Facebook
TwitterAs of January 6, 2022, an average of 1,192 people per day have died from COVID-19 in the U.S. since the first case was confirmed in the country on January 20th the year before. On an average day, nearly 8,000 people die from all causes in the United States, based on data from 2019. Based on the latest information, roughly one in seven deaths each day were related to COVID-19 between January 2020 and January 2022. However, there were even days when more than every second death in the U.S. was connected to COVID-19. The daily death toll from the seasonal flu, using preliminary maximum estimates from the 2019-2020 influenza season, stood at an average of around 332 people. We have to keep in mind that a comparison of influenza and COVID-19 is somewhat difficult. COVID-19 cases and deaths are counted continuously since the begin of the pandemic, whereas flue counts are seasonal and often less accurate. Furthermore, during the last two years, COVID-19 more or less 'replaced' the flu, with COVID-19 absorbing potential flu cases. Many countries reported a very weak seasonal flu activity during the COVID-19 pandemic. But it has yet to be seen how the two infectious diseases will develop side by side during the winter season 2021/2022 and in the years to come.
Symptoms and self-isolation COVID-19 and influenza share similar symptoms – a cough, runny nose, and tiredness – and telling the difference between the two can be difficult. If you have minor symptoms, there is no need to seek urgent medical care, but it is recommended that you self-isolate, whereas rules vary from country to country. Additionally, rules depend on someone's vaccination status and infection history. However, if you think you have the disease, a diagnostic test can show if you have an active infection.
Scientists alert to coronavirus mutations The genetic material of the novel coronavirus is RNA, not DNA. Other notable human diseases caused by RNA viruses include SARS, Ebola, and influenza. A continual problem that vaccine developers encounter is that viruses can mutate, and a treatment developed against a certain virus type may not work on a mutated form. The seasonal flu vaccine, for example, is different each year because influenza viruses are frequently mutating, and it is critical that those genetic changes continue to be tracked.
Facebook
TwitterThis dataset contains counts of deaths for California counties based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all deaths that occurred during the time period. Deaths involving injuries from external or environmental forces, such as accidents, homicide and suicide, often require additional investigation that tends to delay certification of the cause and manner of death. This can result in significant under-reporting of these deaths in provisional data.
The final data tables include both deaths that occurred in each California county regardless of the place of residence (by occurrence) and deaths to residents of each California county (by residence), whereas the provisional data table only includes deaths that occurred in each county regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by age, gender, race-ethnicity, and death place type. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.
The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.
Facebook
TwitterThe leading causes of death by sex and ethnicity in New York City in since 2007. Cause of death is derived from the NYC death certificate which is issued for every death that occurs in New York City.
Report last ran: 09/24/2019
Facebook
TwitterIn the United States in 2021, the death rate was highest among those aged 85 and over, with about 17,190.5 men and 14,914.5 women per 100,000 of the population passing away. For all ages, the death rate was at 1,118.2 per 100,000 of the population for males, and 970.8 per 100,000 of the population for women. The death rate Death rates generally are counted as the number of deaths per 1,000 or 100,000 of the population and include both deaths of natural and unnatural causes. The death rate in the United States had pretty much held steady since 1990 until it started to increase over the last decade, with the highest death rates recorded in recent years. While the birth rate in the United States has been decreasing, it is still currently higher than the death rate. Causes of death There are a myriad number of causes of death in the United States, but the most recent data shows the top three leading causes of death to be heart disease, cancers, and accidents. Heart disease was also the leading cause of death worldwide.
Facebook
TwitterNumber and percentage of deaths, by age group, sex, and place of residence, 1991 to most recent year.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Annual data on death registrations by single year of age for the UK (1974 onwards) and England and Wales (1963 onwards).
Facebook
TwitterThis dataset contains counts of deaths for California as a whole based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all deaths that occurred during the time period. Deaths involving injuries from external or environmental forces, such as accidents, homicide and suicide, often require additional investigation that tends to delay certification of the cause and manner of death. This can result in significant under-reporting of these deaths in provisional data.
The final data tables include both deaths that occurred in California regardless of the place of residence (by occurrence) and deaths to California residents (by residence), whereas the provisional data table only includes deaths that occurred in California regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by age, gender, race-ethnicity, and death place type. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.
The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.
Facebook
TwitterFind data on deaths of Massachusetts residents. Information is obtained from death certificates received by the Registry of Vital Records and Statistics.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Premature Death Rate for San Francisco County, CA (CDC20N2U006075) from 1999 to 2020 about San Francisco County/City, CA; premature; death; San Francisco; CA; rate; and USA.
Facebook
TwitterReview reports on Massachusetts deaths from the Registry of Vital Records and Statistics.
Facebook
TwitterNumber and percentage of deaths, by place of death (in hospital or non-hospital), 1991 to most recent year.
Facebook
TwitterIn 2024, about **** million deaths were reported in the United States. This reflected a slight decrease from the previous year, and an ** percent decrease from the peak of the COVID-19 pandemic in 2020.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Premature Death Rate for Bronx County, NY (CDC20N2U036005) from 1999 to 2020 about Bronx County, NY; premature; death; New York; NY; rate; and USA.
Facebook
TwitterData on death rates in the United States in by age and cause of death. At the bottom of the table, some of the columns are a little out of whack but if you download the file, you should be able to make out all the numbers and information
Looking at death rates in the United States can be a sobering experience, but it can also be a helpful way to see where our country needs to focus its efforts in terms of public health. This dataset contains information on death rates in the United States in 2014, by age and cause of death. This can be used to help identify which age groups are most at risk for certain causes of death, and what factors may contribute to those risks
- Find out what age group is dying the most and why.
- Compare death rates from different causes of death.
- Find out which states have the highest death rates
License
Unknown License - Please check the dataset description for more information.
File: 2014 Death Rates by Age & Cause.csv | Column name | Description | |:-------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------| | Cause of death (based on ICD–10) | The cause of death that the row represents. This is given as a code based on the International Classification of Diseases (ICD). (String) | | All ages1 | The number of deaths due to the given cause in the given age group.(Integer) | | Under 1 year2 | The number of deaths due to the given cause in the given age group.(Integer) | | 1–4 | The number of deaths due to the given cause in the given age group.(Integer) | | 5–14 | The number of deaths due to the given cause in the given age group.(Integer) | | 15–24 | The number of deaths due to the given cause in the given age group.(Integer) | | 25–34 | The number of deaths due to the given cause in the given age group.(Integer) | | 35–44 | The number of deaths due to the given cause in the given age group.(Integer) | | 45–54 | The number of deaths due to the given cause in the given age group.(Integer) | | 55–64 | The number of deaths due to the given cause in the given age group.(Integer) | | 65–74 | The number of deaths due to the given cause in the given age group.(Integer) | | 75–84 | The number of deaths due to the given cause in the given age group.(Integer) | | 85 and over | The number of deaths due to the given cause in the given age group.(Integer) |
Facebook
Twitterhttps://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
These mortality indicators provide information to help the National Health Service (NHS) monitor success in preventing potentially avoidable deaths following hospital treatment. The National Confidential Enquiry into Patients Outcomes and Death (NCEPOD) have, over many years, consistently shown that some deaths are associated with shortcomings in health care. The NHS may be helped to prevent such potentially avoidable deaths by seeing comparative figures and learning lessons from the confidential enquiries, and from the experience of hospitals with low death rates. The indicators presented measure mortality rates for patients, admitted for certain conditions or procedures, where the death occurred either in hospital or within 30 days of the emergency admission or operative procedure. Data are presented for the 10 year period 2005/06 to 2014/15, and in separate breakdowns for females, males and persons For information on the definitions of what these indicators include, please see the relevant specification.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Provisional counts of the number of deaths registered in England and Wales, by age, sex, region and Index of Multiple Deprivation (IMD), in the latest weeks for which data are available.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
this graph was created in Tableu and Ourdataworld :
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2Fc5bb0b21c8b3a126eca89160e1d25d03%2Fgraph1.png?generation=1710708871099084&alt=media" alt="">
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2Ff81fcfa72e97f08202ba1cb06fe138da%2Fgraph2.png?generation=1710708877558039&alt=media" alt="">
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2Fabbdfd146844a7e8d19e277c2eecb83b%2Fgraph3.png?generation=1710708883608541&alt=media" alt="">
Introduction:
HIV/AIDS remains one of the most significant public health challenges globally, with its impact varying widely across countries and regions. While the overall share of deaths attributed to HIV/AIDS stands at around 1.5% globally, this statistic belies the stark disparities observed on a country-by-country basis. This essay delves into the global distribution of deaths from HIV/AIDS, examining both the overarching trends and the localized impacts across different regions, particularly focusing on Southern Sub-Saharan Africa.
Understanding Global Trends:
At a global level, HIV/AIDS accounts for approximately 1.5% of all deaths. This figure, though relatively low in comparison to other causes of mortality, represents a significant burden on public health systems and communities worldwide. However, when zooming in on specific regions, such as Europe, the share of deaths attributable to HIV/AIDS drops significantly, often comprising less than 0.1% of total mortality. This pattern suggests varying levels of prevalence and effectiveness of HIV/AIDS prevention and treatment strategies across different parts of the world.
Regional Disparities:
The distribution of HIV/AIDS deaths is not uniform across the globe, with certain regions experiencing disproportionately high burdens. Southern Sub-Saharan Africa emerges as a focal point of the HIV/AIDS epidemic, with a significant portion of deaths attributed to the virus occurring in this region. Factors such as limited access to healthcare, socio-economic disparities, cultural stigmatization, and insufficient education about HIV/AIDS contribute to the heightened prevalence and impact of the disease in this area.
Southern Sub-Saharan Africa: A Hotspot for HIV/AIDS Deaths:
Within Southern Sub-Saharan Africa, countries such as South Africa, Botswana, and Swaziland stand out for their exceptionally high rates of HIV/AIDS-related mortality. In these nations, HIV/AIDS can account for up to a quarter of all deaths, highlighting the acute nature of the epidemic in these regions. The reasons behind this disproportionate burden are multifaceted, encompassing issues ranging from inadequate healthcare infrastructure to socio-cultural barriers inhibiting prevention and treatment efforts.
Challenges and Responses:
Addressing the unequal distribution of HIV/AIDS deaths necessitates a multi-faceted approach that encompasses both prevention and treatment strategies tailored to the specific needs of affected communities. Efforts to expand access to antiretroviral therapy (ART), promote comprehensive sexual education, combat stigma, and strengthen healthcare systems are crucial components of an effective response. Moreover, fostering partnerships between governments, civil society organizations, and international entities is essential for coordinating resources and expertise to tackle the HIV/AIDS epidemic comprehensively.
Lessons Learned and Future Directions:
The global distribution of deaths from HIV/AIDS underscores the importance of context-specific interventions that take into account the unique social, economic, and cultural factors influencing the spread and impact of the disease. While progress has been made in reducing HIV/AIDS-related mortality in some regions, much work remains to be done, particularly in areas where the burden of the epidemic remains disproportionately high. Going forward, sustained investment in research, healthcare infrastructure, and community empowerment initiatives will be vital for achieving meaningful reductions in HIV/AIDS deaths worldwide.
Conclusion:
In conclusion, the global distribution of deaths from HIV/AIDS reveals a complex landscape characterized by both overarching trends and localized disparities. While the overall share of deaths attributable to HIV/AIDS may seem relatively modest on a global scale, the stark contrasts observed across different countries and regions underscore the need for targeted interventions tailored to the specific contexts in which the epidemic is most pronounced. By addressing the underlying social, economic, and healthcare-related factors driving the unequal distribution of HIV/AIDS deaths, the global co...
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Pre-existing conditions of people who died due to COVID-19, broken down by country, broad age group, and place of death occurrence, usual residents of England and Wales.
Facebook
TwitterAttribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
The graph illustrates the annual fatalities among construction workers in the United States from 2018 to 2023. The x-axis displays the years, labeled with abbreviated two-digit numbers from '18 to '23, while the y-axis represents the total number of deaths recorded each year. Over this five-year span, the fatalities range from a low of 951 in 2021 to a high of 1,066 in 2019. The data shows fluctuations in annual deaths, with a decrease in fatalities in 2020 and 2021 followed by an increase in 2022. The graph provides a visual representation of the trends in construction worker fatalities during this period.
Facebook
TwitterRank, number of deaths, percentage of deaths, and age-specific mortality rates for the leading causes of death, by age group and sex, 2000 to most recent year.
Facebook
TwitterAs of January 6, 2022, an average of 1,192 people per day have died from COVID-19 in the U.S. since the first case was confirmed in the country on January 20th the year before. On an average day, nearly 8,000 people die from all causes in the United States, based on data from 2019. Based on the latest information, roughly one in seven deaths each day were related to COVID-19 between January 2020 and January 2022. However, there were even days when more than every second death in the U.S. was connected to COVID-19. The daily death toll from the seasonal flu, using preliminary maximum estimates from the 2019-2020 influenza season, stood at an average of around 332 people. We have to keep in mind that a comparison of influenza and COVID-19 is somewhat difficult. COVID-19 cases and deaths are counted continuously since the begin of the pandemic, whereas flue counts are seasonal and often less accurate. Furthermore, during the last two years, COVID-19 more or less 'replaced' the flu, with COVID-19 absorbing potential flu cases. Many countries reported a very weak seasonal flu activity during the COVID-19 pandemic. But it has yet to be seen how the two infectious diseases will develop side by side during the winter season 2021/2022 and in the years to come.
Symptoms and self-isolation COVID-19 and influenza share similar symptoms – a cough, runny nose, and tiredness – and telling the difference between the two can be difficult. If you have minor symptoms, there is no need to seek urgent medical care, but it is recommended that you self-isolate, whereas rules vary from country to country. Additionally, rules depend on someone's vaccination status and infection history. However, if you think you have the disease, a diagnostic test can show if you have an active infection.
Scientists alert to coronavirus mutations The genetic material of the novel coronavirus is RNA, not DNA. Other notable human diseases caused by RNA viruses include SARS, Ebola, and influenza. A continual problem that vaccine developers encounter is that viruses can mutate, and a treatment developed against a certain virus type may not work on a mutated form. The seasonal flu vaccine, for example, is different each year because influenza viruses are frequently mutating, and it is critical that those genetic changes continue to be tracked.