2 datasets found
  1. P

    PMLB Dataset

    • paperswithcode.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Randal S. Olson; William La Cava; Patryk Orzechowski; Ryan J. Urbanowicz; Jason H. Moore, PMLB Dataset [Dataset]. https://paperswithcode.com/dataset/pmlb
    Explore at:
    Authors
    Randal S. Olson; William La Cava; Patryk Orzechowski; Ryan J. Urbanowicz; Jason H. Moore
    Description

    The Penn Machine Learning Benchmarks (PMLB) is a large, curated set of benchmark datasets used to evaluate and compare supervised machine learning algorithms. These datasets cover a broad range of applications, and include binary/multi-class classification problems and regression problems, as well as combinations of categorical, ordinal, and continuous features.

  2. r

    Penn machine learning benchmark repository

    • rrid.site
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Penn machine learning benchmark repository [Dataset]. http://identifiers.org/RRID:SCR_017138
    Explore at:
    Description

    Python wrapper for Penn Machine Learning Benchmark data repository. Large, curated repository of benchmark datasets for evaluating supervised machine learning algorithms. Part of PyPI https://pypi.org/

  3. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Randal S. Olson; William La Cava; Patryk Orzechowski; Ryan J. Urbanowicz; Jason H. Moore, PMLB Dataset [Dataset]. https://paperswithcode.com/dataset/pmlb

PMLB Dataset

Penn Machine Learning Benchmarks

Explore at:
Authors
Randal S. Olson; William La Cava; Patryk Orzechowski; Ryan J. Urbanowicz; Jason H. Moore
Description

The Penn Machine Learning Benchmarks (PMLB) is a large, curated set of benchmark datasets used to evaluate and compare supervised machine learning algorithms. These datasets cover a broad range of applications, and include binary/multi-class classification problems and regression problems, as well as combinations of categorical, ordinal, and continuous features.

Search
Clear search
Close search
Google apps
Main menu