https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
The National Diabetes Audit (NDA) is part of the National Clinical Audit and Patient Outcomes Programme (NCAPOP) which is commissioned by the Healthcare Quality Improvement Partnership (HQIP) and funded by NHS England. The NDA is managed by NHS Digital in partnership with Diabetes UK. The NDA measures the effectiveness of diabetes healthcare against NICE Clinical Guidelines and NICE Quality Standards, in England and Wales. The NDA collects, analyses and reports data for use by primary care and specialist services, local and national commissioners to support change and improvement in the quality of services and health outcomes for people with diabetes. This data release includes the care process and treatment target measurements for 2019-20 (1st January 2019 – 31st March 2020). Data were collected during May and June 2020. The national report, scheduled for 2021, will contain commentary on the audit findings and recommendations. We will communicate to users when the publication date for this report has been finalised. GP practice participation in England and Wales has increased from 98.0 per cent in 2018-19 to 99.2 per cent in 2019-20. Diabetes specialist service participation stands at 98 services in 2019-20. For NDA 2019-20, Diabetes Eye Screening (DES) data has been collected directly from DES providers for the first time. All but one DES provider in England (Liverpool) successfully submitted data, although three providers made partial submissions. For Liverpool, eye examination information secondarily recorded in Primary Care systems has been used, which is likely to be incomplete. The new 'Retinal Screening' care process measure appears in the care process and treatment targets worksheets and also feeds into the new 'All Nine Care Processes' measure, which is reported in addition to the longstanding ‘All Eight Care Processes'. Please note that there is a potential issue with the SNOMED codes used to identify if a person has had their serum creatinine care process check. Two serum/plasma creatinine codes were removed from the NDA creatinine code set during the universal SNOMED code refresh. This has affected the measurement of creatinine care process completion in a small number of health economies, and thereby has the potential to influence the all eight/nine care process percentages for organisations/areas that still use these codes. To resolve the issue, the NDA business rules are currently being amended to add these codes back into future NDA data extractions.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Patient-drug-disease (PDD) Graph dataset, utilising Electronic medical records (EMRS) and biomedical Knowledge graphs. The novel framework to construct the PDD graph is described in the associated publication.PDD is an RDF graph consisting of PDD facts, where a PDD fact is represented by an RDF triple to indicate that a patient takes a drug or a patient is diagnosed with a disease. For instance, (pdd:274671, pdd:diagnosed, sepsis)Data files are in .nt N-Triple format, a line-based syntax for an RDF graph. These can be accessed via openly-available text edit software.diagnose_icd_information.nt - contains RDF triples mapping patients to diagnoses. For example:(pdd:18740, pdd:diagnosed, icd99592),where pdd:18740 is a patient entity, and icd99592 is the ICD-9 code of sepsis.drug_patients.nt- contains RDF triples mapping patients to drugs. For example:(pdd:18740, pdd:prescribed, aspirin),where pdd:18740 is a patient entity, and aspirin is the drug's name.Background:Electronic medical records contain multi-format electronic medical data that consist of an abundance of medical knowledge. Faced with patients' symptoms, experienced caregivers make the right medical decisions based on their professional knowledge, which accurately grasps relationships between symptoms, diagnoses and corresponding treatments. In the associated paper, we aim to capture these relationships by constructing a large and high-quality heterogenous graph linking patients, diseases, and drugs (PDD) in EMRs. Specifically, we propose a novel framework to extract important medical entities from MIMIC-III (Medical Information Mart for Intensive Care III) and automatically link them with the existing biomedical knowledge graphs, including ICD-9 ontology and DrugBank. The PDD graph presented in this paper is accessible on the Web via the SPARQL endpoint as well as in .nt format in this repository, and provides a pathway for medical discovery and applications, such as effective treatment recommendations.De-identificationIt is necessary to mention that MIMIC-III contains clinical information of patients. Although the protected health information was de-identifed, researchers who seek to use more clinical data should complete an on-line training course and then apply for the permission to download the complete MIMIC-III dataset: https://mimic.physionet.org/
https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
Percentage of emergency admissions to any hospital in England occurring within 30 days of the last, previous discharge from hospital after admission: indirectly standardised by age, sex, method of admission and diagnosis/procedure. The indicator is broken down into the following demographic groups for reporting: ● All years and female only, male only and both male and female (persons). ● <16 years and female only, male only and both male and female (persons). ● 16+ years and female only, male only and both male and female (persons) ● 16-74 years and female only, male only and both male and female (persons) ● 75+ years and female only, male only and both male and female (persons) Results for each of these groups are also split by the following geographical and demographic breakdowns: ● Local authority of residence. ● Region. ● Area classification. ● NHS and private providers. ● NHS England regions. ● Deprivation (Index of Multiple Deprivation (IMD) Quintiles, 2019). ● Sustainability and Transformation Partnerships (STP) & Integrated Care Boards (ICB) from 2016/17. ● Clinical Commissioning Groups (CCG) & sub-Integrated Care Boards (sub-ICB). All annual trends are indirectly standardised against 2013/14.
In 2023, only half of LGBT adults in the United States reported feeling very comfortable asking their doctor questions about their health or treatment during visits in the past three years, while this was the case for 67 percent of non-LGBT adults. Furthermore, around 12 percent of LGBT adults surveyed reported not being comfortable asking questions during their healthcare visits, as opposed to seven percent of non-LGBT adults.
Deprecated report. This report was created early in the response to the COVID-19 pandemic. Increased reporting and quality in hospital data have rendered the estimated datasets obsolete. Updates to this report will be discontinued on July 29, 2021. The following dataset provides state-aggregated data for estimated patient impact and hospital utilization. The source data for estimation is derived from reports with facility-level granularity across two main sources: (1) HHS TeleTracking, and (2) reporting provided directly to HHS Protect by state/territorial health departments on behalf of their healthcare facilities. Estimates Basis: These files are representative estimates for each state and are updated weekly. These projections are based on the information we have from those who reported. As more hospitals report more frequently our projections become more accurate. The actual data for these data points are updated every day, once a day on healthdata.gov and these are the downloadable data sets.
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
Data on hospital admission, average length of stay, outpatient visits, and outpatient surgery in the United States, by type of ownership and size of hospital. Data are from Health, United States. SOURCE: American Hospital Association (AHA) Annual Survey of Hospitals, Hospital Statistics. Search, visualize, and download these and other estimates from over 120 health topics with the NCHS Data Query System (DQS), available from: https://www.cdc.gov/nchs/dataquery/index.htm.
A synthetic dataset of patient appointments, referrals, and journeys to a fictional service in the North East of England. The code can be adjusted to incorporate any area on mainland Great Britain. NI or the islands can be integrated too, however the structure of postcode, GP and OSA public data is different, and data input handlers will need to be adjusted.
The behaviour of the patients (visiting their nearby GP followed by attending a
specialist clinic), appointments (clinic appointments within 7day-6weeks of the referral (gp appointment)), and facilities (one major facility taking the load, along with minor facilities) is meant to mirror the real data used under Pilot 2 of the Track & Know Project.
Real postcodes, from Royal Mail, are used to generate the appointment population, real facilities are used based on the British Lung Foundations study of Obstructive Sleep Apnoea, and real GP's are used based on public data from the NHS.
This dataset contains the distribution of inpatient discharges by type of admission for each California hospital for years 2009-2015.
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
Note: After May 3, 2024, this dataset will no longer be updated because hospitals are no longer required to report data on COVID-19 hospital admissions, hospital capacity, or occupancy data to HHS through CDC’s National Healthcare Safety Network (NHSN). The related CDC COVID Data Tracker site was revised or retired on May 10, 2023.
Note: May 3,2024: Due to incomplete or missing hospital data received for the April 21,2024 through April 27, 2024 reporting period, the COVID-19 Hospital Admissions Level could not be calculated for CNMI and will be reported as “NA” or “Not Available” in the COVID-19 Hospital Admissions Level data released on May 3, 2024.
This dataset represents COVID-19 hospitalization data and metrics aggregated to county or county-equivalent, for all counties or county-equivalents (including territories) in the United States as of the initial date of reporting for each weekly metric. COVID-19 hospitalization data are reported to CDC’s National Healthcare Safety Network, which monitors national and local trends in healthcare system stress, capacity, and community disease levels for approximately 6,000 hospitals in the United States. Data reported by hospitals to NHSN and included in this dataset represent aggregated counts and include metrics capturing information specific to COVID-19 hospital admissions, and inpatient and ICU bed capacity occupancy.
Reporting information:
Notes: June 15, 2023: Due to incomplete or missing hospital data received for the June 4, 2023, through June 10, 2023, reporting period, the COVID-19 Hospital Admissions Level could not be calculated for CNMI and AS and will be reported as “NA” or “Not Available” in the COVID-19 Hospital Admissions Level data released on June 15, 2023.
July 10, 2023: Due to incomplete or missing hospital data received for the June 25, 2023, through July 1, 2023, reporting period, the COVID-19 Hospital Admissions Level could not be calculated for CNMI and AS and will be reported as “NA” or “Not Available” in the COVID-19 Hospital Admissions Level data released on July 10, 2023.
July 17, 2023: Due to incomplete or missing hospital data received for the July 2, 2023, through July 8, 2023, reporting
https://www.imrmarketreports.com/privacy-policy/https://www.imrmarketreports.com/privacy-policy/
The North America Patient Generated Health Data market report offers a thorough competitive analysis, mapping key players’ strategies, market share, and business models. It provides insights into competitor dynamics, helping companies align their strategies with the current market landscape and future trends.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Consumer Price Index for All Urban Consumers: Hospital and Related Services in U.S. City Average (CUSR0000SEMD) from Jan 1978 to Jun 2025 about hospitals, urban, consumer, services, CPI, inflation, price index, indexes, price, and USA.
The high-risk surgical patient revisited
The Statewide Planning and Research Cooperative System (SPARCS) Inpatient De-identified dataset contains discharge level detail on patient characteristics, diagnoses, treatments, services, and charges. This data contains basic record level detail regarding the discharge; however the data does not contain protected health information (PHI) under Health Insurance Portability and Accountability Act (HIPAA). The health information is not individually identifiable; all data elements considered identifiable have been redacted. For example, the direct identifiers regarding a date have the day and month portion of the date removed. A downloadable file with this data is available for ease of download at: https://health.data.ny.gov/Health/Hospital-Inpatient-Discharges-SPARCS-De-Identified/3m9u-ws8e. For more information check out: http://www.health.ny.gov/statistics/sparcs/ or go to the “About” tab.
See our new monthly data page for data from November 2024 onwards.
These official statistics were independently reviewed by the Office for Statistics Regulation in May 2022. They comply with the standards of trustworthiness, quality and value in the https://code.statisticsauthority.gov.uk/" class="govuk-link">Code of Practice for Statistics and should be labelled ‘accredited official statistics’. Accredited official statistics are called National Statistics in the Statistics and Registration Service Act 2007. Further explanation of accredited official statistics can be found on the https://osr.statisticsauthority.gov.uk/accredited-official-statistics/" class="govuk-link">Office for Statistics Regulation website.
In response to user feedback, we are testing alternative ways of presenting the monthly data sets as visualisations on the UKHSA data dashboard. The current data sets will continue to be published as normal and users will be consulted prior to any significant changes. We encourage users to review and provide feedback on the new dashboard content.
Monthly counts of total reported, hospital-onset, hospital-onset healthcare associated (HOHA), community-onset healthcare associated (COHA), community-onset and community-onset community associated (COCA) MRSA bacteraemias by NHS organisations.
These documents contain the monthly counts of total reported, hospital-onset and community-onset MRSA bacteraemia by NHS organisations.
The UK Government Web Archive contains MRSA bacteraemia data from previous financial years, including:
data from https://webarchive.nationalarchives.gov.uk/ukgwa/20230510143423/https://www.gov.uk/government/statistics/mrsa-bacteraemia-monthly-data-by-location-of-onset" class="govuk-link">2022 to 2023
data from https://webarchive.nationalarchives.gov.uk/ukgwa/20220614173109/https://www.gov.uk/government/statistics/mrsa-bacteraemia-monthly-data-by-location-of-onset" class="govuk-link">2021 to 2022
data from https://webarchive.nationalarchives.gov.uk/20210507180210/https://www.gov.uk/government/statistics/mrsa-bacteraemia-monthly-data-by-location-of-onset" class="govuk-link">2020 to 2021
data from https://webarchive.nationalarchives.gov.uk/20200506173036/https://www.gov.uk/government/statistics/mrsa-bacteraemia-monthly-data-by-location-of-onset" class="govuk-link">2019 to 2020
data from https://webarchive.nationalarchives.gov.uk/20190508011104/https://www.gov.uk/government/collections/staphylococcus-aureus-guidance-data-and-analysis" class="govuk-link">2018 to 2019
data from https://webarchive.nationalarchives.gov.uk/20180510152304/https://www.gov.uk/government/statistics/mrsa-bacteraemia-monthly-data-by-attributed-clinical-commissioning-group" class="govuk-link">2017 to 2018
data from https://webarchive.nationalarchives.gov.uk/20170515101840tf_/https://www.gov.uk/government/statistics/mrsa-bacteraemia-monthly-data-by-attributed-clinical-commissioning-group" class="govuk-link">2013 to 2014, up to 2016 to 2017
data from https://webarchive.nationalarchives.gov.uk/20140712114853tf_/http://www.hpa.org.uk/web/HPAweb&HPAwebStandard/HPAweb_C/1254510675444" class="govuk-link">2013 and earlier
Provisional count of deaths involving coronavirus disease 2019 (COVID-19) in the United States by week of death and by hospital referral region (HRR). HRR is determined by county of occurrence. Weekly weighted counts of deaths from all causes and due to COVID-19 are provided by HRR overall and for decedents 65 years and older. The weighted counts by HRRs are based on published methods for aggregating county-level data to HRRs. More detail about aggregating to HRRs from counties can be found in the following: https://github.com/Dartmouth-DAC/covid-19-hrr-mapping https://dartmouthatlas.org/covid-19/hrr-mapping/
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This table provides statistics on the Distribution of Payments, Number of Services and Discrete Patients for Out-of-Province Basic Health Services under the Alberta Health Care Insurance Plan (AHCIP). This table is an Excel version of a table in the “Alberta Health Care Insurance Plan Statistical Supplement” report published annually by Alberta Health.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The publication relates to activity at consultant led outpatient services in Health and Social Care hospitals in Northern Ireland. Data includes the number of new and review attendances, missed appointments (DNAs), appointments cancelled by patients (CNAs) and appointments cancelled by hospitals, split by HSC Trust, hospital and specialty.
Source agency: Health, Social Service and Public Safety (Northern Ireland)
Designation: National Statistics
Language: English
Alternative title: Northern Ireland Outpatient Statistics
According to a report carried out by the Consumer Choice Center in 2023, among chronic patients telemedicine had the greatest potential for time savings in healthcare in Italy. It was estimated in the most optimistic scenario those suffering from chronic conditions in Italy could save up to *** minutes, which is almost *** hours per year. Even in a conservative estimate, Italians with a chronic condition could save over two hours with an uptake in telemedicine use.
https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
UPDATE 22 November 2016: The Key Facts have been corrected for this publication. The main report document "Hospital Maternity Activity, 2015-16: Summary Report" has been updated and the operational note amended to reference this correction. We apologise for any inconvenience caused. This is a report on deliveries in English NHS hospitals. This annual publication covers the financial year ending March 2016. The data are taken from the Hospital Episodes Statistics (HES) data warehouse. HES contains records of all admissions, appointments and attendances for patients admitted to NHS hospitals in England. The HES data used in this publication are called 'delivery episodes'. This publication shows the number of delivery episodes during the period, with a number of breakdowns including by the woman's age, delivery method and place of delivery. The purpose of this publication is to inform and support strategic and policy-led processes for the benefit of patient care. This document will also be of interest to researchers, journalists and members of the public interested in NHS hospital activity in England.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
DHA71 - In-Patient Hospital Discharge Data for Principal Procedures. Published by Department of Health. Available under the license Creative Commons Attribution 4.0 (CC-BY-4.0).In-Patient Hospital Discharge Data for Principal Procedures...
https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
The National Diabetes Audit (NDA) is part of the National Clinical Audit and Patient Outcomes Programme (NCAPOP) which is commissioned by the Healthcare Quality Improvement Partnership (HQIP) and funded by NHS England. The NDA is managed by NHS Digital in partnership with Diabetes UK. The NDA measures the effectiveness of diabetes healthcare against NICE Clinical Guidelines and NICE Quality Standards, in England and Wales. The NDA collects, analyses and reports data for use by primary care and specialist services, local and national commissioners to support change and improvement in the quality of services and health outcomes for people with diabetes. This data release includes the care process and treatment target measurements for 2019-20 (1st January 2019 – 31st March 2020). Data were collected during May and June 2020. The national report, scheduled for 2021, will contain commentary on the audit findings and recommendations. We will communicate to users when the publication date for this report has been finalised. GP practice participation in England and Wales has increased from 98.0 per cent in 2018-19 to 99.2 per cent in 2019-20. Diabetes specialist service participation stands at 98 services in 2019-20. For NDA 2019-20, Diabetes Eye Screening (DES) data has been collected directly from DES providers for the first time. All but one DES provider in England (Liverpool) successfully submitted data, although three providers made partial submissions. For Liverpool, eye examination information secondarily recorded in Primary Care systems has been used, which is likely to be incomplete. The new 'Retinal Screening' care process measure appears in the care process and treatment targets worksheets and also feeds into the new 'All Nine Care Processes' measure, which is reported in addition to the longstanding ‘All Eight Care Processes'. Please note that there is a potential issue with the SNOMED codes used to identify if a person has had their serum creatinine care process check. Two serum/plasma creatinine codes were removed from the NDA creatinine code set during the universal SNOMED code refresh. This has affected the measurement of creatinine care process completion in a small number of health economies, and thereby has the potential to influence the all eight/nine care process percentages for organisations/areas that still use these codes. To resolve the issue, the NDA business rules are currently being amended to add these codes back into future NDA data extractions.