaded with the Awkward Array Python library.
An example how one might use the dataset and the features is given in data_intro.ipynb
Summary GitTables 1M (https://gittables.github.io) is a corpus of currently 1M relational tables extracted from CSV files in GitHub repositories, that are associated with a license that allows distribution. We aim to grow this to at least 10M tables. Each parquet file in this corpus represents a table with the original content (e.g. values and header) as extracted from the corresponding CSV file. Table columns are enriched with annotations corresponding to >2K semantic types from Schema.org and DBpedia (provided as metadata of the parquet file). These column annotations consist of, for example, semantic types, hierarchical relations to other types, and descriptions. We believe GitTables can facilitate many use-cases, among which: Data integration, search and validation. Data visualization and analysis recommendation. Schema analysis and completion for e.g. database or knowledge base design. If you have questions, the paper, documentation, and contact details are provided on the website: https://gittables.github.io. We recommend using Zenodo's API to easily download the full dataset (i.e. all zipped topic subsets). Dataset contents The data is provided in subsets of tables stored in parquet files, each subset corresponds to a term that was used to query GitHub with. The column annotations and other metadata (e.g. URL and repository license) are attached to the metadata of the parquet file. This version corresponds to this version of the paper https://arxiv.org/abs/2106.07258v4. In summary, this dataset can be characterized as follows: Statistic Value # tables 1M average # columns 12 average # rows 142 # annotated tables (at least 1 column annotation) 723K+ (DBpedia), 738K+ (Schema.org) # unique semantic types 835 (DBpedia), 677 (Schema.org) How to download The dataset can be downloaded through Zenodo's interface directly, or using Zenodo's API (recommended for full download). Future releases Future releases will include the following: Increased number of tables (expected at least 10M) Associated datasets - GitTables benchmark - column type detection: https://zenodo.org/record/5706316 - GitTables 1M - CSV files: https://zenodo.org/record/6515973
The following submission includes raw and processed data from the in water deployment of NREL's Hydraulic and Electric Reverse Osmosis Wave Energy Converter (HERO WEC), in the form of parquet files, TDMS files, CSV files, bag files and MATLAB workspaces. This dataset was collected in March 2024 at the Jennette's pier test site in North Carolina. This submission includes the following: Data description document (HERO WEC FY24 Hydraulic Deployment Data Descriptions.doc) - This document includes detailed descriptions of the type of data and how it was processed and/or calculated. Processed MATLAB workspace - The processed data is provided in the form of a single MATLAB workspace containing data from the full deployment. This workspace contains data from all sensors down sampled to 10 Hz along with all array Value Added Products (VAPs). MATLAB visualization scripts - The MATLAB workspaces can be visualized using the file "HERO_WEC_2024_Hydraulic_Config_Data_Viewer.m/mlx". The user simply needs to download the processed MATLAB workspaces, specify the desired start and end times and run this file. Both the .m and .mlx file format has been provided depending on the user's preference. Summary Data - The fully processed data was used to create a summary data set with averages and important calculations performed on 30-minute intervals to align with the intervals of wave resource data reported from nearby CDIP ocean observing buoys located 20km East of Jennette's pier and 40km Northeast of Jennette's pier. The wave resource data provided in this data set is to be used for reference only due the difference in water depth and proximity to shore between the Jennette's pier test site and the locations of the ocean observing buoys. This data is provided in the Summary Data zip folder, which includes this data set in the form of a MATLAB workspace, parquet file, and excel spreadsheet. Processed Parquet File - The processed data is provided in the form of a single parquet file containing data from all HERO WEC sensors collected during the full deployment. Data in these files has been down sampled to 10 Hz and all array VAPs are included. Interim Filtered Data - Raw data from each sensor group partitioned into 30-minute parquet files. These files are outputs from an intermediate stage of data processing and contain the raw data with no Quality Control (QC) or calculations performed in a format that is easier to use than the raw data. Raw Data - Raw, unprocessed data from this deployment can be found in the Raw Data zip folder. This data is provided in the form of TDMS, CSV, and bag files in the original format output by the MODAQ system. Python Data Processing Script - This links to an NREL public github repository containing the python script used to go from raw data to fully processed parquet files. Additional documentation on how to use this script is included in the github repository. This data set has been developed by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Water Power Technologies Office.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Web archive derivatives of the Freely Accessible eJournals collection from Columbia University Libraries. The derivatives were created with the Archives Unleashed Toolkit and Archives Unleashed Cloud.
The cul-5921-parquet.tar.gz derivatives are in the Apache Parquet format, which is a columnar storage format. These derivatives are generally small enough to work with on your local machine, and can be easily converted to Pandas DataFrames. See this notebook for examples.
Domains
.webpages().groupBy(ExtractDomainDF($"url").alias("url")).count().sort($"count".desc)
Produces a DataFrame with the following columns:
Web Pages
.webpages().select($"crawl_date", $"url", $"mime_type_web_server", $"mime_type_tika", RemoveHTMLDF(RemoveHTTPHeaderDF(($"content"))).alias("content"))
Produces a DataFrame with the following columns:
Web Graph
.webgraph()
Produces a DataFrame with the following columns:
Image Links
.imageLinks()
Produces a DataFrame with the following columns:
The cul-12143-auk.tar.gz derivatives are the standard set of web archive derivatives produced by the Archives Unleashed Cloud.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Web archive derivatives of the collection Geologic Field Trip Guidebooks Web Archive from the Ivy Plus Libraries Confederation. The derivatives were created with the Archives Unleashed Toolkit and Archives Unleashed Cloud.
The ivy-12576-parquet.tar.gz derivatives are in the Apache Parquet format, which is a columnar storage format. These derivatives are generally small enough to work with on your local machine, and can be easily converted to Pandas DataFrames. See this notebook for examples.
Domains
.webpages().groupBy(ExtractDomainDF($"url").alias("url")).count().sort($"count".desc)
Produces a DataFrame with the following columns:
Web Pages
.webpages().select($"crawl_date", $"url", $"mime_type_web_server", $"mime_type_tika", RemoveHTMLDF(RemoveHTTPHeaderDF(($"content"))).alias("content"))
Produces a DataFrame with the following columns:
Web Graph
.webgraph()
Produces a DataFrame with the following columns:
Image Links
.imageLinks()
Produces a DataFrame with the following columns:
The ivy-12576-auk.tar.gz derivatives are the standard set of web archive derivatives produced by the Archives Unleashed Cloud.
https://academictorrents.com/nolicensespecifiedhttps://academictorrents.com/nolicensespecified
Trip record data from the Taxi and Limousine Commission () from January 2009-December 2016 was consolidated and brought into a consistent Parquet format by Ravi Shekhar