Facebook
TwitterThis chapter presents theoretical and practical aspects associated to the implementation of a combined model-based/data-driven approach for failure prognostics based on particle filtering algorithms, in which the current esti- mate of the state PDF is used to determine the operating condition of the system and predict the progression of a fault indicator, given a dynamic state model and a set of process measurements. In this approach, the task of es- timating the current value of the fault indicator, as well as other important changing parameters in the environment, involves two basic steps: the predic- tion step, based on the process model, and an update step, which incorporates the new measurement into the a priori state estimate. This framework allows to estimate of the probability of failure at future time instants (RUL PDF) in real-time, providing information about time-to- failure (TTF) expectations, statistical confidence intervals, long-term predic- tions; using for this purpose empirical knowledge about critical conditions for the system (also referred to as the hazard zones). This information is of paramount significance for the improvement of the system reliability and cost-effective operation of critical assets, as it has been shown in a case study where feedback correction strategies (based on uncertainty measures) have been implemented to lengthen the RUL of a rotorcraft transmission system with propagating fatigue cracks on a critical component. Although the feed- back loop is implemented using simple linear relationships, it is helpful to provide a quick insight into the manner that the system reacts to changes on its input signals, in terms of its predicted RUL. The method is able to manage non-Gaussian pdf’s since it includes concepts such as nonlinear state estimation and confidence intervals in its formulation. Real data from a fault seeded test showed that the proposed framework was able to anticipate modifications on the system input to lengthen its RUL. Results of this test indicate that the method was able to successfully suggest the correction that the system required. In this sense, future work will be focused on the development and testing of similar strategies using different input-output uncertainty metrics.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Due to increasing use of technology-enhanced educational assessment, data mining methods have been explored to analyse process data in log files from such assessment. However, most studies were limited to one data mining technique under one specific scenario. The current study demonstrates the usage of four frequently used supervised techniques, including Classification and Regression Trees (CART), gradient boosting, random forest, support vector machine (SVM), and two unsupervised methods, Self-organizing Map (SOM) and k-means, fitted to one assessment data. The USA sample (N = 426) from the 2012 Program for International Student Assessment (PISA) responding to problem-solving items is extracted to demonstrate the methods. After concrete feature generation and feature selection, classifier development procedures are implemented using the illustrated techniques. Results show satisfactory classification accuracy for all the techniques. Suggestions for the selection of classifiers are presented based on the research questions, the interpretability and the simplicity of the classifiers. Interpretations for the results from both supervised and unsupervised learning methods are provided.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data supporting the Master thesis "Monitoring von Open Data Praktiken - Herausforderungen beim Auffinden von Datenpublikationen am Beispiel der Publikationen von Forschenden der TU Dresden" (Monitoring open data practices - challenges in finding data publications using the example of publications by researchers at TU Dresden) - Katharina Zinke, Institut für Bibliotheks- und Informationswissenschaften, Humboldt-Universität Berlin, 2023
This ZIP-File contains the data the thesis is based on, interim exports of the results and the R script with all pre-processing, data merging and analyses carried out. The documentation of the additional, explorative analysis is also available. The actual PDFs and text files of the scientific papers used are not included as they are published open access.
The folder structure is shown below with the file names and a brief description of the contents of each file. For details concerning the analyses approach, please refer to the master's thesis (publication following soon).
## Data sources
Folder 01_SourceData/
- PLOS-Dataset_v2_Mar23.csv (PLOS-OSI dataset)
- ScopusSearch_ExportResults.csv (export of Scopus search results from Scopus)
- ScopusSearch_ExportResults.ris (export of Scopus search results from Scopus)
- Zotero_Export_ScopusSearch.csv (export of the file names and DOIs of the Scopus search results from Zotero)
## Automatic classification
Folder 02_AutomaticClassification/
- (NOT INCLUDED) PDFs folder (Folder for PDFs of all publications identified by the Scopus search, named AuthorLastName_Year_PublicationTitle_Title)
- (NOT INCLUDED) PDFs_to_text folder (Folder for all texts extracted from the PDFs by ODDPub, named AuthorLastName_Year_PublicationTitle_Title)
- PLOS_ScopusSearch_matched.csv (merge of the Scopus search results with the PLOS_OSI dataset for the files contained in both)
- oddpub_results_wDOIs.csv (results file of the ODDPub classification)
- PLOS_ODDPub.csv (merge of the results file of the ODDPub classification with the PLOS-OSI dataset for the publications contained in both)
## Manual coding
Folder 03_ManualCheck/
- CodeSheet_ManualCheck.txt (Code sheet with descriptions of the variables for manual coding)
- ManualCheck_2023-06-08.csv (Manual coding results file)
- PLOS_ODDPub_Manual.csv (Merge of the results file of the ODDPub and PLOS-OSI classification with the results file of the manual coding)
## Explorative analysis for the discoverability of open data
Folder04_FurtherAnalyses
Proof_of_of_Concept_Open_Data_Monitoring.pdf (Description of the explorative analysis of the discoverability of open data publications using the example of a researcher) - in German
## R-Script
Analyses_MA_OpenDataMonitoring.R (R-Script for preparing, merging and analyzing the data and for performing the ODDPub algorithm)
Facebook
TwitterThis chapter presents theoretical and practical aspects associated to the implementation of a combined model-based/data-driven approach for failure prognostics based on particle filtering algorithms, in which the current esti- mate of the state PDF is used to determine the operating condition of the system and predict the progression of a fault indicator, given a dynamic state model and a set of process measurements. In this approach, the task of es- timating the current value of the fault indicator, as well as other important changing parameters in the environment, involves two basic steps: the predic- tion step, based on the process model, and an update step, which incorporates the new measurement into the a priori state estimate. This framework allows to estimate of the probability of failure at future time instants (RUL PDF) in real-time, providing information about time-to- failure (TTF) expectations, statistical confidence intervals, long-term predic- tions; using for this purpose empirical knowledge about critical conditions for the system (also referred to as the hazard zones). This information is of paramount significance for the improvement of the system reliability and cost-effective operation of critical assets, as it has been shown in a case study where feedback correction strategies (based on uncertainty measures) have been implemented to lengthen the RUL of a rotorcraft transmission system with propagating fatigue cracks on a critical component. Although the feed- back loop is implemented using simple linear relationships, it is helpful to provide a quick insight into the manner that the system reacts to changes on its input signals, in terms of its predicted RUL. The method is able to manage non-Gaussian pdf’s since it includes concepts such as nonlinear state estimation and confidence intervals in its formulation. Real data from a fault seeded test showed that the proposed framework was able to anticipate modifications on the system input to lengthen its RUL. Results of this test indicate that the method was able to successfully suggest the correction that the system required. In this sense, future work will be focused on the development and testing of similar strategies using different input-output uncertainty metrics.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Biological data analysis is the key to new discoveries in disease biology and drug discovery. The rapid proliferation of high-throughput ‘omics’ data has necessitated a need for tools and platforms that allow the researchers to combine and analyse different types of biological data and obtain biologically relevant knowledge. We had previously developed TargetMine, an integrative data analysis platform for target prioritisation and broad-based biological knowledge discovery. Here, we describe the newly modelled biological data types and the enhanced visual and analytical features of TargetMine. These enhancements have included: an enhanced coverage of gene–gene relations, small molecule metabolite to pathway mappings, an improved literature survey feature, and in silico prediction of gene functional associations such as protein–protein interactions and global gene co-expression. We have also described two usage examples on trans-omics data analysis and extraction of gene-disease associations using MeSH term descriptors. These examples have demonstrated how the newer enhancements in TargetMine have contributed to a more expansive coverage of the biological data space and can help interpret genotype–phenotype relations. TargetMine with its auxiliary toolkit is available at https://targetmine.mizuguchilab.org. The TargetMine source code is available at https://github.com/chenyian-nibio/targetmine-gradle.
Facebook
TwitterMaizeMine is the data mining resource of the Maize Genetics and Genome Database (MaizeGDB; http://maizemine.maizegdb.org). It enables researchers to create and export customized annotation datasets that can be merged with their own research data for use in downstream analyses. MaizeMine uses the InterMine data warehousing system to integrate genomic sequences and gene annotations from the Zea mays B73 RefGen_v3 and B73 RefGen_v4 genome assemblies, Gene Ontology annotations, single nucleotide polymorphisms, protein annotations, homologs, pathways, and precomputed gene expression levels based on RNA-seq data from the Z. mays B73 Gene Expression Atlas. MaizeMine also provides database cross references between genes of alternative gene sets from Gramene and NCBI RefSeq. MaizeMine includes several search tools, including a keyword search, built-in template queries with intuitive search menus, and a QueryBuilder tool for creating custom queries. The Genomic Regions search tool executes queries based on lists of genome coordinates, and supports both the B73 RefGen_v3 and B73 RefGen_v4 assemblies. The List tool allows you to upload identifiers to create custom lists, perform set operations such as unions and intersections, and execute template queries with lists. When used with gene identifiers, the List tool automatically provides gene set enrichment for Gene Ontology (GO) and pathways, with a choice of statistical parameters and background gene sets. With the ability to save query outputs as lists that can be input to new queries, MaizeMine provides limitless possibilities for data integration and meta-analysis.
Facebook
Twitterhttp://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
Citation Request: This dataset is public available for research. The details are described in [Cortez et al., 2009]. Please include this citation if you plan to use this database:
P. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis. Modeling wine preferences by data mining from physicochemical properties. In Decision Support Systems, Elsevier, 47(4):547-553. ISSN: 0167-9236.
Available at: [@Elsevier] http://dx.doi.org/10.1016/j.dss.2009.05.016 [Pre-press (pdf)] http://www3.dsi.uminho.pt/pcortez/winequality09.pdf [bib] http://www3.dsi.uminho.pt/pcortez/dss09.bib
Title: Wine Quality
Sources Created by: Paulo Cortez (Univ. Minho), Antonio Cerdeira, Fernando Almeida, Telmo Matos and Jose Reis (CVRVV) @ 2009
Past Usage:
P. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis. Modeling wine preferences by data mining from physicochemical properties. In Decision Support Systems, Elsevier, 47(4):547-553. ISSN: 0167-9236.
In the above reference, two datasets were created, using red and white wine samples. The inputs include objective tests (e.g. PH values) and the output is based on sensory data (median of at least 3 evaluations made by wine experts). Each expert graded the wine quality between 0 (very bad) and 10 (very excellent). Several data mining methods were applied to model these datasets under a regression approach. The support vector machine model achieved the best results. Several metrics were computed: MAD, confusion matrix for a fixed error tolerance (T), etc. Also, we plot the relative importances of the input variables (as measured by a sensitivity analysis procedure).
Relevant Information:
The two datasets are related to red and white variants of the Portuguese "Vinho Verde" wine. For more details, consult: http://www.vinhoverde.pt/en/ or the reference [Cortez et al., 2009]. Due to privacy and logistic issues, only physicochemical (inputs) and sensory (the output) variables are available (e.g. there is no data about grape types, wine brand, wine selling price, etc.).
These datasets can be viewed as classification or regression tasks. The classes are ordered and not balanced (e.g. there are munch more normal wines than excellent or poor ones). Outlier detection algorithms could be used to detect the few excellent or poor wines. Also, we are not sure if all input variables are relevant. So it could be interesting to test feature selection methods.
Number of Instances: red wine - 1599; white wine - 4898.
Number of Attributes: 11 + output attribute
Note: several of the attributes may be correlated, thus it makes sense to apply some sort of feature selection.
Attribute information:
For more information, read [Cortez et al., 2009].
Input variables (based on physicochemical tests): 1 - fixed acidity (tartaric acid - g / dm^3) 2 - volatile acidity (acetic acid - g / dm^3) 3 - citric acid (g / dm^3) 4 - residual sugar (g / dm^3) 5 - chlorides (sodium chloride - g / dm^3 6 - free sulfur dioxide (mg / dm^3) 7 - total sulfur dioxide (mg / dm^3) 8 - density (g / cm^3) 9 - pH 10 - sulphates (potassium sulphate - g / dm3) 11 - alcohol (% by volume) Output variable (based on sensory data): 12 - quality (score between 0 and 10)
Missing Attribute Values: None
Description of attributes:
1 - fixed acidity: most acids involved with wine or fixed or nonvolatile (do not evaporate readily)
2 - volatile acidity: the amount of acetic acid in wine, which at too high of levels can lead to an unpleasant, vinegar taste
3 - citric acid: found in small quantities, citric acid can add 'freshness' and flavor to wines
4 - residual sugar: the amount of sugar remaining after fermentation stops, it's rare to find wines with less than 1 gram/liter and wines with greater than 45 grams/liter are considered sweet
5 - chlorides: the amount of salt in the wine
6 - free sulfur dioxide: the free form of SO2 exists in equilibrium between molecular SO2 (as a dissolved gas) and bisulfite ion; it prevents microbial growth and the oxidation of wine
7 - total sulfur dioxide: amount of free and bound forms of S02; in low concentrations, SO2 is mostly undetectable in wine, but at free SO2 concentrations over 50 ppm, SO2 becomes evident in the nose and taste of wine
8 - density: the density of water is close to that of water depending on the percent alcohol and sugar content
9 - pH: describes how acidic or basic a wine is on a scale from 0 (very acidic) to 14 (very basic); most wines are between 3-4 on the pH scale
10 - sulphates: a wine additive which can contribute to sulfur dioxide gas (S02) levels, wich acts as an antimicrobial and antioxidant
11 - alcohol: the percent alcohol content of the wine
Output variable (based on sensory data): 12 - quality (score between 0 and 10)
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Les données récoltées sont sur le sujet "Data mining and sentiment analysis on Twitter and Facebook". Ce jeu de donnée contient la liste des attributs principaux suivants :
titles, titre du fichier PDF,
authors, auteurs du fichier PDF,
years, année de création du fichier PDF,
ncitedby, nombre de citation,
linkfiles, liens du fichier PDF,
mais également des métadonnées.
La récupération du jeu de données a été récolté sur Google Scholar. Plusieurs recherches sur Google Scholar ont été faites pour ce dernier (voir liens ci-dessous) :
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=twitter+data+mining+filetype%3Apdf&btnG=
Facebook
Twitterhttps://paper.erudition.co.in/termshttps://paper.erudition.co.in/terms
Question Paper Solutions of chapter Module II of Data Warehousing and Data Mining, 7th Semester , Computer Science and Engineering
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The full text of this article can be freely accessed on the publisher's website.
Facebook
Twitterhttps://paper.erudition.co.in/termshttps://paper.erudition.co.in/terms
Question Paper Solutions of Data Warehousing and Data Mining (Old),7th Semester,Computer Science and Engineering,Maulana Abul Kalam Azad University of Technology
Facebook
TwitterThis dataset presents tabular data and Excel workbooks used to analyze single-well aquifer tests in pumping wells and slug tests in monitoring wells near Long Canyon. The data also include pdf outputs from the analysis program, Aqtesolv (Duffield, 2007). The data are presented in two zipped files, (1) single-well aquifer tests in pumping wells and (2) slug tests in monitoring wells. The slug-test data were supplied by Newmont Mining Corporation and collected by Golder and Associates in 2011. Reference Cited: Duffield, G.M., 2007, AQTESOLV for windows: Version 4.5 User’s Guide, HydroSOLV, Inc. Reston, VA, p. 530, at, http://www.aqtesolv.com/download/aqtw20070719.pdf.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Dataset used to generate figure 6 and 7.Figure 6: Analysis of human breast cancer (Block A Section 1), from 10XGenomics Visium Spatial Gene Expression 1.0.0. demonstration samples. A) SIMLR partitioning in 9 clusters (figure6and7/HBC_BAS1/Results_simlr/raw-counts/HBC_BAS1_expr-var-ann_matrix/9/HBC_BAS1_expr-var-ann_matrix_Stability_Plot.pdf). B) Cell stability score plot for SIMLR clusters in A (figure6and7/HBC_BAS1/Results_simlr/raw-counts/HBC_BAS1_expr-var-ann_matrix/9/HBC_BAS1_expr-var-ann_matrix_Stability_Plot.pdf. C) SIMLR clusters location in the tissue section (figure6and7/HBC_BAS1/Results_simlr/raw-counts/HBC_BAS1_expr-var-ann_matrix/9/HBC_BAS1_expr-var-ann_matrix_spatial_Stability.pdf). D) Hematoxylin and eosin image (figure6and7/HBC_BAS1/spatial/V1_Breast_Cancer_Block_A_Section_1_image.tif).Figure 6: Analysis of human breast cancer (Block A Section 1), from 10XGenomics Visium Spatial Gene Expression 1.0.0. demonstration samples. A) SIMLR partitioning in 9 clusters (figure6and7/HBC_BAS1/Results_simlr/raw-counts/HBC_BAS1_expr-var-ann_matrix/9/HBC_BAS1_expr-var-ann_matrix_Stability_Plot.pdf). B) Cell stability score plot for SIMLR clusters in A (figure6and7/HBC_BAS1/Results_simlr/raw-counts/HBC_BAS1_expr-var-ann_matrix/9/HBC_BAS1_expr-var-ann_matrix_Stability_Plot.pdf. C) SIMLR clusters location in the tissue section (figure6and7/HBC_BAS1/Results_simlr/raw-counts/HBC_BAS1_expr-var-ann_matrix/9/HBC_BAS1_expr-var-ann_matrix_spatial_Stability.pdf). D) Hematoxylin and eosin image (figure6and7/HBC_BAS1/spatial/V1_Breast_Cancer_Block_A_Section_1_image.tif).Figure 7: Information contents extracted by SCA analysis using a TF-based latent space. A) QCC (figure6and7/HBC_BAS1/Results_simlr/raw-counts/HBC_BAS1_expr-var-ann_matrix/9/HBC_TF_SIMLRV2/9/HBC_BAS1_expr-var-ann_matrix_stabilityPlot.pdf). B) QCM (figure6and7/HBC_BAS1/Results_simlr/raw-counts/HBC_BAS1_expr-var-ann_matrix/9/HBC_TF_SIMLRV2/9/HBC_BAS1_expr-var-ann_matrix_stabilityPlotUNBIAS.pdf). C) QCM/QCC plot, where only cluster 7 show, for the majority of the cells, both QCC and QCM greater than 0.5 (figure6and7/HBC_BAS1/Results_simlr/raw-counts/HBC_BAS1_expr-var-ann_matrix/9/HBC_TF_SIMLRV2/9/HBC_BAS1_expr-var-ann_matrix_StabilitySignificativityJittered.pdf). D) COMET analysis of SCA latent space. SOX5 was detected as first top ranked gene specific for cluster 7, using as input for COMET the latent space frequency table (figure6and7/HBC_BAS1/Results_simlr/raw-counts/HBC_BAS1_expr-var-ann_matrix/9/outputvis/cluster_7_singleton/rank_1.png). Input counts table for SCA analysis is made by raw counts.
Facebook
TwitterTumor microenvironment (TME) plays a crucial role in the initiation and progression of lung adenocarcinoma (LUAD); however, there is still a challenge in understanding the dynamic modulation of the immune and stromal components in TME. In the presented study, we applied CIBERSORT and ESTIMATE computational methods to calculate the proportion of tumor-infiltrating immune cell (TIC) and the amount of immune and stromal components in 551 LUAD cases from The Cancer Genome Atlas (TCGA) database. The differentially expressed genes (DEGs) were analyzed by COX regression analysis and protein–protein interaction (PPI) network construction. Then, Bruton tyrosine kinase (BTK) was determined as a predictive factor by the intersection analysis of univariate COX and PPI. Further analysis revealed that BTK expression was negatively correlated with the clinical pathologic characteristics (clinical stage, distant metastasis) and positively correlated with the survival of LUAD patients. Gene Set Enrichment Analysis (GSEA) showed that the genes in the high-expression BTK group were mainly enriched in immune-related activities. In the low-expression BTK group, the genes were enriched in metabolic pathways. CIBERSORT analysis for the proportion of TICs revealed that B-cell memory and CD8+ T cells were positively correlated with BTK expression, suggesting that BTK might be responsible for the preservation of immune-dominant status for TME. Thus, the levels of BTK might be useful for outlining the prognosis of LUAD patients and especially be a clue that the status of TME transition from immune-dominant to metabolic activity, which offered an extra insight for therapeutics of LUAD.
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
Data Science Platform Market Size 2025-2029
The data science platform market size is valued to increase USD 763.9 million, at a CAGR of 40.2% from 2024 to 2029. Integration of AI and ML technologies with data science platforms will drive the data science platform market.
Major Market Trends & Insights
North America dominated the market and accounted for a 48% growth during the forecast period.
By Deployment - On-premises segment was valued at USD 38.70 million in 2023
By Component - Platform segment accounted for the largest market revenue share in 2023
Market Size & Forecast
Market Opportunities: USD 1.00 million
Market Future Opportunities: USD 763.90 million
CAGR : 40.2%
North America: Largest market in 2023
Market Summary
The market represents a dynamic and continually evolving landscape, underpinned by advancements in core technologies and applications. Key technologies, such as machine learning and artificial intelligence, are increasingly integrated into data science platforms to enhance predictive analytics and automate data processing. Additionally, the emergence of containerization and microservices in data science platforms enables greater flexibility and scalability. However, the market also faces challenges, including data privacy and security risks, which necessitate robust compliance with regulations.
According to recent estimates, the market is expected to account for over 30% of the overall big data analytics market by 2025, underscoring its growing importance in the data-driven business landscape.
What will be the Size of the Data Science Platform Market during the forecast period?
Get Key Insights on Market Forecast (PDF) Request Free Sample
How is the Data Science Platform Market Segmented and what are the key trends of market segmentation?
The data science platform industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Deployment
On-premises
Cloud
Component
Platform
Services
End-user
BFSI
Retail and e-commerce
Manufacturing
Media and entertainment
Others
Sector
Large enterprises
SMEs
Application
Data Preparation
Data Visualization
Machine Learning
Predictive Analytics
Data Governance
Others
Geography
North America
US
Canada
Europe
France
Germany
UK
Middle East and Africa
UAE
APAC
China
India
Japan
South America
Brazil
Rest of World (ROW)
By Deployment Insights
The on-premises segment is estimated to witness significant growth during the forecast period.
In the dynamic and evolving the market, big data processing is a key focus, enabling advanced model accuracy metrics through various data mining methods. Distributed computing and algorithm optimization are integral components, ensuring efficient handling of large datasets. Data governance policies are crucial for managing data security protocols and ensuring data lineage tracking. Software development kits, model versioning, and anomaly detection systems facilitate seamless development, deployment, and monitoring of predictive modeling techniques, including machine learning algorithms, regression analysis, and statistical modeling. Real-time data streaming and parallelized algorithms enable real-time insights, while predictive modeling techniques and machine learning algorithms drive business intelligence and decision-making.
Cloud computing infrastructure, data visualization tools, high-performance computing, and database management systems support scalable data solutions and efficient data warehousing. ETL processes and data integration pipelines ensure data quality assessment and feature engineering techniques. Clustering techniques and natural language processing are essential for advanced data analysis. The market is witnessing significant growth, with adoption increasing by 18.7% in the past year, and industry experts anticipate a further expansion of 21.6% in the upcoming period. Companies across various sectors are recognizing the potential of data science platforms, leading to a surge in demand for scalable, secure, and efficient solutions.
API integration services and deep learning frameworks are gaining traction, offering advanced capabilities and seamless integration with existing systems. Data security protocols and model explainability methods are becoming increasingly important, ensuring transparency and trust in data-driven decision-making. The market is expected to continue unfolding, with ongoing advancements in technology and evolving business needs shaping its future trajectory.
Request Free Sample
The On-premises segment was valued at USD 38.70 million in 2019 and showed
Facebook
TwitterThe visit of an online shop by a possible customer is also called a session. During a session the visitor clicks on products in order to see the corresponding detail page. Furthermore, he possibly will add or remove products to/from his shopping basket. At the end of a session it is possible that one or several products from the shopping basket will be ordered. The activities of the user are also called transactions. The goal of the analysis is to predict whether the visitor will place an order or not on the basis of the transaction data collected during the session.
In the first task historical shop data are given consisting of the session activities inclusive of the associated information whether an order was placed or not. These data can be used in order to subsequently make order forecasts for other session activities in the same shop. Of course, the real outcome of the sessions for this set is not known. Thus, the first task can be understood as a classical data mining problem.
The second task deals with the online scenario. In this context the participants are to implement an agent learning on the basis of transactions. That means that the agent successively receives the individual transactions and has to make a forecast for each of them with respect to the outcome of the shopping cart transaction. This task maps the practice scenario in the best possible way in the case that a transaction-based forecast is required and a corresponding algorithm should learn in an adaptive manner.
For the individual tasks anonymised real shop data are provided in the form of structured text files consisting of individual data sets. The data sets represent in each case transactions in the shop and may contain redundant information. For the data, in particular the following applies:
In concrete terms, only the array names of the attached document “*features.pdf*” in their respective sequence will be used as column headings. The corresponding value ranges are listed there, too.
The training file for task 1 is “*transact_train.txt*“) contains all data arrays of the document, whereas the corresponding classification file (“*transact_class.txt*”) of course does not contain the target attribute “*order*”.
In task 2 data in the form of a string array are transferred to the implementations of the participants by means of a method. The individual fields of the array contain the same data arrays that are listed in “*features.pdf*”–also without the target attribute “*order*”–and exactly in the sequence used there.
This dataset is publicly available in the data-mining-cup-website.
Facebook
TwitterThe subtilase family (S8), a member of the clan SB of serine proteases are ubiquitous in all kingdoms of life and fulfil different physiological functions. Subtilases are divided in several groups and especially subtilisins are of interest as they are used in various industrial sectors. Therefore, we searched for new subtilisin sequences of the family Bacillaceae using a data mining approach. The obtained 1,400 sequences were phylogenetically classified in the context of the subtilase family. This required an updated comprehensive overview of the different groups within this family. To fill this gap, we conducted a phylogenetic survey of the S8 family with characterised holotypes derived from the MEROPS database. The analysis revealed the presence of eight previously uncharacterised groups and 13 subgroups within the S8 family. The sequences that emerged from the data mining with the set filter parameters were mainly assigned to the subtilisin subgroups of true subtilisins, high-alkaline subtilisins, and phylogenetically intermediate subtilisins and represent an excellent source for new subtilisin candidates.
Facebook
TwitterPoints of Diversion (POD): Depicts the location of each water right diversion point (POD) and provides basic information about the associated water right. All current and individually held water rights are shown in this data set except for those held by irrigation districts, applications, temporary transfers, instream leases, and limited licenses.Current code definitions at: https://www.oregon.gov/owrd/WRDFormsPDF/wris_code_key.pdf.Compilation procedures document at: https://arcgis.wrd.state.or.us/data/OWRD_WR_GIS_procedures.pdf. ----- Places of Use (POU): Depicts the location of each water right place of use (POU) polygon and provides basic information about the associated water right. All current and individually held water rights are shown in this data set except for those held by irrigation districts, applications, temporary transfers, instream leases, and limited licenses.Current code definitions at: https://www.oregon.gov/owrd/WRDFormsPDF/wris_code_key.pdf.Compilation procedures document at: https://arcgis.wrd.state.or.us/data/OWRD_WR_GIS_procedures.pdf.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
LScD (Leicester Scientific Dictionary)April 2020 by Neslihan Suzen, PhD student at the University of Leicester (ns433@leicester.ac.uk/suzenneslihan@hotmail.com)Supervised by Prof Alexander Gorban and Dr Evgeny Mirkes[Version 3] The third version of LScD (Leicester Scientific Dictionary) is created from the updated LSC (Leicester Scientific Corpus) - Version 2*. All pre-processing steps applied to build the new version of the dictionary are the same as in Version 2** and can be found in description of Version 2 below. We did not repeat the explanation. After pre-processing steps, the total number of unique words in the new version of the dictionary is 972,060. The files provided with this description are also same as described as for LScD Version 2 below.* Suzen, Neslihan (2019): LSC (Leicester Scientific Corpus). figshare. Dataset. https://doi.org/10.25392/leicester.data.9449639.v2** Suzen, Neslihan (2019): LScD (Leicester Scientific Dictionary). figshare. Dataset. https://doi.org/10.25392/leicester.data.9746900.v2[Version 2] Getting StartedThis document provides the pre-processing steps for creating an ordered list of words from the LSC (Leicester Scientific Corpus) [1] and the description of LScD (Leicester Scientific Dictionary). This dictionary is created to be used in future work on the quantification of the meaning of research texts. R code for producing the dictionary from LSC and instructions for usage of the code are available in [2]. The code can be also used for list of texts from other sources, amendments to the code may be required.LSC is a collection of abstracts of articles and proceeding papers published in 2014 and indexed by the Web of Science (WoS) database [3]. Each document contains title, list of authors, list of categories, list of research areas, and times cited. The corpus contains only documents in English. The corpus was collected in July 2018 and contains the number of citations from publication date to July 2018. The total number of documents in LSC is 1,673,824.LScD is an ordered list of words from texts of abstracts in LSC.The dictionary stores 974,238 unique words, is sorted by the number of documents containing the word in descending order. All words in the LScD are in stemmed form of words. The LScD contains the following information:1.Unique words in abstracts2.Number of documents containing each word3.Number of appearance of a word in the entire corpusProcessing the LSCStep 1.Downloading the LSC Online: Use of the LSC is subject to acceptance of request of the link by email. To access the LSC for research purposes, please email to ns433@le.ac.uk. The data are extracted from Web of Science [3]. You may not copy or distribute these data in whole or in part without the written consent of Clarivate Analytics.Step 2.Importing the Corpus to R: The full R code for processing the corpus can be found in the GitHub [2].All following steps can be applied for arbitrary list of texts from any source with changes of parameter. The structure of the corpus such as file format and names (also the position) of fields should be taken into account to apply our code. The organisation of CSV files of LSC is described in README file for LSC [1].Step 3.Extracting Abstracts and Saving Metadata: Metadata that include all fields in a document excluding abstracts and the field of abstracts are separated. Metadata are then saved as MetaData.R. Fields of metadata are: List_of_Authors, Title, Categories, Research_Areas, Total_Times_Cited and Times_cited_in_Core_Collection.Step 4.Text Pre-processing Steps on the Collection of Abstracts: In this section, we presented our approaches to pre-process abstracts of the LSC.1.Removing punctuations and special characters: This is the process of substitution of all non-alphanumeric characters by space. We did not substitute the character “-” in this step, because we need to keep words like “z-score”, “non-payment” and “pre-processing” in order not to lose the actual meaning of such words. A processing of uniting prefixes with words are performed in later steps of pre-processing.2.Lowercasing the text data: Lowercasing is performed to avoid considering same words like “Corpus”, “corpus” and “CORPUS” differently. Entire collection of texts are converted to lowercase.3.Uniting prefixes of words: Words containing prefixes joined with character “-” are united as a word. The list of prefixes united for this research are listed in the file “list_of_prefixes.csv”. The most of prefixes are extracted from [4]. We also added commonly used prefixes: ‘e’, ‘extra’, ‘per’, ‘self’ and ‘ultra’.4.Substitution of words: Some of words joined with “-” in the abstracts of the LSC require an additional process of substitution to avoid losing the meaning of the word before removing the character “-”. Some examples of such words are “z-test”, “well-known” and “chi-square”. These words have been substituted to “ztest”, “wellknown” and “chisquare”. Identification of such words is done by sampling of abstracts form LSC. The full list of such words and decision taken for substitution are presented in the file “list_of_substitution.csv”.5.Removing the character “-”: All remaining character “-” are replaced by space.6.Removing numbers: All digits which are not included in a word are replaced by space. All words that contain digits and letters are kept because alphanumeric characters such as chemical formula might be important for our analysis. Some examples are “co2”, “h2o” and “21st”.7.Stemming: Stemming is the process of converting inflected words into their word stem. This step results in uniting several forms of words with similar meaning into one form and also saving memory space and time [5]. All words in the LScD are stemmed to their word stem.8.Stop words removal: Stop words are words that are extreme common but provide little value in a language. Some common stop words in English are ‘I’, ‘the’, ‘a’ etc. We used ‘tm’ package in R to remove stop words [6]. There are 174 English stop words listed in the package.Step 5.Writing the LScD into CSV Format: There are 1,673,824 plain processed texts for further analysis. All unique words in the corpus are extracted and written in the file “LScD.csv”.The Organisation of the LScDThe total number of words in the file “LScD.csv” is 974,238. Each field is described below:Word: It contains unique words from the corpus. All words are in lowercase and their stem forms. The field is sorted by the number of documents that contain words in descending order.Number of Documents Containing the Word: In this content, binary calculation is used: if a word exists in an abstract then there is a count of 1. If the word exits more than once in a document, the count is still 1. Total number of document containing the word is counted as the sum of 1s in the entire corpus.Number of Appearance in Corpus: It contains how many times a word occurs in the corpus when the corpus is considered as one large document.Instructions for R CodeLScD_Creation.R is an R script for processing the LSC to create an ordered list of words from the corpus [2]. Outputs of the code are saved as RData file and in CSV format. Outputs of the code are:Metadata File: It includes all fields in a document excluding abstracts. Fields are List_of_Authors, Title, Categories, Research_Areas, Total_Times_Cited and Times_cited_in_Core_Collection.File of Abstracts: It contains all abstracts after pre-processing steps defined in the step 4.DTM: It is the Document Term Matrix constructed from the LSC[6]. Each entry of the matrix is the number of times the word occurs in the corresponding document.LScD: An ordered list of words from LSC as defined in the previous section.The code can be used by:1.Download the folder ‘LSC’, ‘list_of_prefixes.csv’ and ‘list_of_substitution.csv’2.Open LScD_Creation.R script3.Change parameters in the script: replace with the full path of the directory with source files and the full path of the directory to write output files4.Run the full code.References[1]N. Suzen. (2019). LSC (Leicester Scientific Corpus) [Dataset]. Available: https://doi.org/10.25392/leicester.data.9449639.v1[2]N. Suzen. (2019). LScD-LEICESTER SCIENTIFIC DICTIONARY CREATION. Available: https://github.com/neslihansuzen/LScD-LEICESTER-SCIENTIFIC-DICTIONARY-CREATION[3]Web of Science. (15 July). Available: https://apps.webofknowledge.com/[4]A. Thomas, "Common Prefixes, Suffixes and Roots," Center for Development and Learning, 2013.[5]C. Ramasubramanian and R. Ramya, "Effective pre-processing activities in text mining using improved porter’s stemming algorithm," International Journal of Advanced Research in Computer and Communication Engineering, vol. 2, no. 12, pp. 4536-4538, 2013.[6]I. Feinerer, "Introduction to the tm Package Text Mining in R," Accessible en ligne: https://cran.r-project.org/web/packages/tm/vignettes/tm.pdf, 2013.
Facebook
TwitterThe Softcite dataset is a gold-standard dataset of software mentions in research publications, a free resource primarily for software entity recognition in scholarly text. This is the first release of this dataset.
What's in the dataset
With the aim of facilitating software entity recognition efforts at scale and eventually increased visibility of research software for the due credit of software contributions to scholarly research, a team of trained annotators from Howison Lab at the University of Texas at Austin annotated 4,093 software mentions in 4,971 open access research publications in biomedicine (from PubMed Central Open Access collection) and economics (from Unpaywall open access services). The annotated software mentions, along with their publisher, version, and access URL, if mentioned in the text, as well as those publications annotated as containing no software mentions, are all included in the released dataset as a TEI/XML corpus file.
For understanding the schema of the Softcite corpus, its design considerations, and provenance, please refer to our paper included in this release (preprint version).
Use scenarios
The release of the Softcite dataset is intended to encourage researchers and stakeholders to make research software more visible in science, especially to academic databases and systems of information retrieval; and facilitate interoperability and collaboration among similar and relevant efforts in software entity recognition and building utilities for software information retrieval. This dataset can also be useful for researchers investigating software use in academic research.
Current release content
softcite-dataset v1.0 release includes:
The Softcite dataset corpus file: softcite_corpus-full.tei.xml
Softcite Dataset: A Dataset of Software Mentions in Biomedical and Economic Research Publications, our paper that describes the design consideration and creation process of the dataset: Softcite_Dataset_Description_RC.pdf. (This is a preprint version of our forthcoming publication in the Journal of the Association for Information Science and Technology.)
The Softcite dataset is licensed under a Creative Commons Attribution 4.0 International License.
If you have questions, please start a discussion or issue in the howisonlab/softcite-dataset Github repository.
Facebook
TwitterThis chapter presents theoretical and practical aspects associated to the implementation of a combined model-based/data-driven approach for failure prognostics based on particle filtering algorithms, in which the current esti- mate of the state PDF is used to determine the operating condition of the system and predict the progression of a fault indicator, given a dynamic state model and a set of process measurements. In this approach, the task of es- timating the current value of the fault indicator, as well as other important changing parameters in the environment, involves two basic steps: the predic- tion step, based on the process model, and an update step, which incorporates the new measurement into the a priori state estimate. This framework allows to estimate of the probability of failure at future time instants (RUL PDF) in real-time, providing information about time-to- failure (TTF) expectations, statistical confidence intervals, long-term predic- tions; using for this purpose empirical knowledge about critical conditions for the system (also referred to as the hazard zones). This information is of paramount significance for the improvement of the system reliability and cost-effective operation of critical assets, as it has been shown in a case study where feedback correction strategies (based on uncertainty measures) have been implemented to lengthen the RUL of a rotorcraft transmission system with propagating fatigue cracks on a critical component. Although the feed- back loop is implemented using simple linear relationships, it is helpful to provide a quick insight into the manner that the system reacts to changes on its input signals, in terms of its predicted RUL. The method is able to manage non-Gaussian pdf’s since it includes concepts such as nonlinear state estimation and confidence intervals in its formulation. Real data from a fault seeded test showed that the proposed framework was able to anticipate modifications on the system input to lengthen its RUL. Results of this test indicate that the method was able to successfully suggest the correction that the system required. In this sense, future work will be focused on the development and testing of similar strategies using different input-output uncertainty metrics.