Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
European population genetic substructure was examined in a diverse set of >1,000 individuals of European descent, each genotyped with >300 K SNPs. Both STRUCTURE and principal component analyses (PCA) showed the largest division/principal component (PC) differentiated northern from southern European ancestry. A second PC further separated Italian, Spanish, and Greek individuals from those of Ashkenazi Jewish ancestry as well as distinguishing among northern European populations. In separate analyses of northern European participants other substructure relationships were discerned showing a west to east gradient. Application of this substructure information was critical in examining a real dataset in whole genome association (WGA) analyses for rheumatoid arthritis in European Americans to reduce false positive signals. In addition, two sets of European substructure ancestry informative markers (ESAIMs) were identified that provide substantial substructure information. The results provide further insight into European population genetic substructure and show that this information can be used for improving error rates in association testing of candidate genes and in replication studies of WGA scans.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Regression analysis of linkage disequilibrium parameter, D on the product of the PC loadings for unlinked SNPs.
There is currently little evidence that the genetic basis of human phenotype varies significantly across the lifespan. However, time-to-event phenotypes are understudied and can be thought of as reflecting an underlying hazard, which is unlikely to be constant through life when values take a broad range. Here, we find that 74% of 245 genome-wide significant genetic associations with age at natural menopause (ANM) in the UK Biobank show a form of age-specific effect. Nineteen of these replicated discoveries are identified only by our modelling framework, which determines the time-dependency of DNA variant-age-at-onset associations, without a significant multiple-testing burden. Across the range of early to late menopause, we find evidence for significantly different underlying biological pathways, changes in the sign of genetic correlations of ANM to health indicators and outcomes, and differences in inferred causal relationships. We find that DNA damage response processes only act to sh..., We first restricted our analysis to a sample of European-ancestry UK Biobank individuals. To infer ancestry, we used both self-reported ethnic background (UK Biobank field 21000-0), selecting coding 1, and genetic ethnicity (UK Biobank field 22006-0), selecting coding 1. We projected the 488,377 genotyped participants onto the first two genotypic principal components (PC) calculated from 2,504 individuals of the 1,000 Genomes project. Using the obtained PC loadings, we then assigned each participant to the closest 1,000 Genomes project population, selecting individuals with PC1 projection < absolute value 4 and PC 2 projection < absolute value 3. Samples were also excluded based on UK Biobank quality control procedures with individuals removed of (i) extreme heterozygosity and missing genotype outliers; (ii) a genetically inferred gender that did not match the self-reported gender; (iii) putative sex chromosome aneuploidy; (iv) exclusion from kinship inference; (v) withdrawn conse...,
Levels of sociability are continuously distributed in the general population, and decreased sociability represents an early manifestation of several brain disorders. Here, we investigated the genetic underpinnings of sociability in the population.Main question of our research: 1. Are there common genetic variants that are associated with sociability in the general population? 2. Are genetic variants that are associated with sociability also associated with neuropsychiatric disorders?Type of data uploaded in this repository:The UK Biobank project (see https://www.ukbiobank.ac.uk/) is a large-scale biomedical database and research resource, containing in-depth genetic and health information from half a million UK participants. The database is globally accessible to approved researchers undertaking vital research into the most common and life-threatening diseases. The raw data that this project is based on comes from the publically available UK Biobank set, which is very large and is therefore not provided here. Here we only provide the results from our analysis, that is also described here: https://www.biorxiv.org/content/10.1101/781195v2 and currently in revision in a scientific journal. In the dataset you will find the association of 9327396 genetic variants with the phenotype sociability. This dataset is not applicable to be opened with Excel, and can best be opened on a cluster computer or using specfic software.SubjectsThe UK Biobank (UKBB) is a major population-based cohort from the United Kingdom that includes individuals aged between 37 and 73 years. We constructed a sociability measure based on the the aggregation of scores per participant on four questions from the UKBB database that link to sociability, including (1) a question about the frequency of friend/family visits, (2) a question on the number and type of social venues that are visited, (3) a question about worrying after social embarrassment and (4) a question about feeling lonely, leading to a sociability score ranging from 0-4. Participants were excluded if they had somatic problems that could be related to social withdrawal (BMI 40, narcolepsy (all the time), stroke, severe tinnitus, deafness or brain-related cancers) or if they answered that they had “No friends/family outside household” or “Do not know” or “Prefer not to answer” to any of the questions.SNP genotyping and quality controlDetails about the available genome-wide genotyping data for UKBB participants have been reported previously (PMID: 30305743). We used third-release genotyping data (see https://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=100319). Briefly, 49,950 participants were genotyped using the UK BiLEVE Axiom Array and 438,427 participants were genotyped using UK Biobank Axiom Array. Genotypes were imputed into the dataset using the Haplotype Reference Consortium (HRC), and the UK10K haplotype resource. To account for ethnicity, we included only those individuals that identified themselves as "white" by self-report and plotted the Principal Components (PC) provided by the UKBB, excluding individuals considered to be outliers according to PCs 1 and 2. Genetic relatedness calculated with KING kinship and provided by the UKBB (https://kenhanscombe.github.io/ukbtools/articles/explore-ukb-data.html ; http://www.ukbiobank.ac.uk/wp-content/uploads/2014/04/UKBiobank_genotyping_QC_documentation-web.pdf) was used to identify first and second-degree relatives. Subsequently ´families´ (i.e. clusters of related individuals above an IBD>0.125 threshold) were created and only one individual from each of these created ‘families’ was included in the analysis. If self-reported sex and SNP-based sex differed, individuals were excluded from further analysis. Single nucleotide polymorphisms (SNPs) with minor allele frequency <0.005, Hardy-Weinberg equilibrium test P value0.05, and imputation quality of INFO <0.8 were excluded. In the current study, all analyses are based on 342,461 participants of European ancestry for which both genotype data and sociability scores were available.Genome-wide association analysisGenome-wide association analysis with the imputed marker dosages was performed in PLINK1.9, using a linear regression model with the sociability measure as the dependent variable and including sex, age, 10 first PCs, assessment center, and genotype batch as covariates. SNPs were considered significantly associated if they had p-value < 5e-8. Associated loci were considered independent of each other at r2 0.6 and lead SNPs were classified as the SNP with the smallest association p-value and at r2 0.1, using a 250kb window.The summary statistics come from the plink2 linear regression analysis.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global PC power supply market size was USD 2.87 Billion in 2023 and is likely to reach USD 3.43 Billion by 2032, expanding at a CAGR of 2.40% during 2024–2032. The market growth is attributed to the increasing adoption of cloud-based services across the globe.
The PC Power supply market is projected to expand at a significant pace, due to the growing adoption of cloud-based services. Businesses and individuals are increasingly relying on cloud computing for data storage and processing, which requires robust and reliable power supplies. These data centers require a substantial number of PC power supplies to ensure their servers and other equipment function properly. Furthermore, as cloud services become complex and data-intensive, the need for powerful and efficient power supplies increases. This trend is expected to continue as the reliance on cloud-based services grows, driving demand for the market.
The use of artificial intelligence is anticipated to expand at a rapid pace in the PC power supply market. On the supply side, AI revolutionized the manufacturing process of power supply units, enhancing efficiency and reducing production costs. AI-driven predictive analytics aid in forecasting demand, optimizing inventory, and streamlining supply chain operations, thereby reducing lead times and enhancing customer satisfaction. On the demand side, AI surged the need for high-performance power supply units. Furthermore, AI fostered the development of smart power supply units that self-diagnose and rectify faults, monitor power usage, and optimize energy consumption. These advancements, driven by AI propel the market.
<span lang="EN-US" style="font-size:12.0p
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Levels of sociability are continuously distributed in the general population, and decreased sociability represents an early manifestation of several brain disorders. Here, we investigated the genetic underpinnings of sociability in the population.Main question of our research: 1. Are there common genetic variants that are associated with sociability in the general population? 2. Are genetic variants that are associated with sociability also associated with neuropsychiatric disorders?Type of data uploaded in this repository:The UK Biobank project (see https://www.ukbiobank.ac.uk/) is a large-scale biomedical database and research resource, containing in-depth genetic and health information from half a million UK participants. The database is globally accessible to approved researchers undertaking vital research into the most common and life-threatening diseases. The raw data that this project is based on comes from the publically available UK Biobank set, which is very large and is therefore not provided here. Here we only provide the results from our analysis, that is also described here: https://www.biorxiv.org/content/10.1101/781195v2 and currently in revision in a scientific journal. In the dataset you will find the association of 9327396 genetic variants with the phenotype sociability. This dataset is not applicable to be opened with Excel, and can best be opened on a cluster computer or using specfic software.SubjectsThe UK Biobank (UKBB) is a major population-based cohort from the United Kingdom that includes individuals aged between 37 and 73 years. We constructed a sociability measure based on the the aggregation of scores per participant on four questions from the UKBB database that link to sociability, including (1) a question about the frequency of friend/family visits, (2) a question on the number and type of social venues that are visited, (3) a question about worrying after social embarrassment and (4) a question about feeling lonely, leading to a sociability score ranging from 0-4. Participants were excluded if they had somatic problems that could be related to social withdrawal (BMI < 15 or BMI > 40, narcolepsy (all the time), stroke, severe tinnitus, deafness or brain-related cancers) or if they answered that they had “No friends/family outside household” or “Do not know” or “Prefer not to answer” to any of the questions.SNP genotyping and quality controlDetails about the available genome-wide genotyping data for UKBB participants have been reported previously (PMID: 30305743). We used third-release genotyping data (see https://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=100319). Briefly, 49,950 participants were genotyped using the UK BiLEVE Axiom Array and 438,427 participants were genotyped using UK Biobank Axiom Array. Genotypes were imputed into the dataset using the Haplotype Reference Consortium (HRC), and the UK10K haplotype resource. To account for ethnicity, we included only those individuals that identified themselves as "white" by self-report and plotted the Principal Components (PC) provided by the UKBB, excluding individuals considered to be outliers according to PCs 1 and 2. Genetic relatedness calculated with KING kinship and provided by the UKBB (https://kenhanscombe.github.io/ukbtools/articles/explore-ukb-data.html ; http://www.ukbiobank.ac.uk/wp-content/uploads/2014/04/UKBiobank_genotyping_QC_documentation-web.pdf) was used to identify first and second-degree relatives. Subsequently ´families´ (i.e. clusters of related individuals above an IBD>0.125 threshold) were created and only one individual from each of these created ‘families’ was included in the analysis. If self-reported sex and SNP-based sex differed, individuals were excluded from further analysis. Single nucleotide polymorphisms (SNPs) with minor allele frequency <0.005, Hardy-Weinberg equilibrium test P value<1e−6, missing genotype rate >0.05, and imputation quality of INFO <0.8 were excluded. In the current study, all analyses are based on 342,461 participants of European ancestry for which both genotype data and sociability scores were available.Genome-wide association analysisGenome-wide association analysis with the imputed marker dosages was performed in PLINK1.9, using a linear regression model with the sociability measure as the dependent variable and including sex, age, 10 first PCs, assessment center, and genotype batch as covariates. SNPs were considered significantly associated if they had p-value < 5e-8. Associated loci were considered independent of each other at r2 0.6 and lead SNPs were classified as the SNP with the smallest association p-value and at r2 0.1, using a 250kb window.The summary statistics come from the plink2 linear regression analysis.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Background: We sought to determine whether a small pool of ancestry-informative DNA markers (AIMs) improves modeling of intracerebral hemorrhage (ICH) risk in heterogeneous populations, compared with self-identified race/ethnicity (SIRE) alone.Methods: We genotyped 15 preselected AIMs to perform principal component (PC) analysis in the ERICH study (a multi-center case-control study of ICH in whites, blacks, and Hispanics). We used multivariate logistic regression and tests for independent samples to compare associations for genetic ancestry and SIRE with ICH-associated vascular risk factors (VRFs). We then compared the performance of models for ICH risk that included AIMs and SIRE alone.Results: Among 4,935 subjects, 34.7% were non-Hispanic black, 35.1% non-Hispanic white, and 30.2% Hispanic by SIRE. In stratified analysis of these SIRE groups, AIM-defined ancestry was strongly associated with seven of the eight VRFs analyzed (p < 0.001). Within each SIRE group, regression of AIM-derived PCs against VRFs confirmed independent associations of AIMs across at least two race/ethnic groups for seven VRFs. Akaike information criterion (AIC) (6,294 vs. 6,286) and likelihood ratio test (p < 0.001) showed that genetic ancestry defined by AIMs achieved a better ICH risk modeling compared to SIRE alone.Conclusion: Genetically-defined ancestry provides valuable risk exposure information that is not captured by SIRE alone. Particularly among Hispanics and blacks, inclusion of AIMs adds value over self-reported ancestry in controlling for genetic and environmental exposures that influence risk of ICH. While differences are small, this modeling approach may be superior in highly heterogeneous clinical poulations. Additional studies across other ancestries and risk exposures are needed to confirm and extend these findings.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units and the group quarters population for states and counties..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2019-2023 American Community Survey 5-Year Estimates.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Ancestry listed in this table refers to the total number of people who responded with a particular ancestry; for example, the estimate given for German represents the number of people who listed German as either their first or second ancestry. This table lists only the largest ancestry groups; see the Detailed Tables for more categories. Race and Hispanic origin groups are not included in this table because data for those groups come from the Race and Hispanic origin questions rather than the ancestry question (see Demographic Table)..Data for year of entry of the native population reflect the year of entry into the U.S. by people who were born in Puerto Rico or U.S. Island Areas or born outside the U.S. to a U.S. citizen parent and who subsequently moved to the U.S..The category "with a broadband Internet subscription" refers to those who said "Yes" to at least one of the following types of Internet subscriptions: Broadband such as cable, fiber optic, or DSL; a cellular data plan; satellite; a fixed wireless subscription; or other non-dial up subscription types..An Internet "subscription" refers to a type of service that someone pays for to access the Internet such as a cellular data plan, broadband such as cable, fiber optic or DSL, or other type of service. This will normally refer to a service that someone is billed for directly for Internet alone or sometimes as part of a bundle.."With a computer" includes those who said "Yes" to at least one of the following types of computers: Desktop or laptop; smartphone; tablet or other portable wireless computer; or some other type of computer..Caution should be used when comparing data for computer and Internet use before and after 2016. Changes in 2016 to the questions involving the wording as well as the response options resulted in changed response patterns in the data. Most noticeable are increases in overall computer ownership or use, the total of Internet subscriptions, satellite subscriptions, and cellular data plans for a smartphone or other mobile device. For more detailed information about these changes, see the 2016 American Community Survey Content Test Report for Computer and Internet Use located at https://www.census.gov/library/working-papers/2017/acs/2017_Lewis_01.html or the user note regarding changes in the 2016 questions located at https://www.census.gov/programs-surveys/acs/technical-documentation/user-notes/2017-03.html..Estimates of urban and rural populations, housing units...
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Coalescent theory has provided a basis for evolutionary biologists to build sophisticated methods for inferring population history from variation in genetic markers, but these methods leave out a major conceptual cornerstone of modern evolutionary theory: natural selection. I provide the first quantitative analysis of the effects of selection on genealogical patterns in a continuously distributed population in which the selective optimum for a trait linked to the marker varies gradually and continuously across the landscape. Simulations show that relatively weak selection for local adaptation can lead to strong phylogeographic structure, in which highly divergent genealogical groups (i.e. clades) are geographically localized and differentially adapted, and dramatically increased standing variation (e.g. coalescence time) compared to neutral expectations. This pattern becomes more likely with increasing population size and with decreasing dispersal distances, mutation rates, and mutation sizes. Under some conditions, the system alternates between a nearly-neutral behavior and a behavior in which highly divergent clades are locally adapted. Natural selection on markers commonly used in phylogeographic studies (such as mitochondrial DNA) presents a major challenge to the inference of biogeographic history but also provides exciting opportunities to study how selection affects both between- and within-species biodiversity.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global computer case sales market size was USD 4.09 Billion in 2023 and is likely to reach USD 6.95 Billion by 2032, expanding at a CAGR of 6.07% during 2024–2032. The market growth is attributed to the widespread use of computers for a wide range of applications, worldwide.
Increasing demand for personalized computer hardware is driving the sales of computer cases. The market is witnessing a surge, propelled by the latest trends in custom-built PCs, where computer cases play a significant role in aesthetics and functionality. Advances in design and manufacturing technologies have enabled the production of computer cases with improved cooling, cable management, and expansion capabilities, thereby stimulating demand.
Growing interest in computer gaming and high-performance computing is propelling the market. Computer cases, with their ability to accommodate powerful components and ensure optimal thermal performance, are integral to these applications. The trend of RGB lighting and tempered glass panels in computer cases, allowing users to showcase their hardware, is further fueling the market.
Rising awareness about the importance of proper computer maintenance and protection is presenting new opportunities for the computer case market. High-quality computer cases not only protect the hardware components from dust and damage but also contribute to noise reduction and improved system longevity. Focus on protection and maintenance, and the ongoing trend of compact and portable cases for small form factor builds, is expected to drive the computer case sales market in the coming years.
The use of artificial intelligence is likely to boost the computer case sales market. AI's predictive analytics tools provide precise market trend forecasts, enabling businesses to optimize their inventory and minimize overstock. Moreover, AI-driven customer relationship management systems offer personalized product suggestions, enhancing customer engagement and propelling sales.
<span sty
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units and the group quarters population for states and counties..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2019-2023 American Community Survey 5-Year Estimates.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year..Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Ancestry listed in this table refers to the total number of people who responded with a particular ancestry; for example, the estimate given for German represents the number of people who listed German as either their first or second ancestry. This table lists only the largest ancestry groups; see the Detailed Tables for more categories. Race and Hispanic origin groups are not included in this table because data for those groups come from the Race and Hispanic origin questions rather than the ancestry question (see Demographic Table)..The category "with a broadband Internet subscription" refers to those who said "Yes" to at least one of the following types of Internet subscriptions: Broadband such as cable, fiber optic, or DSL; a cellular data plan; satellite; a fixed wireless subscription; or other non-dial up subscription types..An Internet "subscription" refers to a type of service that someone pays for to access the Internet such as a cellular data plan, broadband such as cable, fiber optic or DSL, or other type of service. This will normally refer to a service that someone is billed for directly for Internet alone or sometimes as part of a bundle.."With a computer" includes those who said "Yes" to at least one of the following types of computers: Desktop or laptop; smartphone; tablet or other portable wireless computer; or some other type of computer..Caution should be used when comparing data for computer and Internet use before and after 2016. Changes in 2016 to the questions involving the wording as well as the response options resulted in changed response patterns in the data. Most noticeable are increases in overall computer ownership or use, the total of Internet subscriptions, satellite subscriptions, and cellular data plans for a smartphone or other mobile device. For more detailed information about these changes, see the 2016 American Community Survey Content Test Report for Computer and Internet Use located at https://www.census.gov/library/working-papers/2017/acs/2017_Lewis_01.html or the user note regarding changes in the 2016 questions located at https://www.census.gov/programs-surveys/acs/technical-documentation/user-notes/2017-03.html..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- ...
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau's Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties..Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the .Technical Documentation.. section......Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the .Methodology.. section..Source: U.S. Census Bureau, 2018 American Community Survey 1-Year Estimates.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see .ACS Technical Documentation..). The effect of nonsampling error is not represented in these tables..Ancestry listed in this table refers to the total number of people who responded with a particular ancestry; for example, the estimate given for Russian represents the number of people who listed Russian as either their first or second ancestry. This table lists only the largest ancestry groups; see the Detailed Tables for more categories. Race and Hispanic origin groups are not included in this table because official data for those groups come from the Race and Hispanic origin questions rather than the ancestry question (see Demographic Table)..Data for year of entry of the native population reflect the year of entry into the U.S. by people who were born in Puerto Rico, U.S. Island Areas or born outside the U.S. to a U.S. citizen parent and who subsequently moved to the U.S..Methodological changes to citizenship edits may have affected citizenship data for those born in American Samoa. Users should be aware of these changes when using 2018 data or multi-year data containing data from 2018. For more information, see: .American Samoa Citizenship User Note....The Census Bureau introduced a new set of disability questions in the 2008 ACS questionnaire. Accordingly, comparisons of disability data from 2008 or later with data from prior years are not recommended. For more information on these questions and their evaluation in the 2006 ACS Content Test, see the .Evaluation Report Covering Disability....Data about computer and Internet use were collected by asking respondents to select "Yes" or "No" to each type of computer and each type of Internet subscription. Therefore, respondents were able to select more than one type of computer and more than one type of Internet subscription..The category "with a broadband Internet subscription" refers to those who said "Yes" to at least one of the following types of Internet subscriptions: Broadband such as cable, fiber optic, or DSL; a cellular data plan; satellite; or a fixed wireless subscription..An Internet "subscription" refers to a type of service that someone pays for to access the Internet such as a cellular data plan, broadband such as cable, fiber optic or DSL, or other type of service. This will normally refer to a service that someone is billed for directly for Internet alone or sometimes as part of a bundle.."With a computer" includes those who said "Yes" to at least one of the following types of computers: Desktop or laptop; smartphone; tablet or other portable wireless computer; or some other type of computer..Caution should be used when comparing data for computer and Internet use before and after 2016. Changes in 2016 to the questions involving the wording as well as the response options resulted in changed response patterns in the data. Most noticeable are increases in overall computer ownership or use, the total of Internet subscriptions, satellite subscriptions, and cellular data plans for a smartphone or other mobile device. For more detailed information about these changes, see the 2016 American Community Survey Content Test Report for Computer and Internet Use located at .https://www.census.gov/programs-surveys/acs/methodology/content-test.htm.. or the user note regarding changes in the 2016 questions located at .https://www.census.gov/programs-surveys/acs/technical-documentation/user-notes.html....While the 2018 American Community Survey (ACS) data generally reflect the July 2015 Office of Management and Budge...
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau's Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties..Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2019 American Community Survey 1-Year Estimates.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Ancestry listed in this table refers to the total number of people who responded with a particular ancestry; for example, the estimate given for Russian represents the number of people who listed Russian as either their first or second ancestry. This table lists only the largest ancestry groups; see the Detailed Tables for more categories. Race and Hispanic origin groups are not included in this table because official data for those groups come from the Race and Hispanic origin questions rather than the ancestry question (see Demographic Table)..Data for year of entry of the native population reflect the year of entry into the U.S. by people who were born in Puerto Rico or U.S. Island Areas or born outside the U.S. to a U.S. citizen parent and who subsequently moved to the U.S..The Census Bureau introduced a new set of disability questions in the 2008 ACS questionnaire. Accordingly, comparisons of disability data from 2008 or later with data from prior years are not recommended. For more information on these questions and their evaluation in the 2006 ACS Content Test, see the Evaluation Report Covering Disability..Data about computer and Internet use were collected by asking respondents to select "Yes" or "No" to each type of computer and each type of Internet subscription. Therefore, respondents were able to select more than one type of computer and more than one type of Internet subscription..The category "with a broadband Internet subscription" refers to those who said "Yes" to at least one of the following types of Internet subscriptions: Broadband such as cable, fiber optic, or DSL; a cellular data plan; satellite; a fixed wireless subscription; or other non-dial up subscription types..An Internet "subscription" refers to a type of service that someone pays for to access the Internet such as a cellular data plan, broadband such as cable, fiber optic or DSL, or other type of service. This will normally refer to a service that someone is billed for directly for Internet alone or sometimes as part of a bundle.."With a computer" includes those who said "Yes" to at least one of the following types of computers: Desktop or laptop; smartphone; tablet or other portable wireless computer; or some other type of computer..Caution should be used when comparing data for computer and Internet use before and after 2016. Changes in 2016 to the questions involving the wording as well as the response options resulted in changed response patterns in the data. Most noticeable are increases in overall computer ownership or use, the total of Internet subscriptions, satellite subscriptions, and cellular data plans for a smartphone or other mobile device. For more detailed information about these changes, see the 2016 American Community Survey Content Test Report for Computer and Internet Use located at https://www.census.gov/library/working-papers/2017/acs/2017_Lewis_01.html or the user note regarding changes in the 2016 questions located at https://www.census.gov/programs-surveys/acs/technical-documentation/user-notes/2017-03.html..The 2019 American Community Survey (ACS) data generally reflect the September 2018 Office of Management and Budget (OMB) delineations of metropolitan and micropolitan statistical areas. In certain instances the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB delineations due to differences in the effective dates of the geographic e...
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau's Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties..Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2019 American Community Survey 1-Year Estimates.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Ancestry listed in this table refers to the total number of people who responded with a particular ancestry; for example, the estimate given for Russian represents the number of people who listed Russian as either their first or second ancestry. This table lists only the largest ancestry groups; see the Detailed Tables for more categories. Race and Hispanic origin groups are not included in this table because official data for those groups come from the Race and Hispanic origin questions rather than the ancestry question (see Demographic Table)..The Census Bureau introduced a new set of disability questions in the 2008 ACS questionnaire. Accordingly, comparisons of disability data from 2008 or later with data from prior years are not recommended. For more information on these questions and their evaluation in the 2006 ACS Content Test, see the Evaluation Report Covering Disability..Data about computer and Internet use were collected by asking respondents to select "Yes" or "No" to each type of computer and each type of Internet subscription. Therefore, respondents were able to select more than one type of computer and more than one type of Internet subscription..The category "with a broadband Internet subscription" refers to those who said "Yes" to at least one of the following types of Internet subscriptions: Broadband such as cable, fiber optic, or DSL; a cellular data plan; satellite; a fixed wireless subscription; or other non-dial up subscription types..An Internet "subscription" refers to a type of service that someone pays for to access the Internet such as a cellular data plan, broadband such as cable, fiber optic or DSL, or other type of service. This will normally refer to a service that someone is billed for directly for Internet alone or sometimes as part of a bundle.."With a computer" includes those who said "Yes" to at least one of the following types of computers: Desktop or laptop; smartphone; tablet or other portable wireless computer; or some other type of computer..Caution should be used when comparing data for computer and Internet use before and after 2016. Changes in 2016 to the questions involving the wording as well as the response options resulted in changed response patterns in the data. Most noticeable are increases in overall computer ownership or use, the total of Internet subscriptions, satellite subscriptions, and cellular data plans for a smartphone or other mobile device. For more detailed information about these changes, see the 2016 American Community Survey Content Test Report for Computer and Internet Use located at https://www.census.gov/library/working-papers/2017/acs/2017_Lewis_01.html or the user note regarding changes in the 2016 questions located at https://www.census.gov/programs-surveys/acs/technical-documentation/user-notes/2017-03.html..The 2019 American Community Survey (ACS) data generally reflect the September 2018 Office of Management and Budget (OMB) delineations of metropolitan and micropolitan statistical areas. In certain instances the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB delineations due to differences in the effective dates of the geographic entities..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on Census 2010 data. As a result, data for urban and rural areas from the ACS do not necessarily reflec...
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau's Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties..Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the .Technical Documentation.. section......Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the .Methodology.. section..Source: U.S. Census Bureau, 2014-2018 American Community Survey 5-Year Estimates.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see .ACS Technical Documentation..). The effect of nonsampling error is not represented in these tables..Ancestry listed in this table refers to the total number of people who responded with a particular ancestry; for example, the estimate given for Russian represents the number of people who listed Russian as either their first or second ancestry. This table lists only the largest ancestry groups; see the Detailed Tables for more categories. Race and Hispanic origin groups are not included in this table because official data for those groups come from the Race and Hispanic origin questions rather than the ancestry question (see Demographic Table)..Methodological changes to citizenship edits may have affected citizenship data for those born in American Samoa. Users should be aware of these changes when using 2018 data or multi-year data containing data from 2018. For more information, see: .American Samoa Citizenship User Note....The Census Bureau introduced a new set of disability questions in the 2008 ACS questionnaire. Accordingly, comparisons of disability data from 2008 or later with data from prior years are not recommended. For more information on these questions and their evaluation in the 2006 ACS Content Test, see the .Evaluation Report Covering Disability....Data about computer and Internet use were collected by asking respondents to select "Yes" or "No" to each type of computer and each type of Internet subscription. Therefore, respondents were able to select more than one type of computer and more than one type of Internet subscription..The category "with a broadband Internet subscription" refers to those who said "Yes" to at least one of the following types of Internet subscriptions: Broadband such as cable, fiber optic, or DSL; a cellular data plan; satellite; or a fixed wireless subscription..An Internet "subscription" refers to a type of service that someone pays for to access the Internet such as a cellular data plan, broadband such as cable, fiber optic or DSL, or other type of service. This will normally refer to a service that someone is billed for directly for Internet alone or sometimes as part of a bundle.."With a computer" includes those who said "Yes" to at least one of the following types of computers: Desktop or laptop; smartphone; tablet or other portable wireless computer; or some other type of computer..In 2016, changes were made to the computer and Internet use questions, involving the wording as well as the response options. A crosswalk was used to map pre-2016 data to the post-2016 categories, enabling creation of 5-year data. For more detailed information about the 2016 changes, see the 2016 American Community Survey Content Test Report for Computer and Internet Use located at .https://www.census.gov/programs-surveys/acs/methodology/content-test.htm.. or the user note regarding changes in the 2016 questions located at .https://www.census.gov/programs-surveys/acs/technical-documentation/user-notes.html... For more detailed information about the crosswalk, see the user note regarding the crosswalk located at .https://www.census.gov/programs-surveys/acs/technical-documentation/user-notes.html....While the 2014-2018 American Community Survey (ACS) data generally reflect the February 2013 Office of Management and Budget (OMB) definitions of metropolitan and micropolitan statistical areas; in certain instances the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB definitions due to differences ...
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau's Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties..Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2017-2021 American Community Survey 5-Year Estimates.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Ancestry listed in this table refers to the total number of people who responded with a particular ancestry; for example, the estimate given for Russian represents the number of people who listed Russian as either their first or second ancestry. This table lists only the largest ancestry groups; see the Detailed Tables for more categories. Race and Hispanic origin groups are not included in this table because official data for those groups come from the Race and Hispanic origin questions rather than the ancestry question (see Demographic Table)..Methodological changes to citizenship edits may have affected citizenship data for those born in American Samoa. Users should be aware of these changes when using 2018 data or multi-year data containing data from 2018. For more information, see: American Samoa Citizenship User Note..The Census Bureau introduced a new set of disability questions in the 2008 ACS questionnaire. Accordingly, comparisons of disability data from 2008 or later with data from prior years are not recommended. For more information on these questions and their evaluation in the 2006 ACS Content Test, see the Evaluation Report Covering Disability..Data about computer and Internet use were collected by asking respondents to select "Yes" or "No" to each type of computer and each type of Internet subscription. Therefore, respondents were able to select more than one type of computer and more than one type of Internet subscription..The category "with a broadband Internet subscription" refers to those who said "Yes" to at least one of the following types of Internet subscriptions: Broadband such as cable, fiber optic, or DSL; a cellular data plan; satellite; a fixed wireless subscription; or other non-dial up subscription types..An Internet "subscription" refers to a type of service that someone pays for to access the Internet such as a cellular data plan, broadband such as cable, fiber optic or DSL, or other type of service. This will normally refer to a service that someone is billed for directly for Internet alone or sometimes as part of a bundle..With a computer includes those who said "Yes" to at least one of the following types of computers: Desktop or laptop; smartphone; tablet or other portable wireless computer; or some other type of computer..The "children of the householder" and "own children of the householder" concepts are combined in these estimates. For more information, please the following User Note ..The 2017-2021 American Community Survey (ACS) data generally reflect the March 2020 Office of Management and Budget (OMB) delineations of metropolitan and micropolitan statistical areas. In certain instances, the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB delineation lists due to differences in the effective dates of the geographic entities..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on Census 2010 data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the mar...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This study included 939 samples to represent the parental groups that contributed to the formation of the Brazilian population and 1050 individuals from the admixed population of São Paulo state, Brazil. The samples considered as parental groups included: African, European, Native American, and Japanese. To validate the AIM set usage for estimating Asian ancestry, we employed it in the analyses of 1050 individuals from São Paulo state, in Southeastern Brazil. This population was formed by the admixture of European (higher contribution), African and Native American populations, as well as, more recently, by a significant amount of Japanese individuals. Therefore, the São Paulo population is suitable to be analyzed in this study.
All participants have authorized the collection of their biological samples by signing a consent form and the ethical aspects of this study have been approved by the Ethics Committee (Santos et al. 2010).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Prasiola crispa, an aerial green alga, exhibits remarkable adaptability to the extreme conditions of Antarctica by forming layered colonies capable of utilizing far-red light for photosynthesis. Despite a recent report on the structure of P. crispa’s unique light-harvesting chlorophyll (Chl)-binding protein complex (Pc-frLHC), which facilitates far-red light absorption and uphill excitation energy transfer to photosystem II, the specific genes encoding the subunits of Pc-frLHC have not yet been identified. Here, we report a draft genome sequence of P. crispa strain 4113, originally isolated from soil samples on Ongul Island, Antarctica. We obtained a 92 Mbp sequence distributed in 1,045 scaffolds comprising 10,244 genes, reflecting 87.1% of the core eukaryotic gene set. Notably, 26 genes associated with the light-harvesting Chl a/b binding complex (LHC) were identified, including four Pc-frLHC genes, with similarity to a noncanonical Lhca gene with four transmembrane helices, such as Ot_Lhca6 in Ostreococcus tauri and Cr_LHCA2 in Chlamydomonas reinhardtii. A comparative analysis revealed that Pc-frLHC shares homology with certain Lhca genes found in Coccomyxa and Trebouxia species. This similarity indicates that Pc-frLHC has evolved from an ancestral Lhca gene with four transmembrane helices and branched out within the Trebouxiaceae family. Furthermore, RNA-seq analysis conducted during the initiation of Pc-frLHC gene induction under red light illumination indicated that Pc-frLHC genes were induced independently from other genes associated with photosystems or LHCs. Instead, the genes of transcription factors, helicases, chaperones, heat shock proteins, and components of blue light receptors were identified to coexpress with Pc-frLHC. Those kinds of information could provide insights into the expression mechanisms of Pc-frLHC and its evolutional development.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau's Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties..Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2017-2021 American Community Survey 5-Year Estimates.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Ancestry listed in this table refers to the total number of people who responded with a particular ancestry; for example, the estimate given for Russian represents the number of people who listed Russian as either their first or second ancestry. This table lists only the largest ancestry groups; see the Detailed Tables for more categories. Race and Hispanic origin groups are not included in this table because official data for those groups come from the Race and Hispanic origin questions rather than the ancestry question (see Demographic Table)..Methodological changes to citizenship edits may have affected citizenship data for those born in American Samoa. Users should be aware of these changes when using 2018 data or multi-year data containing data from 2018. For more information, see: American Samoa Citizenship User Note..The Census Bureau introduced a new set of disability questions in the 2008 ACS questionnaire. Accordingly, comparisons of disability data from 2008 or later with data from prior years are not recommended. For more information on these questions and their evaluation in the 2006 ACS Content Test, see the Evaluation Report Covering Disability..Data about computer and Internet use were collected by asking respondents to select "Yes" or "No" to each type of computer and each type of Internet subscription. Therefore, respondents were able to select more than one type of computer and more than one type of Internet subscription..The category "with a broadband Internet subscription" refers to those who said "Yes" to at least one of the following types of Internet subscriptions: Broadband such as cable, fiber optic, or DSL; a cellular data plan; satellite; a fixed wireless subscription; or other non-dial up subscription types..An Internet "subscription" refers to a type of service that someone pays for to access the Internet such as a cellular data plan, broadband such as cable, fiber optic or DSL, or other type of service. This will normally refer to a service that someone is billed for directly for Internet alone or sometimes as part of a bundle..With a computer includes those who said "Yes" to at least one of the following types of computers: Desktop or laptop; smartphone; tablet or other portable wireless computer; or some other type of computer..The "children of the householder" and "own children of the householder" concepts are combined in these estimates. For more information, please the following User Note ..The 2017-2021 American Community Survey (ACS) data generally reflect the March 2020 Office of Management and Budget (OMB) delineations of metropolitan and micropolitan statistical areas. In certain instances, the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB delineation lists due to differences in the effective dates of the geographic entities..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on Census 2010 data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the mar...
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau's Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties..Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2017-2021 American Community Survey 5-Year Estimates.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Ancestry listed in this table refers to the total number of people who responded with a particular ancestry; for example, the estimate given for Russian represents the number of people who listed Russian as either their first or second ancestry. This table lists only the largest ancestry groups; see the Detailed Tables for more categories. Race and Hispanic origin groups are not included in this table because official data for those groups come from the Race and Hispanic origin questions rather than the ancestry question (see Demographic Table)..Data for year of entry of the native population reflect the year of entry into the U.S. by people who were born in Puerto Rico or U.S. Island Areas or born outside the U.S. to a U.S. citizen parent and who subsequently moved to the U.S..Methodological changes to citizenship edits may have affected citizenship data for those born in American Samoa. Users should be aware of these changes when using 2018 data or multi-year data containing data from 2018. For more information, see: American Samoa Citizenship User Note..The Census Bureau introduced a new set of disability questions in the 2008 ACS questionnaire. Accordingly, comparisons of disability data from 2008 or later with data from prior years are not recommended. For more information on these questions and their evaluation in the 2006 ACS Content Test, see the Evaluation Report Covering Disability..Data about computer and Internet use were collected by asking respondents to select "Yes" or "No" to each type of computer and each type of Internet subscription. Therefore, respondents were able to select more than one type of computer and more than one type of Internet subscription..The category "with a broadband Internet subscription" refers to those who said "Yes" to at least one of the following types of Internet subscriptions: Broadband such as cable, fiber optic, or DSL; a cellular data plan; satellite; a fixed wireless subscription; or other non-dial up subscription types..An Internet "subscription" refers to a type of service that someone pays for to access the Internet such as a cellular data plan, broadband such as cable, fiber optic or DSL, or other type of service. This will normally refer to a service that someone is billed for directly for Internet alone or sometimes as part of a bundle..With a computer includes those who said "Yes" to at least one of the following types of computers: Desktop or laptop; smartphone; tablet or other portable wireless computer; or some other type of computer..The "children of the householder" and "own children of the householder" concepts are combined in these estimates. For more information, please the following User Note ..The 2017-2021 American Community Survey (ACS) data generally reflect the March 2020 Office of Management and Budget (OMB) delineations of metropolitan and micropolitan statistical areas. In certain instances, the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB delineation lists due to differences in the effective dates of the geographic entities..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on Census 2010 data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there w...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
European population genetic substructure was examined in a diverse set of >1,000 individuals of European descent, each genotyped with >300 K SNPs. Both STRUCTURE and principal component analyses (PCA) showed the largest division/principal component (PC) differentiated northern from southern European ancestry. A second PC further separated Italian, Spanish, and Greek individuals from those of Ashkenazi Jewish ancestry as well as distinguishing among northern European populations. In separate analyses of northern European participants other substructure relationships were discerned showing a west to east gradient. Application of this substructure information was critical in examining a real dataset in whole genome association (WGA) analyses for rheumatoid arthritis in European Americans to reduce false positive signals. In addition, two sets of European substructure ancestry informative markers (ESAIMs) were identified that provide substantial substructure information. The results provide further insight into European population genetic substructure and show that this information can be used for improving error rates in association testing of candidate genes and in replication studies of WGA scans.