100+ datasets found
  1. PCA R code

    • figshare.com
    txt
    Updated May 13, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pedro López-Gómez (2022). PCA R code [Dataset]. http://doi.org/10.6084/m9.figshare.19761649.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    May 13, 2022
    Dataset provided by
    Figsharehttp://figshare.com/
    figshare
    Authors
    Pedro López-Gómez
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    R code template utilised for the PCA analysis. It has no anotations. Article: Tryptophan Levels as a Marker of Auxins and Nitric Oxide signaling Authored by: Pedro López-Gómez; Edward Smith; Pedro Bota; Alfonso Cornejo; Marina Urra; Javier Buezo; Jose F. Moran

  2. R Code for PCA Analysis

    • figshare.com
    txt
    Updated Mar 18, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Christian Eckert; Andrea Polle; Johannes Ballauff (2022). R Code for PCA Analysis [Dataset]. http://doi.org/10.6084/m9.figshare.17031884.v2
    Explore at:
    txtAvailable download formats
    Dataset updated
    Mar 18, 2022
    Dataset provided by
    Figsharehttp://figshare.com/
    figshare
    Authors
    Christian Eckert; Andrea Polle; Johannes Ballauff
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    R Code for PCA analysis

  3. b

    Edmunds et al./FACS data for PCA/Exp_56 - Datasets - data.bris

    • data.bris.ac.uk
    Updated Apr 22, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Edmunds et al./FACS data for PCA/Exp_56 - Datasets - data.bris [Dataset]. https://data.bris.ac.uk/data/dataset/8531fef1351274ee45e5b8d7e63ada1d
    Explore at:
    Dataset updated
    Apr 22, 2023
    Description

    Edmunds et al./FACS data for PCA/Exp_56

  4. Data from: Detecting genomic signatures of natural selection with principal...

    • zenodo.org
    • explore.openaire.eu
    • +1more
    zip
    Updated May 27, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nicolas Duforet-Frebourg; Guillaume Laval; Eric Bazin; Michael G.B. Blum; Keurcien Luu; Nicolas Duforet-Frebourg; Guillaume Laval; Eric Bazin; Michael G.B. Blum; Keurcien Luu (2022). Data from: Detecting genomic signatures of natural selection with principal component analysis: application to the 1000 Genomes data [Dataset]. http://doi.org/10.5061/dryad.5s77q
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 27, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Nicolas Duforet-Frebourg; Guillaume Laval; Eric Bazin; Michael G.B. Blum; Keurcien Luu; Nicolas Duforet-Frebourg; Guillaume Laval; Eric Bazin; Michael G.B. Blum; Keurcien Luu
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    To characterize natural selection, various analytical methods for detecting candidate genomic regions have been developed. We propose to perform genome-wide scans of natural selection using principal component analysis (PCA). We show that the common FST index of genetic differentiation between populations can be viewed as the proportion of variance explained by the principal components. Considering the correlations between genetic variants and each principal component provides a conceptual framework to detect genetic variants involved in local adaptation without any prior definition of populations. To validate the PCA-based approach, we consider the 1000 Genomes data (phase 1) considering 850 individuals coming from Africa, Asia, and Europe. The number of genetic variants is of the order of 36 millions obtained with a low-coverage sequencing depth (3×). The correlations between genetic variation and each principal component provide well-known targets for positive selection (EDAR, SLC24A5, SLC45A2, DARC), and also new candidate genes (APPBPP2, TP1A1, RTTN, KCNMA, MYO5C) and noncoding RNAs. In addition to identifying genes involved in biological adaptation, we identify two biological pathways involved in polygenic adaptation that are related to the innate immune system (beta defensins) and to lipid metabolism (fatty acid omega oxidation). An additional analysis of European data shows that a genome scan based on PCA retrieves classical examples of local adaptation even when there are no well-defined populations. PCA-based statistics, implemented in the PCAdapt R package and the PCAdapt fast open-source software, retrieve well-known signals of human adaptation, which is encouraging for future whole-genome sequencing project, especially when defining populations is difficult.

  5. Data from: Biological reserves of the US Federal Protection Network (IUCN...

    • agdatacommons.nal.usda.gov
    bin
    Updated Jan 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Enric Batllori; Carol Miller; Marc-André Parisien; Sean A. Parks; Max A. Moritz (2025). Biological reserves of the US Federal Protection Network (IUCN categories I-IV) and PCA loadings used to characterize the climate space of the conterminous United States [Dataset]. http://doi.org/10.2737/RDS-2014-0016
    Explore at:
    binAvailable download formats
    Dataset updated
    Jan 22, 2025
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Authors
    Enric Batllori; Carol Miller; Marc-André Parisien; Sean A. Parks; Max A. Moritz
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Contiguous United States, United States
    Description

    This data publication contains a map of biological reserves, in the conterminous United States (US), larger than 500 hectares managed by four US federal agencies: Bureau of Land Management (BLM), Fishand Wildlife Service (FWS), Forest Service (FS), and National Parks Service (NPS). Within such US Federal Protection Network, only federal areas in conservation classifications corresponding to The World Conservation Union categories I to IV (IUCN 1994) are included. These categories include designated, candidate, and officially recommended wilderness areas; forest reserves; natural areas and landmarks; wildlife refuges; cooperative management and protection areas; and national parks, preserves, monuments, and conservation areas. This data publication also includes maps of the loadings of the first three axes of the Principal Component Analysis (PCA) used to characterize the climate space of the conterminous United States of America (CONUS). The PCA was performed using climate variables depicting annual and seasonal trends in temperature, precipitation, moisture index, relative humidity, as well as growing degree days and growing season length.These data were used within a quantitative classification that stratified the climatic variability of the conterminous United States to (a) evaluate the characteristics and rarity of the climate in federally managed areas, (b) determine cases where climate is not well represented by the network of protected federal land (i.e., a climate gap analysis).Original metadata date was 06/24/2014. Minor metadata updates were made on 12/13/2016 and 12/11/2024.

  6. q

    Using PCA to study small mammal biomechanics

    • qubeshub.org
    Updated May 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abagael West; Stephanie Smith (2025). Using PCA to study small mammal biomechanics [Dataset]. http://doi.org/10.25334/6KCX-M612
    Explore at:
    Dataset updated
    May 22, 2025
    Dataset provided by
    QUBES
    Authors
    Abagael West; Stephanie Smith
    Description

    In this lesson, students interpret a scatter plot showing the results of a principal components analysis (PCA). They view an interview with Dr. Stephanie Smith, who explains how PCA calculations work, and why she chose to use this analysis to visualize her data. Dr. Smith also discusses her journey becoming a scientist and describes a typical day at work.

  7. m

    Supplementary figures: slices, histograms & PCA

    • data.mendeley.com
    Updated Aug 12, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Thomas Vandorpe (2019). Supplementary figures: slices, histograms & PCA [Dataset]. http://doi.org/10.17632/3ppn393r6v.1
    Explore at:
    Dataset updated
    Aug 12, 2019
    Authors
    Thomas Vandorpe
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset comprises example slices, histograms and principal components analyses of all cores analyzed.

  8. f

    pca interaction network (Mycobacterium tuberculosis (strain ATCC 25618 /...

    • funcoup.org
    Updated May 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FunCoup (2025). pca interaction network (Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv)) [Dataset]. https://funcoup.org/quickSearch/pca%2683332/
    Explore at:
    Dataset updated
    May 22, 2025
    Dataset authored and provided by
    FunCoup
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    I6YEU0_MYCTU Pyruvate carboxylase

  9. Figure 2. D

    • figshare.com
    txt
    Updated Aug 8, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Takahiro Iwamiya; Bertrand-David Segard (2020). Figure 2. D [Dataset]. http://doi.org/10.6084/m9.figshare.12319316.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Aug 8, 2020
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Takahiro Iwamiya; Bertrand-David Segard
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    PCA of genes differentially expressed in VCF and VNCF.

  10. Nonrandom missing data can bias PCA inference of population genetic...

    • zenodo.org
    • datadryad.org
    vcf
    Updated Jun 3, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Xueling Yi; Xueling Yi; Emily Latch; Emily Latch (2022). Nonrandom missing data can bias PCA inference of population genetic structure [Dataset]. http://doi.org/10.5061/dryad.tqjq2bvwk
    Explore at:
    vcfAvailable download formats
    Dataset updated
    Jun 3, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Xueling Yi; Xueling Yi; Emily Latch; Emily Latch
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Population genetic studies in non-model systems increasingly use next-generation sequencing to obtain more loci, but such methods also generate more missing data that may affect downstream analyses. Here we focus on the Principal Component Analysis (PCA) which has been widely used to explore and visualize population structure with mean-imputed missing data. We simulated data of different population models with various total missingness (1%, 10%, 20%) introduced either randomly or biased among individuals or populations. We found that individuals biased with missing data would be dragged away from their real population clusters to the origin of PCA plots, making them indistinguishable from true admixed individuals and potentially leading to misinterpreted population structure. We also generated empirical data of the big brown bat (Eptesicus fuscus) using restriction site-associated DNA sequencing (RADseq). We filtered three data sets with 19.12%, 9.87%, and 1.35% total missingness, all showing nonrandom missing data with biased individuals dragged towards the PCA origin, consistent with results from simulations. We highlight the importance of considering missing data effects on PCA in non-model systems where nonrandom missing data are common due to varying sample quality. To help detect missing data effects, we suggest to 1) plot PCA with a color gradient showing per sample missingness, 2) interpret samples close to the PCA origin with extra caution, 3) explore filtering parameters with and without the missingness-biased samples, and 4) use complementary analyses (e.g., model-based methods) to cross-validate PCA results and help interpret population structure.

  11. Code for PCA

    • figshare.com
    txt
    Updated May 18, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andres Aguilar (2021). Code for PCA [Dataset]. http://doi.org/10.6084/m9.figshare.14502243.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    May 18, 2021
    Dataset provided by
    figshare
    Authors
    Andres Aguilar
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Code for PCA

  12. e

    DIA analysis of EPS-urine from PCa and BPH patients

    • ebi.ac.uk
    • data.niaid.nih.gov
    Updated Nov 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Licia Elvira Prestagiacomo (2023). DIA analysis of EPS-urine from PCa and BPH patients [Dataset]. https://www.ebi.ac.uk/pride/archive/projects/PXD035942
    Explore at:
    Dataset updated
    Nov 3, 2023
    Authors
    Licia Elvira Prestagiacomo
    Variables measured
    Proteomics
    Description

    The objective of the experiment was to compare the proteome of EPS-urine from PCa and BPH patients.

  13. e

    Pca transcription factor PcaQ

    • ebi.ac.uk
    Updated Dec 1, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2015). Pca transcription factor PcaQ [Dataset]. https://www.ebi.ac.uk/interpro/entry/IPR012787
    Explore at:
    Dataset updated
    Dec 1, 2015
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Members of this family are LysR-family transcription factors associated with operons for catabolism of protocatechuate . Members occur only in proteobacteria.

  14. PCA of Transcriptomic Profiles in Sweet Potato Leaves under Drought Stress

    • zenodo.org
    zip
    Updated Jul 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tao Yin; Tao Yin (2025). PCA of Transcriptomic Profiles in Sweet Potato Leaves under Drought Stress [Dataset]. http://doi.org/10.5281/zenodo.15848699
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jul 9, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Tao Yin; Tao Yin
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Supporting dataset for Figure 1a: Principal Component Analysis (PCA) of transcriptomic profiles in sweet potato leaves under drought stress.

    This dataset accompanies the article:

    **“Unveiling Stage-Specific Flavonoid Dynamics Underlying Drought Tolerance in Sweet Potato (*Ipomoea batatas* L.) via Integrative Transcriptomic and Metabolomic Analyses”**

    Figure 1a illustrates PCA results based on global gene expression patterns from sweet potato leaves sampled under control and drought stress at two developmental stages. The PCA highlights clear clustering between treatment groups, indicating distinct transcriptomic responses.

    ### This dataset includes:
    - Gene expression matrix (Sheet 1 of `PCA_transcriptomics_data.xlsx`)
    - Sample group metadata (Sheet 2 of the same file)
    - R script used for PCA analysis and figure generation (`PCA_transcriptomics_plot.R`)
    - Final PCA figure (`PCA_transcriptomics_plot.pdf`)
    - Metadata (`README.md`) and license file (`LICENSE`)

    This resource enables full reproducibility of Figure 1a and facilitates open reuse in plant drought transcriptomics research.

  15. PCA-Clustering

    • kaggle.com
    Updated Dec 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Melville Pais (2024). PCA-Clustering [Dataset]. https://www.kaggle.com/datasets/melvillepais/pca-clustering/suggestions
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 23, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Melville Pais
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Dataset

    This dataset was created by Melville Pais

    Released under CC0: Public Domain

    Contents

  16. E

    PCa mtDNA data

    • ega-archive.org
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    PCa mtDNA data [Dataset]. https://ega-archive.org/datasets/EGAD00001005945
    Explore at:
    License

    https://ega-archive.org/dacs/EGAC00001001463https://ega-archive.org/dacs/EGAC00001001463

    Description

    50 paired benign/cancer samples from prostate tissue generated in 2 different runs - on 3 plates on the IonTorrent Proton. Total of 200 fastq.gz single end runs. Read length ~300 bp. %GC 44 Sequences per file approx 1 Mio.

  17. N

    kittysaw1000's temporary collection: pca 3 again

    • neurovault.org
    nifti
    Updated Apr 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). kittysaw1000's temporary collection: pca 3 again [Dataset]. http://identifiers.org/neurovault.image:859054
    Explore at:
    niftiAvailable download formats
    Dataset updated
    Apr 5, 2024
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    glassbrain

    Collection description

    None

    Subject species

    homo sapiens

    Modality

    fMRI-BOLD

    Cognitive paradigm (task)

    movie watching task

    Map type

    Z

  18. d

    Data from: Individual life histories: Neither slow nor fast, just diverse

    • search.dataone.org
    • dataone.org
    • +2more
    Updated May 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Joanie Van de Walle; Rémi Fay; Jean-Michel Gaillard; Fanie Pelletier; Sandra Hamel; Marlène Gamelon; Christophe Barbraud; F. Guillaume Blanchet; Daniel T. Blumstein; Anne Charmantier; Karine Delord; Benjamin Larue; Julien Martin; James A. Mills; Emmanuel Milot; Francine M. Mayer; Jay Rotella; Bernt-Erik Saether; Céline Teplitsky; Martijn van de Pol; Marcel E. Visser; Caitlin P. Wells; John Yarrall; Stéphanie Jenouvrier (2025). Individual life histories: Neither slow nor fast, just diverse [Dataset]. http://doi.org/10.5061/dryad.3bk3j9kpm
    Explore at:
    Dataset updated
    May 20, 2025
    Dataset provided by
    Dryad Digital Repository
    Authors
    Joanie Van de Walle; Rémi Fay; Jean-Michel Gaillard; Fanie Pelletier; Sandra Hamel; Marlène Gamelon; Christophe Barbraud; F. Guillaume Blanchet; Daniel T. Blumstein; Anne Charmantier; Karine Delord; Benjamin Larue; Julien Martin; James A. Mills; Emmanuel Milot; Francine M. Mayer; Jay Rotella; Bernt-Erik Saether; Céline Teplitsky; Martijn van de Pol; Marcel E. Visser; Caitlin P. Wells; John Yarrall; Stéphanie Jenouvrier
    Time period covered
    Jan 1, 2023
    Description

    The slow-fast continuum is known to structure variation in life-history strategies across species. Within populations, it is also assumed to structure individual life histories, yet evidence of its existence remains unclear. We formally assessed the presence of a slow-fast continuum of life histories both within populations and across species using detailed individual-based data for 17 bird and mammal species with contrasting life histories. We estimated adult lifespan, age at first reproduction, breeding frequency and fecundity, and identified the main axes of variation using Principal Component Analyses. The slow-fast continuum was the main axis of life-history variation across species, but within populations individual variation did not follow the slow-fast continuum in any species. This suggests that individual life histories are neither slow nor fast, but rather follow an idiosyncratic pattern across species because of relative differences in the importance of processes such as sto...

  19. Preprocessing-2 of Titanic Dataset

    • kaggle.com
    Updated Jul 25, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dylan Amelot (2017). Preprocessing-2 of Titanic Dataset [Dataset]. https://www.kaggle.com/datasets/spektrum/preprocessing2-of-titanic-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 25, 2017
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Dylan Amelot
    License

    http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/

    Description

    Content

    PCA was performed on Preprocessing-1 of Titanic Dataset and this Dataset correspond to the projection of 8 of the features.

    Dataset corresponding Kernel : https://www.kaggle.com/spektrum/intro-pca-kmeans-and-t-sne-on-titanic-dataset

  20. Principal components analyses (PCA) of invertebrate groups inhabiting a...

    • doi.pangaea.de
    • datadiscoverystudio.org
    • +1more
    html, tsv
    Updated Jun 8, 2007
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mario J Villegas; Jürgen Laudien; Walter Sielfeld; Wolf E Arntz (2007). Principal components analyses (PCA) of invertebrate groups inhabiting a Macrocystis integrifolia bed off Chipana (northern Chile) [Dataset]. http://doi.org/10.1594/PANGAEA.615388
    Explore at:
    tsv, htmlAvailable download formats
    Dataset updated
    Jun 8, 2007
    Dataset provided by
    PANGAEA
    Authors
    Mario J Villegas; Jürgen Laudien; Walter Sielfeld; Wolf E Arntz
    Time period covered
    Oct 15, 2005 - Aug 21, 2006
    Area covered
    Variables measured
    Species, Factor 1, Factor 2, Factor 3, Factor 4, Factor 5
    Description

    This dataset is about: Principal components analyses (PCA) of invertebrate groups inhabiting a Macrocystis integrifolia bed off Chipana (northern Chile). 180 quadrats

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Pedro López-Gómez (2022). PCA R code [Dataset]. http://doi.org/10.6084/m9.figshare.19761649.v1
Organization logoOrganization logo

PCA R code

Explore at:
5 scholarly articles cite this dataset (View in Google Scholar)
txtAvailable download formats
Dataset updated
May 13, 2022
Dataset provided by
Figsharehttp://figshare.com/
figshare
Authors
Pedro López-Gómez
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

R code template utilised for the PCA analysis. It has no anotations. Article: Tryptophan Levels as a Marker of Auxins and Nitric Oxide signaling Authored by: Pedro López-Gómez; Edward Smith; Pedro Bota; Alfonso Cornejo; Marina Urra; Javier Buezo; Jose F. Moran

Search
Clear search
Close search
Google apps
Main menu