25 datasets found
  1. a

    PASCAL Visual Object Classes Challenge 2010 (VOC2010) Complete Dataset

    • academictorrents.com
    bittorrent
    Updated Dec 1, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Everingham, M. and Van~Gool, L. and Williams, C. K. I. and Winn, J. and Zisserman, A. (2015). PASCAL Visual Object Classes Challenge 2010 (VOC2010) Complete Dataset [Dataset]. https://academictorrents.com/details/96db21675f464480780637f1416477ac14a81107
    Explore at:
    bittorrent(1345332224)Available download formats
    Dataset updated
    Dec 1, 2015
    Dataset authored and provided by
    Everingham, M. and Van~Gool, L. and Williams, C. K. I. and Winn, J. and Zisserman, A.
    License

    https://academictorrents.com/nolicensespecifiedhttps://academictorrents.com/nolicensespecified

    Description

    Introduction The goal of this challenge is to recognize objects from a number of visual object classes in realistic scenes (i.e. not pre-segmented objects). It is fundamentally a supervised learning learning problem in that a training set of labelled images is provided. The twenty object classes that have been selected are: Person: person Animal: bird, cat, cow, dog, horse, sheep Vehicle: aeroplane, bicycle, boat, bus, car, motorbike, train Indoor: bottle, chair, dining table, potted plant, sofa, tv/monitor Data To download the training/validation data, see the development kit. The training data provided consists of a set of images; each image has an annotation file giving a bounding box and object class label for each object in one of the twenty classes present in the image. Note that multiple objects from multiple classes may be present in the same image. Some example images can be viewed online. A subset of images are also annotated with pixel-wise segmentation of each object presen

  2. t

    PASCAL Visual Object Classes Challenge - Dataset - LDM

    • service.tib.eu
    Updated Dec 3, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). PASCAL Visual Object Classes Challenge - Dataset - LDM [Dataset]. https://service.tib.eu/ldmservice/dataset/pascal-visual-object-classes-challenge
    Explore at:
    Dataset updated
    Dec 3, 2024
    Description

    The PASCAL Visual Object Classes Challenge (VOC) is a benchmark dataset for object detection and semantic segmentation.

  3. Pascal voc challenge data

    • kaggle.com
    zip
    Updated Mar 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    k201669 Syed Jafri (2024). Pascal voc challenge data [Dataset]. https://www.kaggle.com/datasets/k201669syedjafri/pascal-voc-challenge-data
    Explore at:
    zip(560826457 bytes)Available download formats
    Dataset updated
    Mar 23, 2024
    Authors
    k201669 Syed Jafri
    Description

    Dataset

    This dataset was created by k201669 Syed Jafri

    Contents

  4. p

    Data from: Classification of Heart Sound Recordings: The PhysioNet/Computing...

    • physionet.org
    Updated Mar 4, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chengyu Liu; David Springer; Benjamin Moody; Ikaro Silva; Alistair Johnson; Maryam Samieinasab; Reza Sameni; Roger Mark; Gari D. Clifford (2016). Classification of Heart Sound Recordings: The PhysioNet/Computing in Cardiology Challenge 2016 [Dataset]. https://physionet.org/challenge/2016/
    Explore at:
    Dataset updated
    Mar 4, 2016
    Authors
    Chengyu Liu; David Springer; Benjamin Moody; Ikaro Silva; Alistair Johnson; Maryam Samieinasab; Reza Sameni; Roger Mark; Gari D. Clifford
    License

    Open Data Commons Attribution License (ODC-By) v1.0https://www.opendatacommons.org/licenses/by/1.0/
    License information was derived automatically

    Description

    The 2016 PhysioNet/CinC Challenge aims to encourage the development of algorithms to classify heart sound recordings collected from a variety of clinical or nonclinical (such as in-home visits) environments. The aim is to identify, from a single short recording (10-60s) from a single precordial location, whether the subject of the recording should be referred on for an expert diagnosis.

  5. a

    PASCAL Visual Object Classes Challenge 2008 (VOC2008) Complete Dataset

    • academictorrents.com
    bittorrent
    Updated Dec 1, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Everingham, M. and Van~Gool, L. and Williams, C. K. I. and Winn, J. and Zisserman, A. (2015). PASCAL Visual Object Classes Challenge 2008 (VOC2008) Complete Dataset [Dataset]. https://academictorrents.com/details/577c99c831a03753c38764201123cbc5e9e3c03b
    Explore at:
    bittorrent(581262336)Available download formats
    Dataset updated
    Dec 1, 2015
    Dataset authored and provided by
    Everingham, M. and Van~Gool, L. and Williams, C. K. I. and Winn, J. and Zisserman, A.
    License

    https://academictorrents.com/nolicensespecifiedhttps://academictorrents.com/nolicensespecified

    Description

    Data To download the training/validata data, see the development kit. In total there are 10,057 images [further statistics]. The training data provided consists of a set of images; each image has an annotation file giving a bounding box and object class label for each object in one of the twenty classes present in the image. Note that multiple objects from multiple classes may be present in the same image. Some example images can be viewed online. Annotation was performed according to a set of guidelines distributed to all annotators. The data will be made available in two stages; in the first stage, a development kit will be released consisting of training and validation data, plus evaluation software (written in MATLAB). One purpose of the validation set is to demonstrate how the evaluation software works ahead of the competition submission. In the second stage, the test set will be made available for the actual competition. As in the VOC2007 challenge, no ground truth for the test d

  6. D

    PASCAL VOC 2012 Dataset

    • datasetninja.com
    • opendatalab.com
    Updated Jun 25, 2012
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mark Everingham; Luc van Gool; Chris Williams (2012). PASCAL VOC 2012 Dataset [Dataset]. https://datasetninja.com/pascal-voc-2012
    Explore at:
    Dataset updated
    Jun 25, 2012
    Dataset provided by
    Dataset Ninja
    Authors
    Mark Everingham; Luc van Gool; Chris Williams
    License

    http://host.robots.ox.ac.uk/pascal/VOC/voc2012/index.html#rightshttp://host.robots.ox.ac.uk/pascal/VOC/voc2012/index.html#rights

    Description

    The Pascal Visual Object Classes (VOC) Challenge has been an annual event since 2006. The challenge consists of two components: (i) a publicly available dataset of images obtained from the Flickr web site, together with ground truth annotation and standardised evaluation software; and (ii) an annual competition and workshop. The most popular part of the dataset is segmentation, which is presented on the DatasetNinja.

  7. a

    PASCAL Visual Object Classes Challenge 2006 (VOC2006) Complete Dataset

    • academictorrents.com
    bittorrent
    Updated Dec 1, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mark Everingham (2015). PASCAL Visual Object Classes Challenge 2006 (VOC2006) Complete Dataset [Dataset]. https://academictorrents.com/details/db06b76152c0bf475af4093538e5a8d0e7971273
    Explore at:
    bittorrent(2019317760)Available download formats
    Dataset updated
    Dec 1, 2015
    Dataset authored and provided by
    Mark Everingham
    License

    https://academictorrents.com/nolicensespecifiedhttps://academictorrents.com/nolicensespecified

    Description

    Details of the contributor of each image can be found in the file "contrib.txt" included in the database. Categories Views of bicycles, buses, cats, cars, cows, dogs, horses, motorbikes, people, sheep in arbitrary pose. Number of images 5,304 Number of annotated images 5,304

  8. food-rec-challenge-pascal

    • kaggle.com
    zip
    Updated Dec 1, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Christopher Bovolos (2021). food-rec-challenge-pascal [Dataset]. https://www.kaggle.com/datasets/christopherbovolos/foodrecchallengepascal
    Explore at:
    zip(732726876 bytes)Available download formats
    Dataset updated
    Dec 1, 2021
    Authors
    Christopher Bovolos
    Description

    Dataset

    This dataset was created by Christopher Bovolos

    Contents

  9. r

    Data from: The PASCAL Visual Object Classes (VOC) challenge

    • resodate.org
    • service.tib.eu
    Updated Dec 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    M. Everingham; L. Van Gool; C. K. I. Williams; J. Winn; A. Zisserman (2024). The PASCAL Visual Object Classes (VOC) challenge [Dataset]. https://resodate.org/resources/aHR0cHM6Ly9zZXJ2aWNlLnRpYi5ldS9sZG1zZXJ2aWNlL2RhdGFzZXQvdGhlLXBhc2NhbC12aXN1YWwtb2JqZWN0LWNsYXNzZXMtLXZvYy0tY2hhbGxlbmdl
    Explore at:
    Dataset updated
    Dec 3, 2024
    Dataset provided by
    Leibniz Data Manager
    Authors
    M. Everingham; L. Van Gool; C. K. I. Williams; J. Winn; A. Zisserman
    Description

    A benchmark for object detection

  10. PASCAL VOC 2007

    • kaggle.com
    zip
    Updated Mar 25, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    zarak (2018). PASCAL VOC 2007 [Dataset]. https://www.kaggle.com/zaraks/pascal-voc-2007
    Explore at:
    zip(1774851628 bytes)Available download formats
    Dataset updated
    Mar 25, 2018
    Authors
    zarak
    Description

    The PASCAL VOC project:

    • Provides standardised image data sets for object class recognition
    • Provides a common set of tools for accessing the data sets and annotations
    • Enables evaluation and comparison of different methods
    • Ran challenges evaluating performance on object class recognition (from 2005-2012, now finished)

    Context

    The goal of this challenge is to recognize objects from a number of visual object classes in realistic scenes (i.e. not pre-segmented objects). It is fundamentally a supervised learning learning problem in that a training set of labelled images is provided. The twenty object classes that have been selected are:

    • Person: person
    • Animal: bird, cat, cow, dog, horse, sheep
    • Vehicle: aeroplane, bicycle, boat, bus, car, motorbike, train
    • Indoor: bottle, chair, dining table, potted plant, sofa, tv/monitor
    • There will be two main competitions, and two smaller scale "taster" competitions.

    Content

    The training data provided consists of a set of images; each image has an annotation file giving a bounding box and object class label for each object in one of the twenty classes present in the image. Note that multiple objects from multiple classes may be present in the same image.

    Acknowledgements

    @misc{pascal-voc-2007, author = "Everingham, M. and Van~Gool, L. and Williams, C. K. I. and Winn, J. and Zisserman, A.", title = "The {PASCAL} {V}isual {O}bject {C}lasses {C}hallenge 2007 {(VOC2007)} {R}esults", howpublished = "http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html"}

  11. D

    PASCAL Context Dataset

    • datasetninja.com
    • opendatalab.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Roozbeh Mottaghi; Xianjie Chen; Xiaobai Liu, PASCAL Context Dataset [Dataset]. https://datasetninja.com/pascal-context
    Explore at:
    Dataset provided by
    Dataset Ninja
    Authors
    Roozbeh Mottaghi; Xianjie Chen; Xiaobai Liu
    License

    http://host.robots.ox.ac.uk/pascal/VOC/voc2010/index.html#rightshttp://host.robots.ox.ac.uk/pascal/VOC/voc2010/index.html#rights

    Description

    The authors of the PASCAL Context dataset conduct a comprehensive investigation into the significance of context within existing state-of-the-art detection and segmentation methodologies. Their approach involves the meticulous labeling of every pixel encompassed within the PASCAL VOC 2010 detection challenge, associating each pixel with a semantic category. This dataset is envisioned to present a considerable challenge to the research community, as it incorporates an impressive 520 additional classes that cater to both semantic segmentation and object detection.

  12. Heartbeat Sounds

    • kaggle.com
    zip
    Updated Nov 27, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ed King (2016). Heartbeat Sounds [Dataset]. https://www.kaggle.com/datasets/kinguistics/heartbeat-sounds/
    Explore at:
    zip(115466080 bytes)Available download formats
    Dataset updated
    Nov 27, 2016
    Authors
    Ed King
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    This dataset was originally for a machine learning challenge to classify heart beat sounds. The data was gathered from two sources: (A) from the general public via the iStethoscope Pro iPhone app, and (B) from a clinic trial in hospitals using the digital stethoscope DigiScope. There were two challenges associated with this competition:

    1. Heart Sound Segmentation
    The first challenge is to produce a method that can locate S1(lub) and S2(dub) sounds within audio data, segmenting the Normal audio files in both datasets.

    2. Heart Sound Classification
    The task is to produce a method that can classify real heart audio (also known as “beat classification”) into one of four categories.

    Content

    The dataset is split into two sources, A and B:

    set_a.csv - Labels and metadata for heart beats collected from the general public via an iPhone app

    set_a_timing.csv - contains gold-standard timing information for the "normal" recordings from Set A.

    set_b.csv - Labels and metadata for heart beats collected from a clinical trial in hospitals using a digital stethoscope

    audio files - Varying lengths, between 1 second and 30 seconds. (some have been clipped to reduce excessive noise and provide the salient fragment of the sound).

    Acknowledgements

        author = "Bentley, P. and Nordehn, G. and Coimbra, M. and Mannor, S.",
        title = "The {PASCAL} {C}lassifying {H}eart {S}ounds {C}hallenge 2011 {(CHSC2011)} {R}esults",
        howpublished = "http://www.peterjbentley.com/heartchallenge/index.html"} ```
    
    ## Inspiration
    
    Try your hand at automatically separating normal heartbeats from abnormal heartbeats and heart murmur with this machine learning challenge by [Peter Bentley et al](http://www.peterjbentley.com/heartchallenge/)
    
    The goal of the task was to first (1) identify the locations of heart sounds from the audio, and (2) to classify the heart sounds into one of several categories (normal v. various non-normal heartbeat sounds).
    
  13. a

    Pascal VOC 2012 Test Set

    • datasets.activeloop.ai
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    PASCAL VOC, Pascal VOC 2012 Test Set [Dataset]. https://datasets.activeloop.ai/docs/ml/datasets/pascal-voc-2012-dataset/
    Explore at:
    Dataset authored and provided by
    PASCAL VOC
    License

    Attribution 2.0 (CC BY 2.0)https://creativecommons.org/licenses/by/2.0/
    License information was derived automatically

    Description

    The Pascal VOC 2012 test set consists of 10,000 images. The images in the test set are a challenging dataset, with a wide range of object classes. The images in the test set are also not labeled, so they can be used to evaluate the performance of object detection algorithms.

  14. PASCAL VOC 2011 (Include Hands, Foot & Head)

    • kaggle.com
    zip
    Updated Jun 8, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pablo Cumbrera (2021). PASCAL VOC 2011 (Include Hands, Foot & Head) [Dataset]. https://www.kaggle.com/pablocumbrera/pascal-voc-2011-include-hands-foot-head
    Explore at:
    zip(1723113697 bytes)Available download formats
    Dataset updated
    Jun 8, 2021
    Authors
    Pablo Cumbrera
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    PASCAL VOC 2011 COMPETITIONS

    The main challenges have run each year since 2005. For more background on VOC, the following journal paper discusses some of the choices we made and our experience in running the challenge, and gives a more in depth discussion of the 2007 methods and results:

    The PASCAL Visual Object Classes (VOC) Challenge Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J. and Zisserman, A. International Journal of Computer Vision, 88(2), 303-338, 2010

    Content

    20 classes + 3 (head,foot,hand)

    aeroplane bicycle bird boat bottle bus car cat chair cow diningtable dog horse motorbike person pottedplant sheep sofa train tvmonitor

    Acknowledgements

    We gratefully acknowledge the following, who spent many long hours providing annotation for the VOC2011 database:

    Yusuf Aytar, Lucia Ballerini, Hakan Bilen, Ken Chatfield, Mircea Cimpoi, Ali Eslami, Basura Fernando, Christoph Godau, Bertan Gunyel, Phoenix/Xuan Huang, Jyri Kivinen, Markus Mathias, Kristof Overdulve, Konstantinos Rematas, Johan Van Rompay, Gilad Sharir, Mathias Vercruysse, Vibhav Vineet, Ziming Zhang, Shuai Kyle Zheng.

    We also thank Yusuf Aytar for continued development and administration of the evaluation server, and Ali Eslami for analysis of the results.

  15. a

    The PASCAL Visual Object Classes Challenge 2012 (VOC2012)...

    • academictorrents.com
    bittorrent
    Updated Mar 22, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Everingham, M. and Van~Gool, L. and Williams, C. K. I. and Winn, J. and Zisserman, A. (2018). The PASCAL Visual Object Classes Challenge 2012 (VOC2012) VOCtestnoimgs_06-Nov-2007.tar [Dataset]. https://academictorrents.com/details/20f2372d6cbf09ab71817b7b070e20d97473b373
    Explore at:
    bittorrent(12492800)Available download formats
    Dataset updated
    Mar 22, 2018
    Dataset authored and provided by
    Everingham, M. and Van~Gool, L. and Williams, C. K. I. and Winn, J. and Zisserman, A.
    License

    https://academictorrents.com/nolicensespecifiedhttps://academictorrents.com/nolicensespecified

    Description

    The PASCAL Visual Object Classes Challenge 2012 (VOC2012) VOCtestnoimgs_06-Nov-2007.tar

  16. MICCAI 2016 MS lesion segmentation challenge: supplementary results

    • zenodo.org
    • data.niaid.nih.gov
    bin, png, txt
    Updated Aug 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Olivier Commowick; Olivier Commowick; Audrey Istace; Michael Kain; Baptiste Laurent; Florent Leray; Mathieu Simon; Sorina Camarasu-Pop; Pascal Girard; Roxana Ameli; Jean-Christophe Ferré; Anne Kerbrat; Thomas Tourdias; Frédéric Cervenansky; Tristan Glatard; Jérémy Beaumont; Senan Doyle; Florence Forbes; Jesse Knight; April Khademi; Amirreza Mahbod; Chunliang Wang; Richard Mc Kinley; Franca Wagner; John Muschelli; Elizabeth Sweeney; Eloy Roura; Xavier Lladò; Michel M. Santos; Wellington P. Santos; Abel G. Silva-Filho; Xavier Tomas-Fernandez; Hélène Urien; Isabelle Bloch; Sergi Valverde; Mariano Cabezas; Francisco Javier Vera-Olmos; Norberto Malpica; Charles Guttmann; Sandra Vukusic; Gilles Edan; Michel Dojat; Martin Styner; Simon K. Warfield; François Cotton; Christian Barillot; Christian Barillot; Audrey Istace; Michael Kain; Baptiste Laurent; Florent Leray; Mathieu Simon; Sorina Camarasu-Pop; Pascal Girard; Roxana Ameli; Jean-Christophe Ferré; Anne Kerbrat; Thomas Tourdias; Frédéric Cervenansky; Tristan Glatard; Jérémy Beaumont; Senan Doyle; Florence Forbes; Jesse Knight; April Khademi; Amirreza Mahbod; Chunliang Wang; Richard Mc Kinley; Franca Wagner; John Muschelli; Elizabeth Sweeney; Eloy Roura; Xavier Lladò; Michel M. Santos; Wellington P. Santos; Abel G. Silva-Filho; Xavier Tomas-Fernandez; Hélène Urien; Isabelle Bloch; Sergi Valverde; Mariano Cabezas; Francisco Javier Vera-Olmos; Norberto Malpica; Charles Guttmann; Sandra Vukusic; Gilles Edan; Michel Dojat; Martin Styner; Simon K. Warfield; François Cotton (2024). MICCAI 2016 MS lesion segmentation challenge: supplementary results [Dataset]. http://doi.org/10.5281/zenodo.1307653
    Explore at:
    png, bin, txtAvailable download formats
    Dataset updated
    Aug 2, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Olivier Commowick; Olivier Commowick; Audrey Istace; Michael Kain; Baptiste Laurent; Florent Leray; Mathieu Simon; Sorina Camarasu-Pop; Pascal Girard; Roxana Ameli; Jean-Christophe Ferré; Anne Kerbrat; Thomas Tourdias; Frédéric Cervenansky; Tristan Glatard; Jérémy Beaumont; Senan Doyle; Florence Forbes; Jesse Knight; April Khademi; Amirreza Mahbod; Chunliang Wang; Richard Mc Kinley; Franca Wagner; John Muschelli; Elizabeth Sweeney; Eloy Roura; Xavier Lladò; Michel M. Santos; Wellington P. Santos; Abel G. Silva-Filho; Xavier Tomas-Fernandez; Hélène Urien; Isabelle Bloch; Sergi Valverde; Mariano Cabezas; Francisco Javier Vera-Olmos; Norberto Malpica; Charles Guttmann; Sandra Vukusic; Gilles Edan; Michel Dojat; Martin Styner; Simon K. Warfield; François Cotton; Christian Barillot; Christian Barillot; Audrey Istace; Michael Kain; Baptiste Laurent; Florent Leray; Mathieu Simon; Sorina Camarasu-Pop; Pascal Girard; Roxana Ameli; Jean-Christophe Ferré; Anne Kerbrat; Thomas Tourdias; Frédéric Cervenansky; Tristan Glatard; Jérémy Beaumont; Senan Doyle; Florence Forbes; Jesse Knight; April Khademi; Amirreza Mahbod; Chunliang Wang; Richard Mc Kinley; Franca Wagner; John Muschelli; Elizabeth Sweeney; Eloy Roura; Xavier Lladò; Michel M. Santos; Wellington P. Santos; Abel G. Silva-Filho; Xavier Tomas-Fernandez; Hélène Urien; Isabelle Bloch; Sergi Valverde; Mariano Cabezas; Francisco Javier Vera-Olmos; Norberto Malpica; Charles Guttmann; Sandra Vukusic; Gilles Edan; Michel Dojat; Martin Styner; Simon K. Warfield; François Cotton
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This package contains supplementary material for our article prepared for publication and under revision. It contains omitted results due to space limits of the article as well as detailed, patient per patient and team per team results for all metrics. Additional figures redundant with those of the article are also provided.

    The readme file Readme_SupplementalMaterial.txt provides details about each individual file content.

  17. Data_challenge

    • kaggle.com
    zip
    Updated Mar 17, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Timothée Pascal (2022). Data_challenge [Dataset]. https://www.kaggle.com/datasets/timothepascal/data-challenge
    Explore at:
    zip(1099793 bytes)Available download formats
    Dataset updated
    Mar 17, 2022
    Authors
    Timothée Pascal
    Description

    Dataset

    This dataset was created by Timothée Pascal

    Contents

  18. File S4: Scoring tools

    • figshare.com
    zip
    Updated Jun 5, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Daniel Marbach (2023). File S4: Scoring tools [Dataset]. http://doi.org/10.6084/m9.figshare.5971378.v1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 5, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    figshare
    Authors
    Daniel Marbach
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Snapshot of Pascal tool (http://www2.unil.ch/cbg/index.php?title=Pascal) used for the challenge and scripts to compute the scores. Website: https://synapse.org/modulechallenge. Preprint: Choobdar, S., Ahsen, M.E., Crawford, J., et al. (2018). Open Community Challenge Reveals Molecular Network Modules with Key Roles in Diseases. bioRxiv 265553. https://www.biorxiv.org/content/early/2018/02/15/265553

  19. Lyft Prediction Public Models

    • kaggle.com
    zip
    Updated Sep 23, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pascal Pfeiffer (2020). Lyft Prediction Public Models [Dataset]. https://www.kaggle.com/ilu000/lyft-prediction-public-models
    Explore at:
    zip(56521204 bytes)Available download formats
    Dataset updated
    Sep 23, 2020
    Authors
    Pascal Pfeiffer
    Description

    Dataset

    This dataset was created by Pascal Pfeiffer

    Released under Data files © Original Authors

    Contents

  20. O

    PASCAL VOC 2010

    • opendatalab.com
    zip
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    PASCAL VOC, PASCAL VOC 2010 [Dataset]. https://opendatalab.com/OpenDataLab/VOC2010
    Explore at:
    zip(1969113357 bytes)Available download formats
    Dataset provided by
    PASCAL VOC
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    The goal of this challenge is to recognize objects from a number of visual object classes in realistic scenes (i.e. not pre-segmented objects). It is fundamentally a supervised learning learning problem in that a training set of labelled images is provided. The twenty object classes that have been selected are: Person: person Animal: bird, cat, cow, dog, horse, sheep Vehicle: aeroplane, bicycle, boat, bus, car, motorbike, train Indoor: bottle, chair, dining table, potted plant, sofa, tv/monitor There will be three main competitions: classification, detection, and segmentation; and three "taster" competition: person layout, action classification, and ImageNet large scale recognition: Classification/Detection Competitions Classification: For each of the twenty classes, predicting presence/absence of an example of that class in the test image.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Everingham, M. and Van~Gool, L. and Williams, C. K. I. and Winn, J. and Zisserman, A. (2015). PASCAL Visual Object Classes Challenge 2010 (VOC2010) Complete Dataset [Dataset]. https://academictorrents.com/details/96db21675f464480780637f1416477ac14a81107

PASCAL Visual Object Classes Challenge 2010 (VOC2010) Complete Dataset

Explore at:
bittorrent(1345332224)Available download formats
Dataset updated
Dec 1, 2015
Dataset authored and provided by
Everingham, M. and Van~Gool, L. and Williams, C. K. I. and Winn, J. and Zisserman, A.
License

https://academictorrents.com/nolicensespecifiedhttps://academictorrents.com/nolicensespecified

Description

Introduction The goal of this challenge is to recognize objects from a number of visual object classes in realistic scenes (i.e. not pre-segmented objects). It is fundamentally a supervised learning learning problem in that a training set of labelled images is provided. The twenty object classes that have been selected are: Person: person Animal: bird, cat, cow, dog, horse, sheep Vehicle: aeroplane, bicycle, boat, bus, car, motorbike, train Indoor: bottle, chair, dining table, potted plant, sofa, tv/monitor Data To download the training/validation data, see the development kit. The training data provided consists of a set of images; each image has an annotation file giving a bounding box and object class label for each object in one of the twenty classes present in the image. Note that multiple objects from multiple classes may be present in the same image. Some example images can be viewed online. A subset of images are also annotated with pixel-wise segmentation of each object presen

Search
Clear search
Close search
Google apps
Main menu