46 datasets found
  1. w

    Websites using WP Live Visitor Counter

    • webtechsurvey.com
    csv
    Updated Dec 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WebTechSurvey (2023). Websites using WP Live Visitor Counter [Dataset]. https://webtechsurvey.com/technology/wp-live-visitor-counter
    Explore at:
    csvAvailable download formats
    Dataset updated
    Dec 16, 2023
    Dataset authored and provided by
    WebTechSurvey
    License

    https://webtechsurvey.com/termshttps://webtechsurvey.com/terms

    Time period covered
    2025
    Area covered
    Global
    Description

    A complete list of live websites using the WP Live Visitor Counter technology, compiled through global website indexing conducted by WebTechSurvey.

  2. Crowd Counting

    • hub.arcgis.com
    • sdiinnovation-geoplatform.hub.arcgis.com
    Updated May 28, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2021). Crowd Counting [Dataset]. https://hub.arcgis.com/content/a1248abf99b94228be62bba2b52fb2b3
    Explore at:
    Dataset updated
    May 28, 2021
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Crowd counting from an image is a highly challenging task due to occlusion, low quality, and scale variation of objects. With the development of deep learning techniques, various crowd counting methods have been proposed in response to this challenge. This model uses state-of-the-art method to solve the crowd counting problem.Using the modelFollow the guide to use the model. Before using this model, ensure that the supported deep learning libraries are installed. For more details, check Deep Learning Libraries Installer for ArcGIS.Fine-tuning the modelThis model cannot be fine-tuned using ArcGIS tools.Input8 bit, 3-band (RGB) oriented imagery (preferably JPEG, JPG format with resolution less than 2000x2000 pixels).OutputFeature class with the number of classes as count of people.Applicable geographiesThis model is expected to work well in all regions globally. However, results can vary for imagery that are statistically dissimilar to training data.Model architectureThis model is based on the DM-Count model which uses the Distribution Matching for Crowd Counting architecture by Boyu Wang, Huidong Liu, Dimitris Samaras and Minh Hoai.Accuracy metricsThe average PSNR and SSIM over the QNRF test set are 40.65 and 0.55 respectively.Training dataThe model has been trained on the UCF-QNRF dataset.Sample resultsHere are a few results from the model.CitationsH. Idrees, M. Tayyab, K. Athrey, D. Zhang, S. Al-Maddeed, N. Rajpoot, M. Shah, Composition Loss for Counting, Density Map Estimation and Localization in Dense Crowds, in Proceedings of IEEE European Conference on Computer Vision (ECCV 2018), Munich, Germany, September 8-14, 2018.

  3. c

    World Population Live Statistics

    • creatormeter.com
    Updated Nov 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CreatorMeter (2025). World Population Live Statistics [Dataset]. https://creatormeter.com/world-population-live
    Explore at:
    Dataset updated
    Nov 16, 2025
    Dataset authored and provided by
    CreatorMeter
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    1950 - 2024
    Area covered
    Global, World
    Description

    Real-time world population counter with births, deaths, and demographic breakdowns

  4. Crowd Counting Dataset

    • kaggle.com
    zip
    Updated Nov 30, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Unique Data (2023). Crowd Counting Dataset [Dataset]. https://www.kaggle.com/datasets/trainingdatapro/crowd-counting-dataset/suggestions
    Explore at:
    zip(43024364 bytes)Available download formats
    Dataset updated
    Nov 30, 2023
    Authors
    Unique Data
    License

    Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
    License information was derived automatically

    Description

    Crowd Counting Dataset

    The dataset includes images featuring crowds of people ranging from 0 to 5000 individuals. The dataset includes a diverse range of scenes and scenarios, capturing crowds in various settings. Each image in the dataset is accompanied by a corresponding JSON file containing detailed labeling information for each person in the crowd for crowd count and classification.

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F12421376%2F4b51a212e59f575bd6978f215a32aca0%2FFrame%2064.png?generation=1701336719197861&alt=media" alt="">

    Types of crowds in the dataset: 0-1000, 1000-2000, 2000-3000, 3000-4000 and 4000-5000

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F12421376%2F72e0fed3ad13826d6545ff75a79ed9db%2FFrame%2065.png?generation=1701337622225724&alt=media" alt="">

    This dataset provides a valuable resource for researchers and developers working on crowd counting technology, enabling them to train and evaluate their algorithms with a wide range of crowd sizes and scenarios. It can also be used for benchmarking and comparison of different crowd counting algorithms, as well as for real-world applications such as public safety and security, urban planning, and retail analytics.

    Full version of the dataset includes 647 labeled images of crowds, leave a request on our website to buy the dataset

    Statistics for the dataset (number of images by the crowd's size and image width):

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F12421376%2F2e9f36820e62a2ef62586fc8e84387e2%2FFrame%2063.png?generation=1701336725293625&alt=media" alt="">

    OTHER BIOMETRIC DATASETS:

    Get the Dataset

    🧩 This is just an example of the data. Leave a request here to learn more

    Content

    • images - includes original images of crowds placed in subfolders according to its size,
    • labels - includes json-files with labeling and visualised labeling for the images in the previous folder,
    • csv file - includes information for each image in the dataset

    File with the extension .csv

    • id: id of the image,
    • image: link to access the original image,
    • label: link to access the json-file with labeling,
    • type: type of the crowd on the photo

    🚀 You can learn more about our high-quality unique datasets here

    keywords: crowd counting, crowd density estimation, people counting, crowd analysis, image annotation, computer vision, deep learning, object detection, object counting, image classification, dense regression, crowd behavior analysis, crowd tracking, head detection, crowd segmentation, crowd motion analysis, image processing, machine learning, artificial intelligence, ai, human detection, crowd sensing, image dataset, public safety, crowd management, urban planning, event planning, traffic management

  5. Wildfire Risk to Communities Population Count (Image Service)

    • catalog.data.gov
    • agdatacommons.nal.usda.gov
    • +5more
    Updated Sep 2, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2025). Wildfire Risk to Communities Population Count (Image Service) [Dataset]. https://catalog.data.gov/dataset/wildfire-risk-to-communities-population-count-image-service
    Explore at:
    Dataset updated
    Sep 2, 2025
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Description

    The data included in this publication depict components of wildfire risk specifically for populated areas in the United States. These datasets represent where people live in the United States and the in situ risk from wildfire, i.e., the risk at the location where the adverse effects take place.National wildfire hazard datasets of annual burn probability and fire intensity, generated by the USDA Forest Service, Rocky Mountain Research Station and Pyrologix LLC, form the foundation of the Wildfire Risk to Communities data. Vegetation and wildland fuels data from LANDFIRE 2020 (version 2.2.0) were used as input to two different but related geospatial fire simulation systems. Annual burn probability was produced with the USFS geospatial fire simulator (FSim) at a relatively coarse cell size of 270 meters (m). To bring the burn probability raster data down to a finer resolution more useful for assessing hazard and risk to communities, we upsampled them to the native 30 m resolution of the LANDFIRE fuel and vegetation data. In this upsampling process, we also spread values of modeled burn probability into developed areas represented in LANDFIRE fuels data as non-burnable. Burn probability rasters represent landscape conditions as of the end of 2020. Fire intensity characteristics were modeled at 30 m resolution using a process that performs a comprehensive set of FlamMap runs spanning the full range of weather-related characteristics that occur during a fire season and then integrates those runs into a variety of results based on the likelihood of those weather types occurring. Before the fire intensity modeling, the LANDFIRE 2020 data were updated to reflect fuels disturbances occurring in 2021 and 2022. As such, the fire intensity datasets represent landscape conditions as of the end of 2022. The data products in this publication that represent where people live, reflect 2021 estimates of housing unit and population counts from the U.S. Census Bureau, combined with building footprint data from Onegeo and USA Structures, both reflecting 2022 conditions.The specific raster datasets included in this publication include:Building Count: Building Count is a 30-m raster representing the count of buildings in the building footprint dataset located within each 30-m pixel.Building Density: Building Density is a 30-m raster representing the density of buildings in the building footprint dataset (buildings per square kilometer [km²]).Building Coverage: Building Coverage is a 30-m raster depicting the percentage of habitable land area covered by building footprints.Population Count (PopCount): PopCount is a 30-m raster with pixel values representing residential population count (persons) in each pixel.Population Density (PopDen): PopDen is a 30-m raster of residential population density (people/km²).Housing Unit Count (HUCount): HUCount is a 30-m raster representing the number of housing units in each pixel.Housing Unit Density (HUDen): HUDen is a 30-m raster of housing-unit density (housing units/km²).Housing Unit Exposure (HUExposure): HUExposure is a 30-m raster that represents the expected number of housing units within a pixel potentially exposed to wildfire in a year. This is a long-term annual average and not intended to represent the actual number of housing units exposed in any specific year.Housing Unit Impact (HUImpact): HUImpact is a 30-m raster that represents the relative potential impact of fire to housing units at any pixel, if a fire were to occur. It is an index that incorporates the general consequences of fire on a home as a function of fire intensity and uses flame length probabilities from wildfire modeling to capture likely intensity of fire.Housing Unit Risk (HURisk): HURisk is a 30-m raster that integrates all four primary elements of wildfire risk - likelihood, intensity, susceptibility, and exposure - on pixels where housing unit density is greater than zero.Additional methodology documentation is provided with the data publication download. Metadata and Downloads: (https://www.fs.usda.gov/rds/archive/catalog/RDS-2020-0060-2).Note: Pixel values in this image service have been altered from the original raster dataset due to data requirements in web services. The service is intended primarily for data visualization. Relative values and spatial patterns have been largely preserved in the service, but users are encouraged to download the source data for quantitative analysis.

  6. c

    Caribbean Population Density Estimate 2016

    • caribbeangeoportal.com
    • caribbean-geo-portal-powered-by-esri-caribbean.hub.arcgis.com
    Updated Mar 19, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Caribbean GeoPortal (2020). Caribbean Population Density Estimate 2016 [Dataset]. https://www.caribbeangeoportal.com/maps/028703e025e34e819a75cc24dbe782f7
    Explore at:
    Dataset updated
    Mar 19, 2020
    Dataset authored and provided by
    Caribbean GeoPortal
    Area covered
    Description

    This map features the World Population Density Estimate 2016 layer for the Caribbean region. The advantage population density affords over raw counts is the ability to compare levels of persons per square kilometer anywhere in the world. Esri calculated density by converting the the World Population Estimate 2016 layer to polygons, then added an attribute for geodesic area, which allowed density to be derived, and that was converted back to raster. A population density raster is better to use for mapping and visualization than a raster of raw population counts because raster cells are square and do not account for area. For instance, compare a cell with 185 people in northern Quito, Ecuador, on the equator to a cell with 185 people in Edmonton, Canada at 53.5 degrees north latitude. This is difficult because the area of the cell in Edmonton is only 35.5% of the area of a cell in Quito. The cell in Edmonton represents a density of 9,810 persons per square kilometer, while the cell in Quito only represents a density of 3,485 persons per square kilometer. Dataset SummaryEach cell in this layer has an integer value with the estimated number of people per square kilometer likely to live in the geographic region represented by that cell. Esri additionally produced several additional layers: World Population Estimate 2016: this layer contains estimates of the count of people living within the the area represented by the cell. World Population Estimate Confidence 2016: the confidence level (1-5) per cell for the probability of people being located and estimated correctly. World Settlement Score 2016: the dasymetric likelihood surface used to create this layer by apportioning population from census polygons to the settlement score raster.To use this layer in analysis, there are several properties or geoprocessing environment settings that should be used:Coordinate system: WGS_1984. This service and its underlying data are WGS_1984. We do this because projecting population count data actually will change the populations due to resampling and either collapsing or splitting cells to fit into another coordinate system. Cell Size: 0.0013474728 degrees (approximately 150-meters) at the equator. No Data: -1Bit Depth: 32-bit signedThis layer has query, identify, pixel, and export image functions enabled, and is restricted to a maximum analysis size of 30,000 x 30,000 pixels - an area about the size of Africa.Frye, C. et al., (2018). Using Classified and Unclassified Land Cover Data to Estimate the Footprint of Human Settlement. Data Science Journal. 17, p.20. DOI: https://doi.org/10.5334/dsj-2018-020.What can you do with this layer?This layer is primarily intended for cartography and visualization, but may also be useful for analysis, particularly for estimating where people living above specified densities. There are two processing templates defined for this layer: the default, "World Population Estimated 2016 Density Classes" uses a classification, described above, to show locations of levels of rural and urban populations, and should be used for cartography and visualization; and "None," which provides access to the unclassified density values, and should be used for analysis. The breaks for the classes are at the following levels of persons per square kilometer:100 - Rural (3.2% [0.7%] of all people live at this density or lower) 400 - Settled (13.3% [4.1%] of all people live at this density or lower)1,908 - Urban (59.4% [81.1%] of all people live at this density or higher)16,978 - Heavy Urban (13.0% [24.2%] of all people live at this density or higher)26,331 - Extreme Urban (7.8% [15.4%] of all people live at this density or higher) Values over 50,000 are likely to be erroneous due to spatial inaccuracies in source boundary dataNote the above class breaks were derived from Esri's 2015 estimate, which have been maintained for the sake of comparison. The 2015 percentages are in gray brackets []. The differences are mostly due to improvements in the model and source data. While improvements in the source data will continue, it is hoped the 2017 estimate will produce percentages that shift less.For analysis, Esri recommends using the Zonal Statistics tool or the Zonal Statistics to Table tool where you provide input zones as either polygons, or raster data, and the tool will summarize the average, highest, or lowest density within those zones.

  7. 2021 World Population (updated daily)

    • kaggle.com
    zip
    Updated Jul 19, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rishav Sharma (2021). 2021 World Population (updated daily) [Dataset]. https://www.kaggle.com/dsv/2441140
    Explore at:
    zip(75229 bytes)Available download formats
    Dataset updated
    Jul 19, 2021
    Authors
    Rishav Sharma
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    World
    Description

    Context

    2021 World Population dataset which gets updated daily.

    Content

    2021_population.csv: File contains data for only live 2021 population count which gets updated daily. Also contains more information about the country's growth rate, area, etc. timeseries_population_count.csv: File contains data for live population count which gets updated daily but it contains last updated data also. Data in this file is managed day-wise.

    Inspiration

    This type of data can be used for population-related use cases. Like, my own dataset COVID Vaccination in World (updated daily), which requires population data. I believe there are more use cases that I didn't explore yet but might other Kaggler needs this. Time-series related use-case can be implemented on this data but I know it will take time to compile that amount of data. So stay tuned.

  8. Global population 2000-2024, by gender

    • statista.com
    Updated Oct 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Global population 2000-2024, by gender [Dataset]. https://www.statista.com/statistics/1328107/global-population-gender/
    Explore at:
    Dataset updated
    Oct 9, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    Over the past 24 years, there were constantly more men than women living on the planet. Of the 8.06 billion people living on the Earth in 2024, 4.09 billion were men and 4.05 billion were women. One-quarter of the world's total population in 2024 was below 15 years.

  9. g

    Municipalities Households People | gimi9.com

    • gimi9.com
    Updated Dec 21, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Municipalities Households People | gimi9.com [Dataset]. https://gimi9.com/dataset/eu_stadtbezirke_haushalte_personen_2019-wuerzburg
    Explore at:
    Dataset updated
    Dec 21, 2024
    Description

    Objective of household statistics – in the context of population statistics – the provision of analyses the number, size and structure of households. As a (private) household counting/counting - each living together and constituting an economic unit Community of persons (multi-person households) and - persons who live and work alone (single-person households, Example also single subtenants). To the budget can relatives and non-family members (e.g. household staff). Community accommodation shall not be considered as households, but may: house private households (for example, the head of the institution's household). Households with several residences (apartments at the main and one or more Secondary residences) are counted several times. In a household at the same time several families/types of life (for example, a married couple without children and a single mother with children). In order to determine the number, The size and structure of households will be a household generation with the help of the HHGen programme. Editor's reference: https://statistics.wuerzburg.de

  10. a

    World Population Density Estimate 2016

    • hub.arcgis.com
    Updated Apr 5, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS StoryMaps (2018). World Population Density Estimate 2016 [Dataset]. https://hub.arcgis.com/datasets/541be35d25ae4847b7a5e129a7eb246f
    Explore at:
    Dataset updated
    Apr 5, 2018
    Dataset authored and provided by
    ArcGIS StoryMaps
    Area covered
    Description

    This service is available to all ArcGIS Online users with organizational accounts. For more information on this service, including the terms of use, visit us at http://goto.arcgisonline.com/landscape7/World_Population_Density_Estimate_2016.This layer is a global estimate of human population density for 2016. The advantage population density affords over raw counts is the ability to compare levels of persons per square kilometer anywhere in the world. Esri calculated density by converting the the World Population Estimate 2016 layer to polygons, then added an attribute for geodesic area, which allowed density to be derived, and that was converted back to raster. A population density raster is better to use for mapping and visualization than a raster of raw population counts because raster cells are square and do not account for area. For instance, compare a cell with 185 people in northern Quito, Ecuador, on the equator to a cell with 185 people in Edmonton, Canada at 53.5 degrees north latitude. This is difficult because the area of the cell in Edmonton is only 35.5% of the area of a cell in Quito. The cell in Edmonton represents a density of 9,810 persons per square kilometer, while the cell in Quito only represents a density of 3,485 persons per square kilometer. Dataset SummaryEach cell in this layer has an integer value with the estimated number of people per square kilometer likely to live in the geographic region represented by that cell. Esri additionally produced several additional layers: World Population Estimate 2016: this layer contains estimates of the count of people living within the the area represented by the cell. World Population Estimate Confidence 2016: the confidence level (1-5) per cell for the probability of people being located and estimated correctly. World Settlement Score 2016: the dasymetric likelihood surface used to create this layer by apportioning population from census polygons to the settlement score raster.To use this layer in analysis, there are several properties or geoprocessing environment settings that should be used:Coordinate system: WGS_1984. This service and its underlying data are WGS_1984. We do this because projecting population count data actually will change the populations due to resampling and either collapsing or splitting cells to fit into another coordinate system. Cell Size: 0.0013474728 degrees (approximately 150-meters) at the equator. No Data: -1Bit Depth: 32-bit signedThis layer has query, identify, pixel, and export image functions enabled, and is restricted to a maximum analysis size of 30,000 x 30,000 pixels - an area about the size of Africa.What can you do with this layer?This layer is primarily intended for cartography and visualization, but may also be useful for analysis, particularly for estimating where people living above specified densities. There are two processing templates defined for this layer: the default, "World Population Estimated 2016 Density Classes" uses a classification, described above, to show locations of levels of rural and urban populations, and should be used for cartography and visualization; and "None," which provides access to the unclassified density values, and should be used for analysis. The breaks for the classes are at the following levels of persons per square kilometer:100 - Rural (3.2% [0.7%] of all people live at this density or lower) 400 - Settled (13.3% [4.1%] of all people live at this density or lower)1,908 - Urban (59.4% [81.1%] of all people live at this density or higher)16,978 - Heavy Urban (13.0% [24.2%] of all people live at this density or higher)26,331 - Extreme Urban (7.8% [15.4%] of all people live at this density or higher) Values over 50,000 are likely to be erroneous due to spatial inaccuracies in source boundary dataNote the above class breaks were derived from Esri's 2015 estimate, which have been maintained for the sake of comparison. The 2015 percentages are in gray brackets []. The differences are mostly due to improvements in the model and source data. While improvements in the source data will continue, it is hoped the 2017 estimate will produce percentages that shift less.For analysis, Esri recommends using the Zonal Statistics tool or the Zonal Statistics to Table tool where you provide input zones as either polygons, or raster data, and the tool will summarize the average, highest, or lowest density within those zones.

  11. 2023 Census population change by ethnic group and statistical area 2

    • datafinder.stats.govt.nz
    csv, dwg, geodatabase +6
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stats NZ, 2023 Census population change by ethnic group and statistical area 2 [Dataset]. https://datafinder.stats.govt.nz/layer/119483-2023-census-population-change-by-ethnic-group-and-statistical-area-2/
    Explore at:
    shapefile, pdf, kml, geodatabase, mapinfo tab, csv, dwg, mapinfo mif, geopackage / sqliteAvailable download formats
    Dataset provided by
    Statistics New Zealandhttp://www.stats.govt.nz/
    Authors
    Stats NZ
    License

    https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/

    Area covered
    Description

    Dataset contains ethnic group census usually resident population counts from the 2013, 2018, and 2023 Censuses, as well as the percentage change in the ethnic group population count between the 2013 and 2018 Censuses, and between the 2018 and 2023 Censuses. Data is available by statistical area 2.

    The ethnic groups are:

    • European
    • Māori
    • Pacific peoples
    • Asian
    • Middle Eastern/Latin American/African
    • Other ethnicity

    Map shows percentage change in the census usually resident population count for ethnic groups between the 2018 and 2023 Censuses.

    Download lookup file from Stats NZ ArcGIS Online or embedded attachment in Stats NZ geographic data service. Download data table (excluding the geometry column for CSV files) using the instructions in the Koordinates help guide.

    Footnotes

    Geographical boundaries

    Statistical standard for geographic areas 2023 (updated December 2023) has information about geographic boundaries as of 1 January 2023. Address data from 2013 and 2018 Censuses was updated to be consistent with the 2023 areas. Due to the changes in area boundaries and coding methodologies, 2013 and 2018 counts published in 2023 may be slightly different to those published in 2013 or 2018.

    Subnational census usually resident population

    The census usually resident population count of an area (subnational count) is a count of all people who usually live in that area and were present in New Zealand on census night. It excludes visitors from overseas, visitors from elsewhere in New Zealand, and residents temporarily overseas on census night. For example, a person who usually lives in Christchurch city and is visiting Wellington city on census night will be included in the census usually resident population count of Christchurch city. 

    Caution using time series

    Time series data should be interpreted with care due to changes in census methodology and differences in response rates between censuses. The 2023 and 2018 Censuses used a combined census methodology (using census responses and administrative data), while the 2013 Census used a full-field enumeration methodology (with no use of administrative data).

    About the 2023 Census dataset

    For information on the 2023 dataset see Using a combined census model for the 2023 Census. We combined data from the census forms with administrative data to create the 2023 Census dataset, which meets Stats NZ's quality criteria for population structure information. We added real data about real people to the dataset where we were confident the people who hadn’t completed a census form (which is known as admin enumeration) will be counted. We also used data from the 2018 and 2013 Censuses, administrative data sources, and statistical imputation methods to fill in some missing characteristics of people and dwellings.

    Data quality

    The quality of data in the 2023 Census is assessed using the quality rating scale and the quality assurance framework to determine whether data is fit for purpose and suitable for release. Data quality assurance in the 2023 Census has more information.

    Quality rating of a variable

    The quality rating of a variable provides an overall evaluation of data quality for that variable, usually at the highest levels of classification. The quality ratings shown are for the 2023 Census unless stated. There is variability in the quality of data at smaller geographies. Data quality may also vary between censuses, for subpopulations, or when cross tabulated with other variables or at lower levels of the classification. Data quality ratings for 2023 Census variables has more information on quality ratings by variable.

    Ethnicity concept quality rating

    Ethnicity is rated as high quality.

    Ethnicity – 2023 Census: Information by concept has more information, for example, definitions and data quality.

    Using data for good

    Stats NZ expects that, when working with census data, it is done so with a positive purpose, as outlined in the Māori Data Governance Model (Data Iwi Leaders Group, 2023). This model states that "data should support transformative outcomes and should uplift and strengthen our relationships with each other and with our environments. The avoidance of harm is the minimum expectation for data use. Māori data should also contribute to iwi and hapū tino rangatiratanga”.

    Confidentiality

    The 2023 Census confidentiality rules have been applied to 2013, 2018, and 2023 data. These rules protect the confidentiality of individuals, families, households, dwellings, and undertakings in 2023 Census data. Counts are calculated using fixed random rounding to base 3 (FRR3) and suppression of ‘sensitive’ counts less than six, where tables report multiple geographic variables and/or small populations. Individual figures may not always sum to stated totals. Applying confidentiality rules to 2023 Census data and summary of changes since 2018 and 2013 Censuses has more information about 2023 Census confidentiality rules.

    Symbol

    -998 Not applicable

    -999 Confidential

    Percentages

    To calculate percentages, divide the figure for the category of interest by the figure for ‘Total stated’ where this applies.

  12. w

    Websites using Counter Visitor For Woocommerce

    • webtechsurvey.com
    csv
    Updated Jul 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WebTechSurvey (2025). Websites using Counter Visitor For Woocommerce [Dataset]. https://webtechsurvey.com/technology/counter-visitor-for-woocommerce
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jul 15, 2025
    Dataset authored and provided by
    WebTechSurvey
    License

    https://webtechsurvey.com/termshttps://webtechsurvey.com/terms

    Time period covered
    2025
    Area covered
    Global
    Description

    A complete list of live websites using the Counter Visitor For Woocommerce technology, compiled through global website indexing conducted by WebTechSurvey.

  13. 2023 Census population change by statistical area 2

    • datafinder.stats.govt.nz
    csv, dwg, geodatabase +6
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stats NZ, 2023 Census population change by statistical area 2 [Dataset]. https://datafinder.stats.govt.nz/layer/119478-2023-census-population-change-by-statistical-area-2/
    Explore at:
    geopackage / sqlite, shapefile, pdf, mapinfo mif, mapinfo tab, dwg, csv, kml, geodatabaseAvailable download formats
    Dataset provided by
    Statistics New Zealandhttp://www.stats.govt.nz/
    Authors
    Stats NZ
    License

    https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/

    Area covered
    Description

    Dataset contains census usually resident population counts from the 2013, 2018, and 2023 Censuses, as well as the percentage change in the population count between the 2013 and 2018 Censuses, and between the 2018 and 2023 Censuses. Data is available by statistical area 2.

    Map shows the percentage change in the census usually resident population count between the 2018 and 2023 Censuses.

    Download lookup file from Stats NZ ArcGIS Online or embedded attachment in Stats NZ geographic data service. Download data table (excluding the geometry column for CSV files) using the instructions in the Koordinates help guide.

    Footnotes

    Geographical boundaries

    Statistical standard for geographic areas 2023 (updated December 2023) has information about geographic boundaries as of 1 January 2023. Address data from 2013 and 2018 Censuses was updated to be consistent with the 2023 areas. Due to the changes in area boundaries and coding methodologies, 2013 and 2018 counts published in 2023 may be slightly different to those published in 2013 or 2018.

    Subnational census usually resident population

    The census usually resident population count of an area (subnational count) is a count of all people who usually live in that area and were present in New Zealand on census night. It excludes visitors from overseas, visitors from elsewhere in New Zealand, and residents temporarily overseas on census night. For example, a person who usually lives in Christchurch city and is visiting Wellington city on census night will be included in the census usually resident population count of Christchurch city.

    Caution using time series

    Time series data should be interpreted with care due to changes in census methodology and differences in response rates between censuses. The 2023 and 2018 Censuses used a combined census methodology (using census responses and administrative data), while the 2013 Census used a full-field enumeration methodology (with no use of administrative data).

    About the 2023 Census dataset

    For information on the 2023 dataset see Using a combined census model for the 2023 Census. We combined data from the census forms with administrative data to create the 2023 Census dataset, which meets Stats NZ's quality criteria for population structure information. We added real data about real people to the dataset where we were confident the people who hadn’t completed a census form (which is known as admin enumeration) will be counted. We also used data from the 2018 and 2013 Censuses, administrative data sources, and statistical imputation methods to fill in some missing characteristics of people and dwellings.

    Data quality

    The quality of data in the 2023 Census is assessed using the quality rating scale and the quality assurance framework to determine whether data is fit for purpose and suitable for release. Data quality assurance in the 2023 Census has more information.

    Quality rating of a variable

    The quality rating of a variable provides an overall evaluation of data quality for that variable, usually at the highest levels of classification. The quality ratings shown are for the 2023 Census unless stated. There is variability in the quality of data at smaller geographies. Data quality may also vary between censuses, for subpopulations, or when cross tabulated with other variables or at lower levels of the classification. Data quality ratings for 2023 Census variables has more information on quality ratings by variable.

    Census usually resident population count concept quality rating

    The census usually resident population count is rated as very high quality.

    Census usually resident population count – 2023 Census: Information by concept has more information, for example, definitions and data quality.

    Using data for good

    Stats NZ expects that, when working with census data, it is done so with a positive purpose, as outlined in the Māori Data Governance Model (Data Iwi Leaders Group, 2023). This model states that "data should support transformative outcomes and should uplift and strengthen our relationships with each other and with our environments. The avoidance of harm is the minimum expectation for data use. Māori data should also contribute to iwi and hapū tino rangatiratanga”.

    Confidentiality

    The 2023 Census confidentiality rules have been applied to 2013, 2018, and 2023 data. These rules protect the confidentiality of individuals, families, households, dwellings, and undertakings in 2023 Census data. Counts are calculated using fixed random rounding to base 3 (FRR3) and suppression of ‘sensitive’ counts less than six, where tables report multiple geographic variables and/or small populations. Individual figures may not always sum to stated totals. Applying confidentiality rules to 2023 Census data and summary of changes since 2018 and 2013 Censuses has more information about 2023 Census confidentiality rules.

    Symbol

    -998 Not applicable

  14. Number of internet and social media users worldwide 2025

    • statista.com
    • abripper.com
    Updated Oct 16, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Number of internet and social media users worldwide 2025 [Dataset]. https://www.statista.com/statistics/617136/digital-population-worldwide/
    Explore at:
    Dataset updated
    Oct 16, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    As of October 2025, 6.04 billion individuals worldwide were internet users, which amounted to 73.2 percent of the global population. Of this total, 5.66 billion, or 68.7 percent of the world's population, were social media users. Global internet usage Connecting billions of people worldwide, the internet is a core pillar of the modern information society. Northern Europe ranked first among worldwide regions by the share of the population using the internet in 2025. In the Netherlands, Norway, and Saudi Arabia, 99 percent of the population used the internet as of February 2025. North Korea was at the opposite end of the spectrum, with virtually no internet usage penetration among the general population, ranking last worldwide. Eastern Asia was home to the largest number of online users worldwide—over 1.34 billion at the latest count. Southern Asia ranked second, with around 1.2 billion internet users. China, India, and the United States rank ahead of other countries worldwide by the number of internet users. Worldwide internet user demographics As of 2024, the share of female internet users worldwide was 65 percent, five percent less than that of men. Gender disparity in internet usage was bigger in African countries, with around a 10-percent difference. Worldwide regions, like the Commonwealth of Independent States and Europe, showed a smaller usage gap between these two genders. As of 2024, global internet usage was higher among individuals between 15 and 24 years old across all regions, with young people in Europe representing the most considerable usage penetration, 98 percent. In comparison, the worldwide average for the age group of 15 to 24 years was 79 percent. The income level of the countries was also an essential factor for internet access, as 93 percent of the population of the countries with high income reportedly used the internet, as opposed to only 27 percent of the low-income markets.

  15. Counting_lives_saved

    • kaggle.com
    zip
    Updated Aug 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    willian oliveira (2025). Counting_lives_saved [Dataset]. https://www.kaggle.com/datasets/willianoliveiragibin/counting-lives-saved
    Explore at:
    zip(64750 bytes)Available download formats
    Dataset updated
    Aug 22, 2025
    Authors
    willian oliveira
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Take the researcher Sarah Gilbert, who has dedicated her career to developing vaccines. Over the last two decades, she has contributed to vaccines against the flu, MERS, Nipah virus, and Rift Valley fever. When she heard about the outbreak in China in January 2020, she began working on a vaccine, just in case. By the end of that year, the vaccine against COVID-19 was approved, saving an estimated 6.3 million lives in the following year alone. Without this effort, we would have faced a much darker reality, marked by lockdowns, overwhelmed health systems, and widespread suffering. This chart lists many such scientists whose work saved many people’s lives. The estimates are taken from the web publication Science Heroes, where you can find profiles of these scientists. It’s difficult to estimate the exact difference particular innovations have made, and I take all such estimates with a grain of salt. None of these scientists did their work in isolation; their innovations were achieved thanks to collaborative efforts and the earlier work of other researchers. Our team spends much of its time counting deaths, but it’s equally important to know the number of lives saved — even though it is harder to estimate and involves much larger uncertainty. It’s inspiring to be reminded that creative, enterprising, and tenacious people can enormously contribute to our lives. Fritz Haber and Carl Bosch, who invented synthetic fertilizers, are at the top of this list.

  16. 2023 Census population change by regional council

    • datafinder.stats.govt.nz
    csv, dwg, geodatabase +6
    Updated Dec 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stats NZ (2024). 2023 Census population change by regional council [Dataset]. https://datafinder.stats.govt.nz/layer/117597-2023-census-population-change-by-regional-council/attachments/25237/
    Explore at:
    pdf, kml, shapefile, geodatabase, csv, mapinfo mif, mapinfo tab, geopackage / sqlite, dwgAvailable download formats
    Dataset updated
    Dec 18, 2024
    Dataset provided by
    Statistics New Zealandhttp://www.stats.govt.nz/
    Authors
    Stats NZ
    License

    https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/

    Area covered
    Description

    Dataset contains census usually resident population counts from the 2013, 2018, and 2023 Censuses, as well as the percentage change in the population count between the 2013 and 2018 Censuses, and between the 2018 and 2023 Censuses. Data is available by regional council.

    Map shows the percentage change in the census usually resident population count between the 2018 and 2023 Censuses.

    Download lookup file from Stats NZ ArcGIS Online or embedded attachment in Stats NZ geographic data service. Download data table (excluding the geometry column for CSV files) using the instructions in the Koordinates help guide.

    Footnotes

    Geographical boundaries

    Statistical standard for geographic areas 2023 (updated December 2023) has information about geographic boundaries as of 1 January 2023. Address data from 2013 and 2018 Censuses was updated to be consistent with the 2023 areas. Due to the changes in area boundaries and coding methodologies, 2013 and 2018 counts published in 2023 may be slightly different to those published in 2013 or 2018.

    Subnational census usually resident population

    The census usually resident population count of an area (subnational count) is a count of all people who usually live in that area and were present in New Zealand on census night. It excludes visitors from overseas, visitors from elsewhere in New Zealand, and residents temporarily overseas on census night. For example, a person who usually lives in Christchurch city and is visiting Wellington city on census night will be included in the census usually resident population count of Christchurch city.

    Caution using time series

    Time series data should be interpreted with care due to changes in census methodology and differences in response rates between censuses. The 2023 and 2018 Censuses used a combined census methodology (using census responses and administrative data), while the 2013 Census used a full-field enumeration methodology (with no use of administrative data).

    About the 2023 Census dataset

    For information on the 2023 dataset see Using a combined census model for the 2023 Census. We combined data from the census forms with administrative data to create the 2023 Census dataset, which meets Stats NZ's quality criteria for population structure information. We added real data about real people to the dataset where we were confident the people who hadn’t completed a census form (which is known as admin enumeration) will be counted. We also used data from the 2018 and 2013 Censuses, administrative data sources, and statistical imputation methods to fill in some missing characteristics of people and dwellings.

    Data quality

    The quality of data in the 2023 Census is assessed using the quality rating scale and the quality assurance framework to determine whether data is fit for purpose and suitable for release. Data quality assurance in the 2023 Census has more information.

    Quality rating of a variable

    The quality rating of a variable provides an overall evaluation of data quality for that variable, usually at the highest levels of classification. The quality ratings shown are for the 2023 Census unless stated. There is variability in the quality of data at smaller geographies. Data quality may also vary between censuses, for subpopulations, or when cross tabulated with other variables or at lower levels of the classification. Data quality ratings for 2023 Census variables has more information on quality ratings by variable.

    Census usually resident population count concept quality rating

    The census usually resident population count is rated as very high quality.

    Census usually resident population count – 2023 Census: Information by concept has more information, for example, definitions and data quality.

    Using data for good

    Stats NZ expects that, when working with census data, it is done so with a positive purpose, as outlined in the Māori Data Governance Model (Data Iwi Leaders Group, 2023). This model states that "data should support transformative outcomes and should uplift and strengthen our relationships with each other and with our environments. The avoidance of harm is the minimum expectation for data use. Māori data should also contribute to iwi and hapū tino rangatiratanga”.

    Confidentiality

    The 2023 Census confidentiality rules have been applied to 2013, 2018, and 2023 data. These rules protect the confidentiality of individuals, families, households, dwellings, and undertakings in 2023 Census data. Counts are calculated using fixed random rounding to base 3 (FRR3) and suppression of ‘sensitive’ counts less than six, where tables report multiple geographic variables and/or small populations. Individual figures may not always sum to stated totals. Applying confidentiality rules to 2023 Census data and summary of changes since 2018 and 2013 Censuses has more information about 2023 Census confidentiality rules.

  17. Staff Count - People (Council Total)

    • ckan.publishing.service.gov.uk
    • data.europa.eu
    Updated Mar 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.publishing.service.gov.uk (2025). Staff Count - People (Council Total) [Dataset]. https://ckan.publishing.service.gov.uk/dataset/staff-count-people-council-total1
    Explore at:
    Dataset updated
    Mar 31, 2025
    Dataset provided by
    CKANhttps://ckan.org/
    Description

    This is the total number of people working for the Council. For the number of people working in each directorate, see Staff count - people by directorate - there are people who work in more than one directorate. The data is sourced from the Council's Human resources system. Figures are taken at the end of the month, the beginning of each quarter, and for an annual snapshot at the end of the financial year. It does not include schools. Every 6 months, the number and percentage of staff who live in Calderdale is reported (from September 2022). Also see other HR and Workforce related datasets.

  18. Degree of urbanization 2025, by continent

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Degree of urbanization 2025, by continent [Dataset]. https://www.statista.com/statistics/270860/urbanization-by-continent/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2025
    Area covered
    World
    Description

    In 2025, the degree of urbanization worldwide was at 58 percent. North America, Latin America, and the Caribbean were the regions with the highest level of urbanization, with over four-fifths of the population residing in urban areas. The degree of urbanization defines the share of the population living in areas defined as "cities". On the other hand, less than half of Africa's population lives in urban settlements. Globally, China accounts for over one-quarter of the built-up areas of more than 500,000 inhabitants. The definition of a city differs across various world regions - some countries count settlements with 100 houses or more as urban, while others only include the capital of a country or provincial capitals in their count. Largest agglomerations worldwideThough North America is the most urbanized continent, no U.S. city was among the top ten urban agglomerations worldwide in 2023. Tokyo-Yokohama in Japan was the largest urban area in the world that year, with 37.7 million inhabitants. New York ranked 13th, with 21.4 million inhabitants. Eight of the 10 most populous cities are located in Asia. ConnectivityIt may be hard to imagine how the reality will look in 2050, with 70 percent of the global population living in cities, but some statistics illustrate the ways urban living differs from suburban and rural living. American urbanites may lead more “connected” (i.e., internet-connected) lives than their rural and/or suburban counterparts. As of 2021, around 89 percent of people living in urban areas owned a smartphone. Internet usage was also higher in cities than in rural areas. On the other hand, rural areas always have, and always will, attract those who want to escape the rush of the city.

  19. 2023 Census Māori descent population change by statistical area 2

    • datafinder.stats.govt.nz
    csv, dwg, geodatabase +6
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stats NZ, 2023 Census Māori descent population change by statistical area 2 [Dataset]. https://datafinder.stats.govt.nz/layer/119473-2023-census-maori-descent-population-change-by-statistical-area-2/
    Explore at:
    shapefile, geopackage / sqlite, dwg, geodatabase, csv, pdf, kml, mapinfo tab, mapinfo mifAvailable download formats
    Dataset provided by
    Statistics New Zealandhttp://www.stats.govt.nz/
    Authors
    Stats NZ
    License

    https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/

    Area covered
    Description

    Dataset contains Māori descent indicator census usually resident population counts from the 2013, 2018, and 2023 Censuses, as well as the percentage change in the Māori descent indicator counts between the 2013 and 2018 Censuses, and between the 2018 and 2023 Censuses. Data is available by statistical area 2.

    Māori descent indicator categories are:

    • Māori descent
    • No Māori descent
    • Don’t know

    Map shows the percentage change in the Māori descent census usually resident population count between the 2018 and 2023 Censuses.

    Download lookup file from Stats NZ ArcGIS Online or embedded attachment in Stats NZ geographic data service. Download data table (excluding the geometry column for CSV files) using the instructions in the Koordinates help guide.

    Footnotes

    Te Whata

    Under the Mana Ōrite Relationship Agreement, Te Kāhui Raraunga (TKR) will be publishing Māori descent and iwi affiliation data from the 2023 Census in partnership with Stats NZ. This will be available on Te Whata, a TKR platform.

    Geographical boundaries

    Statistical standard for geographic areas 2023 (updated December 2023) has information about geographic boundaries as of 1 January 2023. Address data from 2013 and 2018 Censuses was updated to be consistent with the 2023 areas. Due to the changes in area boundaries and coding methodologies, 2013 and 2018 counts published in 2023 may be slightly different to those published in 2013 or 2018.

    Subnational census usually resident population

    The census usually resident population count of an area (subnational count) is a count of all people who usually live in that area and were present in New Zealand on census night. It excludes visitors from overseas, visitors from elsewhere in New Zealand, and residents temporarily overseas on census night. For example, a person who usually lives in Christchurch city and is visiting Wellington city on census night will be included in the census usually resident population count of Christchurch city.

    Caution using time series

    Time series data should be interpreted with care due to changes in census methodology and differences in response rates between censuses. The 2023 and 2018 Censuses used a combined census methodology (using census responses and administrative data), while the 2013 Census used a full-field enumeration methodology (with no use of administrative data).

    About the 2023 Census dataset

    For information on the 2023 dataset see Using a combined census model for the 2023 Census. We combined data from the census forms with administrative data to create the 2023 Census dataset, which meets Stats NZ's quality criteria for population structure information. We added real data about real people to the dataset where we were confident the people who hadn’t completed a census form (which is known as admin enumeration) will be counted. We also used data from the 2018 and 2013 Censuses, administrative data sources, and statistical imputation methods to fill in some missing characteristics of people and dwellings.

    Data quality

    The quality of data in the 2023 Census is assessed using the quality rating scale and the quality assurance framework to determine whether data is fit for purpose and suitable for release. Data quality assurance in the 2023 Census has more information.

    Quality rating of a variable

    The quality rating of a variable provides an overall evaluation of data quality for that variable, usually at the highest levels of classification. The quality ratings shown are for the 2023 Census unless stated. There is variability in the quality of data at smaller geographies. Data quality may also vary between censuses, for subpopulations, or when cross tabulated with other variables or at lower levels of the classification. Data quality ratings for 2023 Census variables has more information on quality ratings by variable.

    Māori descent concept quality rating

    Māori descent is rated as very high quality.

    Māori descent – 2023 Census: Information by concept has more information, for example, definitions and data quality.

    Using data for good

    Stats NZ expects that, when working with census data, it is done so with a positive purpose, as outlined in the Māori Data Governance Model (Data Iwi Leaders Group, 2023). This model states that "data should support transformative outcomes and should uplift and strengthen our relationships with each other and with our environments. The avoidance of harm is the minimum expectation for data use. Māori data should also contribute to iwi and hapū tino rangatiratanga”.

    Confidentiality

    The 2023 Census confidentiality rules have been applied to 2013, 2018, and 2023 data. These rules protect the confidentiality of individuals, families, households, dwellings, and undertakings in 2023 Census data. Counts are calculated using fixed random rounding to base 3 (FRR3) and suppression of ‘sensitive’ counts less than six, where tables report multiple geographic variables and/or small populations. Individual figures may not always sum to stated totals. Applying confidentiality rules to 2023 Census data and summary of changes since 2018 and 2013 Censuses has more information about 2023 Census confidentiality rules.

    Symbol

    -998 Not applicable

    -999 Confidential

    Percentages

    To calculate percentages, divide the figure for the category of interest by the figure for ‘Total stated’ where this applies.

  20. Russian population size 1959-2025

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Russian population size 1959-2025 [Dataset]. https://www.statista.com/statistics/1009271/population-size-russia/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 1, 1959 - Jan 1, 2025
    Area covered
    Russia
    Description

    As of January 1, 2025, more than 146 million people were estimated to be residing on the Russian territory, down approximately 30,000 from the previous year. From the second half of the 20th century, the population steadily grew until 1995. Furthermore, the population size saw an increase from 2009, getting closer to the 1995 figures. In which regions do most Russians live? With some parts of Russia known for their harsh climate, most people choose regions which offer more comfortable conditions. The largest share of the Russian population, or 40 million, reside in the Central Federal District. Moscow, the capital, is particularly populated, counting nearly 13 million residents. Russia’s population projections Despite having the largest country area worldwide, Russia’s population was predicted to follow a negative trend under both low and medium expectation forecasts. Under the low expectation forecast, the country’s population was expected to drop from 146 million in 2022 to 134 million in 2036. The medium expectation scenario projected a milder drop to 143 million in 2036. The issues of low birth rates and high death rates in Russia are aggravated by the increasing desire to emigrate among young people. In 2023, more than 20 percent of the residents aged 18 to 24 years expressed their willingness to leave Russia.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
WebTechSurvey (2023). Websites using WP Live Visitor Counter [Dataset]. https://webtechsurvey.com/technology/wp-live-visitor-counter

Websites using WP Live Visitor Counter

Explore at:
csvAvailable download formats
Dataset updated
Dec 16, 2023
Dataset authored and provided by
WebTechSurvey
License

https://webtechsurvey.com/termshttps://webtechsurvey.com/terms

Time period covered
2025
Area covered
Global
Description

A complete list of live websites using the WP Live Visitor Counter technology, compiled through global website indexing conducted by WebTechSurvey.

Search
Clear search
Close search
Google apps
Main menu