Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundCOVID-19 infection is less severe among children than among adults; however, some patients require hospitalization and even critical care. Using data from the French national medico-administrative database, we estimated the risk factors for critical care unit (CCU) admissions among pediatric COVID-19 hospitalizations, the number and characteristics of the cases during the successive waves from January 2020 to August 2021 and described death cases.MethodsWe included all children (age < 18) hospitalized with COVID-19 between January 1st, 2020, and August 31st, 2021. Follow-up was until September 30th, 2021 (discharge or death). Contiguous hospital stays were gathered in “care sequences.” Four epidemic waves were considered (cut off dates: August 11th 2020, January 1st 2021, and July 4th 2021). We excluded asymptomatic COVID-19 cases, post-COVID-19 diseases, and 1-day-long sequences (except death cases). Risk factors for CCU admission were assessed with a univariable and a multivariable logistic regression model in the entire sample and stratified by age, whether younger than 2.ResultsWe included 7,485 patients, of whom 1988 (26.6%) were admitted to the CCU. Risk factors for admission to the CCU were being younger than 7 days [OR: 3.71 95% CI (2.56–5.39)], being between 2 and 9 years old [1.19 (1.00–1.41)], pediatric multisystem inflammatory syndrome (PIMS) [7.17 (5.97–8.6)] and respiratory forms [1.26 (1.12–1.41)], and having at least one underlying condition [2.66 (2.36–3.01)]. Among hospitalized children younger than 2 years old, prematurity was a risk factor for CCU admission [1.89 (1.47–2.43)]. The CCU admission rate gradually decreased over the waves (from 31.0 to 17.8%). There were 32 (0.4%) deaths, of which the median age was 6 years (IQR: 177 days–15.5 years).ConclusionSome children need to be more particularly protected from a severe evolution: newborns younger than 7 days old, children aged from 2 to 13 years who are more at risk of PIMS forms and patients with at least one underlying medical condition.
Facebook
TwitterData for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Vaccination Status. Click 'More' for important dataset description and footnotes
Dataset and data visualization details: These data were posted on October 21, 2022, archived on November 18, 2022, and revised on February 22, 2023. These data reflect cases among persons with a positive specimen collection date through September 24, 2022, and deaths among persons with a positive specimen collection date through September 3, 2022.
Vaccination status: A person vaccinated with a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. Additional or booster dose: A person vaccinated with a primary series and an additional or booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after receipt of an additional or booster dose of any COVID-19 vaccine on or after August 13, 2021. For people ages 18 years and older, data are graphed starting the week including September 24, 2021, when a COVID-19 booster dose was first recommended by CDC for adults 65+ years old and people in certain populations and high risk occupational and institutional settings. For people ages 12-17 years, data are graphed starting the week of December 26, 2021, 2 weeks after the first recommendation for a booster dose for adolescents ages 16-17 years. For people ages 5-11 years, data are included starting the week of June 5, 2022, 2 weeks after the first recommendation for a booster dose for children aged 5-11 years. For people ages 50 years and older, data on second booster doses are graphed starting the week including March 29, 2022, when the recommendation was made for second boosters. Vertical lines represent dates when changes occurred in U.S. policy for COVID-19 vaccination (details provided above). Reporting is by primary series vaccine type rather than additional or booster dose vaccine type. The booster dose vaccine type may be different than the primary series vaccine type. ** Because data on the immune status of cases and associated deaths are unavailable, an additional dose in an immunocompromised person cannot be distinguished from a booster dose. This is a relevant consideration because vaccines can be less effective in this group. Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Rates of COVID-19 deaths by vaccination status are reported based on when the patient was tested for COVID-19, not the date they died. Deaths usually occur up to 30 days after COVID-19 diagnosis. Participating jurisdictions: Currently, these 31 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, District of Columbia, Florida, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (New York), North Carolina, Philadelphia (Pennsylvania), Rhode Island, South Dakota, Tennessee, Texas, Utah, Washington, and West Virginia; 30 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 72% of the total U.S. population and all ten of the Health and Human Services Regions. Data on cases
Facebook
TwitterData for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Vaccination Status. Click 'More' for important dataset description and footnotes
Dataset and data visualization details: These data were posted on October 21, 2022, archived on November 18, 2022, and revised on February 22, 2023. These data reflect cases among persons with a positive specimen collection date through September 24, 2022, and deaths among persons with a positive specimen collection date through September 3, 2022.
Vaccination status: A person vaccinated with a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. Additional or booster dose: A person vaccinated with a primary series and an additional or booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after receipt of an additional or booster dose of any COVID-19 vaccine on or after August 13, 2021. For people ages 18 years and older, data are graphed starting the week including September 24, 2021, when a COVID-19 booster dose was first recommended by CDC for adults 65+ years old and people in certain populations and high risk occupational and institutional settings. For people ages 12-17 years, data are graphed starting the week of December 26, 2021, 2 weeks after the first recommendation for a booster dose for adolescents ages 16-17 years. For people ages 5-11 years, data are included starting the week of June 5, 2022, 2 weeks after the first recommendation for a booster dose for children aged 5-11 years. For people ages 50 years and older, data on second booster doses are graphed starting the week including March 29, 2022, when the recommendation was made for second boosters. Vertical lines represent dates when changes occurred in U.S. policy for COVID-19 vaccination (details provided above). Reporting is by primary series vaccine type rather than additional or booster dose vaccine type. The booster dose vaccine type may be different than the primary series vaccine type. ** Because data on the immune status of cases and associated deaths are unavailable, an additional dose in an immunocompromised person cannot be distinguished from a booster dose. This is a relevant consideration because vaccines can be less effective in this group. Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Rates of COVID-19 deaths by vaccination status are reported based on when the patient was tested for COVID-19, not the date they died. Deaths usually occur up to 30 days after COVID-19 diagnosis. Participating jurisdictions: Currently, these 31 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, District of Columbia, Florida, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (New York), North Carolina, Philadelphia (Pennsylvania), Rhode Island, South Dakota, Tennessee, Texas, Utah, Washington, and West Virginia; 30 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 72% of the total U.S. population and all ten of the Health and Human Services Regions. Data on cases
Facebook
TwitterBetween the beginning of January 2020 and June 14, 2023, of the 1,134,641 deaths caused by COVID-19 in the United States, around 307,169 had occurred among those aged 85 years and older. This statistic shows the number of coronavirus disease 2019 (COVID-19) deaths in the U.S. from January 2020 to June 2023, by age.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Age-standardised mortality rates for deaths involving coronavirus (COVID-19), non-COVID-19 deaths and all deaths by vaccination status, broken down by age group.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This article is part of the Research Topic ‘Health Systems Recovery in the Context of COVID-19 and Protracted Conflict'IntroductionAfter the World Health Organization declared COVID-19 a pandemic, more than 184 million cases and 4 million deaths had been recorded worldwide by July 2021. These are likely to be underestimates and do not distinguish between direct and indirect deaths resulting from disruptions in health care services. The purpose of our research was to assess the early impact of COVID-19 in 2020 and early 2021 on maternal and child healthcare service delivery at the district level in Mozambique using routine health information system data, and estimate associated excess maternal and child deaths.MethodsUsing data from Mozambique's routine health information system (SISMA, Sistema de Informação em Saúde para Monitoria e Avaliação), we conducted a time-series analysis to assess changes in nine selected indicators representing the continuum of maternal and child health care service provision in 159 districts in Mozambique. The dataset was extracted as counts of services provided from January 2017 to March 2021. Descriptive statistics were used for district comparisons, and district-specific time-series plots were produced. We used absolute differences or ratios for comparisons between observed data and modeled predictions as a measure of the magnitude of loss in service provision. Mortality estimates were performed using the Lives Saved Tool (LiST).ResultsAll maternal and child health care service indicators that we assessed demonstrated service delivery disruptions (below 10% of the expected counts), with the number of new users of family planing and malaria treatment with Coartem (number of children under five treated) experiencing the largest disruptions. Immediate losses were observed in April 2020 for all indicators, with the exception of treatment of malaria with Coartem. The number of excess deaths estimated in 2020 due to loss of health service delivery were 11,337 (12.8%) children under five, 5,705 (11.3%) neonates, and 387 (7.6%) mothers.ConclusionFindings from our study support existing research showing the negative impact of COVID-19 on maternal and child health services utilization in sub-Saharan Africa. This study offers subnational and granular estimates of service loss that can be useful for health system recovery planning. To our knowledge, it is the first study on the early impacts of COVID-19 on maternal and child health care service utilization conducted in an African Portuguese-speaking country.
Facebook
TwitterThe HM Prison and Probation Service (HMPPS) COVID-19 statistics provides monthly data on the HMPPS response to COVID-19. It addresses confirmed cases of the virus in prisons and the Youth Custody Service sites, deaths of those individuals in the care of HMPPS and mitigating action being taken to limit the spread of the virus and save lives.
Data includes:
The bulletin was produced and handled by the ministry’s analytical professionals and production staff. For the bulletin pre-release access of up to 24 hours is granted to the following persons:
Lord Chancellor and Secretary of State for Justice; Parliamentary Under Secretary of State; Permanent Secretary; Minister and Permanent Secretary Private Secretaries (x9); Special Advisors (x2); Director General for Policy and Strategy Group; Deputy Director of Data and Evidence as a Service - interim; Head of Profession, Statistics; Head of Prison Safety and Security Statistics; Head of News; Deputy Head of News and relevant press officers (x3).
Chief Executive Officer; Director General Prisons; Chief Executive and Director General Private Secretaries and Heads of Office (x4); Deputy Director of COVID-19 HMPPS Response; Deputy Director Joint COVID 19 Strategic Policy Unit (x2); Director General of Probation and Wales; Executive Director Probation and Women; Executive Director of Youth Custody Service; Executive Director HMPPS Wales; Executive Director, Performance Directorate, Head of Health, Social Care and Substance Misuse Services; Head of Capacity Management and Capacity Management Lead.
Prison estate expanded to protect NHS from coronavirus risk
Measures announced to protect NHS from coronavirus risk in prisons
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Observed coverage disruption of selected SRMNCH services due to the COVID-19 pandemic in South Asia, Jan 2020 to Jun 2021.
Facebook
Twitter
Young Lives research has expanded to explore linking geographical data collected during the rounds to external datasets. Matching Young Lives data with administrative and geographic datasets significantly increases the scope for research in several areas, and may allow researchers to identify sources of exogenous variation for more convincing causal analysis on policy and/or early life circumstances.
Young Lives: Data Matching Series, 1900-2021 includes the following linked datasets:
1. Climate Matched Datasets (four YL study countries): Community-level GPS data has been matched with temperature and precipitation data from the University of Delaware. Climate variables are offered at the community level, with a panel data structure spanning across years and months. Hence, each community has a unique value of precipitation (variable PRCP) and temperature (variable TEMP), for each year and month pairing for the period 1900-2017.
2. COVID-19 Matched Dataset (Peru only): The YL Phone Survey Calls data has been matched with external data sources (The Peruvian Ministry of Health and the National Information System of Deaths in Peru). The matched dataset includes the total number of COVID cases per 1,000 inhabitants, the total number of COVID deaths by district and per 1,000 inhabitants; the total number of excess deaths per 1,000 inhabitants and the number of lockdown days in each Young Lives district in Peru during August 2020 to December 2021.
Further information is available in the PDF reports included in the study documentation.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A severity level for patients with COVID-19 infection; Adapted from reference no 10.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Estimated number of additional adolescent pregnancies, maternal and neonatal deaths, low birthweight births and stunted children resulting from girls dropping out of school due to the COVID-19 pandemic in six South Asian countries.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Demographic data based on diagnosis of radiographic pneumonia.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Associating factors in children with pneumonia.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Demographic data based on month.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Demographic data based on site of admission.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundCOVID-19 infection is less severe among children than among adults; however, some patients require hospitalization and even critical care. Using data from the French national medico-administrative database, we estimated the risk factors for critical care unit (CCU) admissions among pediatric COVID-19 hospitalizations, the number and characteristics of the cases during the successive waves from January 2020 to August 2021 and described death cases.MethodsWe included all children (age < 18) hospitalized with COVID-19 between January 1st, 2020, and August 31st, 2021. Follow-up was until September 30th, 2021 (discharge or death). Contiguous hospital stays were gathered in “care sequences.” Four epidemic waves were considered (cut off dates: August 11th 2020, January 1st 2021, and July 4th 2021). We excluded asymptomatic COVID-19 cases, post-COVID-19 diseases, and 1-day-long sequences (except death cases). Risk factors for CCU admission were assessed with a univariable and a multivariable logistic regression model in the entire sample and stratified by age, whether younger than 2.ResultsWe included 7,485 patients, of whom 1988 (26.6%) were admitted to the CCU. Risk factors for admission to the CCU were being younger than 7 days [OR: 3.71 95% CI (2.56–5.39)], being between 2 and 9 years old [1.19 (1.00–1.41)], pediatric multisystem inflammatory syndrome (PIMS) [7.17 (5.97–8.6)] and respiratory forms [1.26 (1.12–1.41)], and having at least one underlying condition [2.66 (2.36–3.01)]. Among hospitalized children younger than 2 years old, prematurity was a risk factor for CCU admission [1.89 (1.47–2.43)]. The CCU admission rate gradually decreased over the waves (from 31.0 to 17.8%). There were 32 (0.4%) deaths, of which the median age was 6 years (IQR: 177 days–15.5 years).ConclusionSome children need to be more particularly protected from a severe evolution: newborns younger than 7 days old, children aged from 2 to 13 years who are more at risk of PIMS forms and patients with at least one underlying medical condition.